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Abstract. A mathematical model of  growth and competitive interaction of 
microorganisms in the chemostat is analyzed. The growth-limiting nutrient is not 
in a form that can be directly assimilated by the microorganisms, and must first 
be transformed into an intermediate product by cell-bound extracellular en- 
zymes. General monotone functions, including Michael is-Menten and sigmoidal 
response functions, are used to describe nutrient conversion and growth due to 
consumption of the intermediate product. It is shown that the initial concentra- 
tion of the species is an important determining factor for survival or washout. 
When there are two species whose growth is limited by the same nutrient, three 
different modes of competition are described. Competitive coexistence steady 
states are shown to be possible in two of them, but they are always unstable. In 
all of  our numerical simulations, the system approaches a steady state corre- 
sponding to the washout of  one or both of the species from the chemostat. 
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1 Introduction 

In this paper we present and analyze a mathematical model describing microbial 
growth and competition in the chemostat where extracellular enzymes produced 
by the microorganisms play an important  role in the nutrient uptake process. 

The chemostat is a laboratory apparatus used for the continuous culture of  
microorganisms. It can be viewed as a laboratory idealization of a natural lake 
system and is useful for studying the growth and interaction of microorganisms 
limited by the short supply of some nutrient or nutrients. Here we are interested 
in the case where there is a single, nonreproducing, growth limiting nutrient. All 
other factors influencing growth are assumed to be in abundant supply. 

Many of the mathematical models of  microbial growth in the literature were 
constructed under the simplifying assumption that nutrient uptake and cellular 
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growth are directly coupled. Growth is often assumed to be proportional to 
uptake of external nutrient and the conversion process is assumed to be 
instantaneous. (See, for example, [2, 7, 8, 9, 15, 16].) In [8, 9], for the Monod 
growth model, where response functions are modeled by Michaelis-Menten 
kinetics, and in [2] for any reasonable monotone increasing response functions, 
the models predict that the concentration of a single population growing in the 
chemostat will either approach a positive steady state, or the population will be 
completely washed out of the system. The outcome for a particular species can 
be predicted from the relative values of the concentration of the nutrient supply 
in the feed bottle and the break-even concentrations of the nutrient for cell 
growth of each species. These break-even concentrations depend directly on the 
dilution rate. If several populations compete for the same growth limiting 
nutrient, according to these models, only one species has a chance of surviving, 
the population with the lowest relative break-even concentration. Again a steady 
state is approached. In both the single species model and the competition model 
the outcomes are completely initial condition independent. 

The assumption that the external nutrient supply is instantaneously converted 
to biomass is a broad simplification of a series of very complicated chemical 
reactions. Very often the chemical structure of the nutrient is not even in a form 
that can be directly absorbed and assimilated by the microorganisms. Secre- 
tion of extracellular enzymes is one of the various mechanisms with which 
many species of bacteria, e.g. several strains of the Streptococcus family and of 
the Bacillus family, can utilize such nutrient supply for growth. (See, for example, 
[5, 11].) In the presence of such enzymes, the external nutrient is first converted 
to an intermediate product before being absorbed into the cells, e.g. many strains 
of oral streptococci which cause dental plaque can utilize dietary sucrose by 
secreting extracellular glucosyltransferases and fructosyltransferases which convert 
sucrose to dextrans and fructans respectively [14]. The growth rate of the 
microorganisms is therefore directly related to the concentration of the intermediate 
product and depends only indirectly on the concentration of the nutrient supply. 
For convenience sake, microorganisms which can directly utilize the external 
nutrient supply for growth are referred to as type I, and those which can only 
assimilate some modified form of the external nutrient are referred to as type lI. 

For type II microorganisms, there is obviously a delay between the rate of 
uptake of the external nutrient and the growth rate of the species. There are 
many models in which growth is dependent on previous consumption history. In 
one approach [1, 6], fixed time delays are introduced into the model in the form 
of retarded functional differential equations. Our approach in this paper is to 
actually model a delay mechanism. 

Among type II microorganisms which secrete extracellular enzymes to con- 
vert the nutrient to an intermediate product, there are several mechanisms with 
which the conversion is accomplished. In some species, the enzymes remain 
attached to the cell wall after being secreted; formation of the intermediate 
product occurs when the external nutrient comes into contact with the cells. 
Penicillinase produced by Bacillus licheniformis [12] and ~-amylase produced by 
Bacillus subtilis [ 10] are two examples of cell-bound extracellular enzymes. The 
intermediate product thus formed either becomes detached from the cells and 
diffuses into the environment, or remains attached and is eventually absorbed by 
the same cell. In other species, the enzymes are completely detached from the 
cells and are mixed with the medium. The intermediate product is formed when 
the nutrient comes into contact with the enzyme molecules. 
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We study here the case when the extracellular enzymes are cell-bound and the 
intermediate product becomes detached from the cells after being formed and is 
assumed to be homogeneously distributed in the chemostat. The rate of produc- 
tion of the intermediate product, which is assumed to be proportional to the rate 
of conversion of the nutrient, obviously depends on the concentration of the 
extracellular enzymes. However, there is experimental indication that there is a 
uniform distribution of binding cites of the enzymes to the cell membrane [10]. 
We therefore assume that the concentration of the extracellular enzymes is 
roughly proportional to the concentration of the microorganisms, and consider 
the per-capita rate of production of the intermediate product as a function of 
nutrient concentration only. On the other hand, the per-capita growth rate of the 
microorganisms is a function of the concentration of the intermediate product. 
Consequently, it is not necessary to explicitly include the enzyme concentration 
in the model equations. In our model, general monotone response functions are 
used to describe the per-capita production rate of intermediate product and the 
per-capita growth rate. Analysis of the model indicates very different dynamics 
compared with the usual chemostat models of type I microorganisms as shown 
in [2, 8, 16]. For example, for type II microorganisms, the asymptotic behavior 
of the model equations depends on the initial concentrations. 

Several modes of competition between two species in the chemostat is also 
considered. These include: (a) both species are type II and the same intermediate 
product is produced; (b) both species are type II and they produce distinct 
intermediate products which cannot be consumed by the other species; (c) one 
species is type I and one is type II. 

Our analysis shows that in cases (b) and (c) coexistence steady states are 
mathematically possible but nonetheless are always unstable, and in general there 
is no coexistence steady state in case (a). In all cases, depending upon initial 
conditions and the parameters of the system, either species can be the sole 
survivor in the chemostat or both species wash out. It is not clear whether 
coexistence in the form of oscillation is possible, but no Hopf bifurcation from 
any equilibrium point can occur. Numerical studies suggest that the solution of 
the model equations approaches one of the stable equilibrium points correspond- 
ing to the washout of one or both of the species. 

The following interesting phenomenon is observed in case (a). For certain 
parameter ranges a one-species stable equilibrium can be destabilized when a 
small amount of the second species is introduced into the chemostat, even 
though this second species cannot survive without competition. In numerical 
simulations both species are eventually washed out from the chemostat. This 
phenomenon could be exploited in bacterial control and genetic engineering. 

This paper is organized as follows. The model equations are presented in Sect. 
2. The growth of one species is analyzed in Sect. 3. The three modes of competition 
between two species are studied in Sects. 4 to 6. The focus is to determine whether 
any coexistence equilibrium is possible, as well as to determine the local stability 
of all the equilibrium points. Global asymptotic behavior of the system in some 
particular cases is also studied. Some concluding remarks are given in Sect. 7. 

2 The model 

A simple model of the growth of one species in the chemostat is proposed. 
Growth is assumed to be limited by a single, nonreproducing nutrient and all 
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other factors influencing growth are in abundant supply. The nutrient is not in 
a form that can be directly consumed and is chemically transformed to an 
intermediate product in the presence of cell-bound extracellular enzymes pro- 
duced by the microorganisms. Molecules of the intermediate product, once they 
are formed, detach from the cells and mix homogeneously in the culture medium. 
The growth rate of the microorganisms therefore depends directly on the rate at 
which the intermediate product is absorbed into the cells. The rate of formation 
of the intermediate product, on the other hand, depends on the concentration of 
the extracellular enzymes and of the nutrient in the vessel. Assuming enzyme 
concentration to be roughly proportional to cell concentration, the per-capita 
rate of intermediate product produced can be modeled as a function of the 
nutrient concentration only and so enzyme concentration is not explicitly in- 
cluded in the model. The rate of conversion of the nutrient is proportional to the 
rate of formation of the intermediate product, and the growth rate is propor- 
tional to the consumption rate of the intermediate product. Monotone response 
functions are used to model both the nutrient-intermediate product conversion 
process and the growth rate by assimilation of the intermediate product. 

Under these assumptions the equations describing one species growth dy- 
namics in the chemostat take the form: 

dS S°D - SD - 1 X F ( S ) ,  
d T  7 

dP _ _ PD + X F ( S )  - 1 XQ(P) ,  
d T  q 
d X  (2.1) 
d ~  = - X D  + XQ(P) ,  

s(0)  >t 0, P(O) t> 0, x(0)  > 0, 

where 

S ( T )  = concentration of nutrient (in the chemostat) at time T, 
P ( T )  = concentration of intermediate product at time T, 
X ( T )  = concentration of microorganisms at time T, 
F(S )  = per-capita production rate of intermediate product as a function of the 

concentration of the nutrient, 
Q(P) = per-capita growth rate of microorganisms as a function of the concentra- 

tion of the intermediate product, 
7--yie ld  constant for conversion from nutrient to intermediate product, 
~/= yield constant for consumption of intermediate product, 

S o = concentration of nutrient supply in the feed bottle of the chemostat, 
D = dilution rate. (Species specific death rates are assumed to be negligible 

compared to the dilution rate.) 

The functions F(S )  and Q(P) are assumed to be continuously differentiable, 
monotone increasing, and satisfy F(0) = 0 and Q(0) = 0. For  example, if the 
growth rate of the microorganisms is assumed to be modeled by Michaelis- 
Menten kinetics, then F ( S ) =  M S / ( A  + S),  where M denotes the maximum 
production rate of the intermediate product, and A denotes the Michaelis- 
Menten (half-saturation) constant for conversion of the nutrient. (Both M and 
A are positive.) This is a prototype for a concave uptake function that saturates. 
Another typical form of monotone dynamics is the so-called sigmoidal or 
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S-shaped dynamics. These functions are initially convex, and have a single point 
of  inflection where they become concave. They also saturate. An example of  a 
functional expression for such dynamics is F ( S )  = M S 2 / ( S  2 + K S  + L),  where K, 
L, and M are all positive. 

Note that even though there is interdependence between P and X in (2.1), the 
relationship is neither mutuality nor parasitism. I f  the term X F ( S )  in the first two 
equations is replaced by P F ( S ) ,  the whole system becomes a model for a food 
chain in the chemostat which was studied in [3]. 

3 One species in the chemostat 

We first scale (2.1) using the following change of  variables and notation: 

s = S I S  °, p = P / T S  °, x = X/T t lS  °, 

f ( s )  = t l F (S ) / D ,  q(p)  = Q ( P ) / D ,  

t = D T, ' = d/dt.  

The dimensionless equations thus obtained are 

s '  = 1 - s - x f ( s ) ,  

p" = - p  + x f ( s )  - xq (p ) ,  
(3.1) 

x '  = - x + xq (p ) ,  

s(0) i> 0, p(0)/> 0, x(0) > 0. 

It is easy to see that IR 3 , the closed nonnegative cone in lt~ 3, is positively 
invariant under the solution map of (3.1). Moreover, the system is dissipative. In 
fact, 

lim (s(t) + p(t)  + x(t))  = 1 (3.2) 

and the convergence is exponential. One can also show that the two-dimensional 
set 

F = {(s ,p ,  x) ~ [~3+ is + p  + x  = 1} (3.3) 

is positively invariant. The omega limit set of  any trajectory therefore is 
nonempty, compact,  connected and contained in F. 

As in [2, 3], we define the positive extended real numbers 2 and 8 as follows: 

f (2 )  = 1, q(6) = 1. (3.4) 

The monotonicity and continuity o f f  and q ensure that 2 and 6 are uniquely 
defined. 0 f f ( s )  < 1 for all s > 0 then 2 = ~ ,  and if q(p)  < 1 for all p > 0 then 
6 = oo.) For example, in the case of  Michaelis Menten dynamics, i.e., if 
f ( s )  = m l s / (a l  + s) and q(p)  = m2p/(a2 + p), then 

2 - al 6 - -  a 2  (3.5a) 
m I - -  1 ' m 2 - 1 " 

I f  the dynamics is sigmoidal, for example, if f (s) = ms2/(s 2 + Ks + L), then 

K + ( K  2 + 4 m L  - 4L)~/2 
2 = (3.5b) 

2(m - 1) 
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The parameter ~ represents the concentration of the intermediate product in 
the scaled model (3.1) at which the concentration of the microorganisms is 
neither increasing nor decreasing and so is called the break-even concentration. 
The interpretation of the parameter 2 is not so clear. The motivation for defining 
2 this way comes from considerations of the related model in which there is no 
intermediate product (see [2, 8]). In that model x '  = x ( f ( s ) -  1) and it is 
interpreted as the break-even concentration of the nutrient. 

Theorem 3.1 E0 = (1, 0, 0) is always locally asymptot ical ly  stable f o r  (3.1), and is" 
globally asymptot ical ly  stable i f  it is the only equilibrium point. 

Proof.  Local stability of E o follows directly from standard linearization tech- 
nique. Since the omega limit set of any trajectory is contained in the two-dimen- 
sional compact and positively invariant set F, and E0 lies on the boundary of F, 
Eo must be globally asymptotically stable by the Poincar6 Bendixson theorem 
and its implications. 

An equilibrium point E = (g,/~, if) of (3.1) is an interior equilibrium point if 
g > 0 , / ~ > 0 a n d  i f > 0 .  

Lemma 3.2 I f  an equilibrium point  E ~ Eo exists, then E is an interior equilibrium 
and it satisfies fi = 6, 2 < g < 1 - 6. 

Proof.  If .2 = 0 it is clear that E must equal E o. Suppose ff > 0, then/~ = ~i and 
must satisfy: 

1 - -g  6 
= 1 - g - b ,  .~ - ~ - - -  (3.6) 

f(s-) ' f(g) - 1 

(Note that any two of the above conditions imply the third.) Now 
= l - g - 6 > 0  if and only if g < l - 3 .  On the other hand, 

1 - ~ > 1 - g - 3 = ,2 = ( 1 - s3 If(s-), which implies that f ( g )  > 1 so it < g. 

Theorem 3.3 I f  it + 6 >~ 1, Eo is the only equilibrium point  o f  (3.1) and hence 
globally asymptot ical ly  stable. 

P r o o f  Let E = (g,/~, .?) be any arbitrary equilibrium point of (3.1). If E C E 0, 
it < g < 1 - 6 by Lemma 3.2. But this implies that it + 6 < 1, a contradiction. 
Global stability follows from Theorem 3.1. 

For the rest of this section we study the asymptotic behavior of trajectories 
of (3.1) when it + 6 < 1. We begin by considering the equilibrium points. By 
Lemma 3.2, E0 is the only possible boundary equilibrium point. All other 
equilibria must be in the interior of N3. The next theorem gives necessary and 
sufficient conditions for the existence of such an interior equilibrium. Define 

g(s) = 1 - ~ - s, 

l - s  
h(s) - 

f ( s )  ' (3.7) 
W ( s )  = g(s)  - h(s),  

8 
r ( s )  = g(s)  

f ( s )  -- 1 

An interior equilibrium E = (-L/~, if) exists if and only if there exists g such that 
W(sO = 0 and V(g) = O. 
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Theorem 3.4 With respect to system (3.1), the following are equivalent: 
(a) There exists at least one interior equilibrium point. 
(b) There exists s e (2, 1 - 5) such that W(s) >t O. 
(c) There exists s e (2, 1 - 5 )  such that W(s) >>. 0 and f (s) = 1 +f ' (s ) (1  - s ) /  

f (s ) .  
(d) There exists s e (2, 1 - 6) such that V(s) >i O. 
(e) There exists s e (2, 1 - 5) such that V(s) >>- 0 and ( f (s )  - 1) 2 = 5f'(s). 

Proof. Let E = (g,p, ~) be any equilibrium point of (3.1). If E # E0, by Lemma 
3.2 it is an interior equilibrium, hence 2 < g < I - 6. Note that W(2) = - 6  by 
(3.4) and W(1 - 5 )  = - 8 I f ( 1  - 5 )  < 0. Therefore (b) is equivalent to (a). Since 
W ' ( s ) = - l + [ f ( s ) + f ' ( s ) ( 1 - s ) ] / f 2 ( s ) ,  (c) implies that there exists an 
s e (2, 1 - 5 )  such that W'(s)= 0 and W(s)>~ O. Also, W is continuous and 
differentiable on (2, 1 -  5) and negative at the end points of the interval, 
therefore (b) implies (c). Clearly (c) implies (b). The proofs for (d) and (e) are 
similar to the above arguments using the last definition of ~ in (3.6). 

Corollary 3.5 (a) If the inequality in Theorem 3.4(b), (c), (d) or (e) is strict then 
(3.1) has at least two interior equilibrium points. 

(b) I f  f (s) is a concave function for s e (2, 1 - 6 ) ,  then (3.1) has at most two 
interior equilibrium points. 

(c) I f  f (s) is S-shaped for  s ~ (,L 1 - 6), (i.e. there exists g ~ (2, 1 - 6) such that 
i f ( s )  > 0  i f ) ,  < s < ~ and f"(s)  < 0  i f  g < s < 1 - 6 ) ,  and f " ( s )  < 0  t f 2  < s  < £  
then (3.1) has at most two interior equilibrium points. 

(d) I f  2 < 1 and 6 is sufficiently small then (3.1) has at least two interior 
equilibrium points. 

Proof. (a) is obvious. 
(b) Note that the graph of g(s) is a straight line passing through (0, 1 - 5 )  

and (1 - 6, 0), and the graph of h(s) is a curve passing through (1, 0) and satisfies 
h(s) > 0  for 0 < s  < 1 as well as h(s )~oc  as s ~ 0  +. Since 

2 ( 1  - s ) ( f ' ( s ) )  2 + 2 f  (s) f ' (s)  - ( 1  - s ) f " ( s ) f  (s) 
h"(s) = .p(s) (3.8) 

1 
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0 1  
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0 

b 

(L1 X) 
' : ,  

" k  E2 
. >  
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F i g .  3 . 1 .  I n t e r s e c t i o n  o f  g(s) and h(s) when f(s) is a concave and b S-shaped, for s c ( 2 ,  1 - 6 ) .  

is the graph o f  g(s) a n d  • - • is the graph o f  h(s) 
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if f (s) is concave for  s ~ (2, 1 - 6) then h(s) is strictly convex (i.e. h"(s) > 0) there, 
and hence there can be at most  two points  where g and h intersect such that  
W(s) = 0 (see Fig. 3.1(a)). 

(c) Since h ' ( s ) = - [ f ( s )  + ( 1 - s ) f ' ( s ) ] / f 2 ( s ) ,  h is decreasing on (2, 1 - 6 ) .  
Denote  the numera to r  in (3.8) by k(s). Since k ' ( s ) = 3 ( 1 - s ) f ' ( s ) f " ( s ) +  
3 f  (s)f"(s) - ( 1 - s ) f " ( s ) f  (s) >>, 0 for 2 < s < L k(s) is increasing for 2 < s < g and 
is positive for g < s < 1 - 6. Therefore  h can change concavi ty  at most  once in 
(2, 1 - ~ )  ( f rom concave to convex), and remains strictly convex on the entire 
interval (2, 1 - 6) if k(2) ~> 0. Thus  there can be at mos t  two points  where h and 
g intersect such that  W(s) = 0 (see Fig. 3.1(b)). 

(d) follows f rom (a) and Theorem 3.4(d). 

Remark  3.6 Most  realistic m o n o t o n e  response functions (e.g. Michae l i s -Men ten  
or sigmoidal of  the form (3.5b)) satisfy the hypotheses  in either (b) or (c) o f  the 
above corollary.  However ,  we have not  ruled out the possibility that  for some 
m o n o t o n e  response functions there might  be more  than two interior equil ibrium 
points  (see Fig. 3.2(d)). 

Example  3.7 I f  f ( s ) = m s / ( a  +s ) ,  i.e. f ( s )  is a Michaelis Menten  response 
function, with m > 1 and a > 0, then 2 = a/(m - 1) > 0, and if in addit ion to 
2 + 6 < 1 ,  

(i) 6 > 60, there is no interior equilibrium; 
(ii) 6 < 6o, there are exactly two interior equilibria: 

E l = ( c l , 6 , 1 - - 6 - - c l )  and E 2 = ( c 2 , 6 , 1 - 6 - c 2 ) ,  

where 80 = ( 1 - x/2~) 2a/m;t, c1 = ½[ - fl + (f12 _ 42)1/2], c2 = 1 [  _ _  j~ _ _  ( f 1 2  _ _  42)1"21, 
and fl = - 1 - 2  + m 2 6 / a .  The number  of  equil ibrium points  follows f rom 
Corol lary  3.5(b) noting that  f is concave.  The actual  componen t s  of  El and E2 
are found by setting W ( s ) =  0 and solving the resulting quadrat ic  equat ion 
s 2 +  fls + 2 = 0. In the unlikely case of  8 = 60, there is exactly one interior 
equil ibrium E1 = (xj2 ,  6, 1 - 6 - xj~). 

Example  3.8 I f  f (s) = ms2/(s 2 + Ks + L), m > 1, K and L are nonnegative,  then 
2 > 0 is finite and f ( s )  is S-shaped  on (0, oo). I f  the point  o f  inflection g ,G< 2, it 
is easy to see that  the hypotheses  of  Corol lary  3.5(b) are satisfied. I f  ~ > 2, first 
note that  

6m(Ks 4 + 4Ls 3 _ 4L 2s _ L 2K) 
f t t t (S)  = (S 2 + KS ~- L) 4 

Since f"(s") = 0, f " ( s )  > 0 if s < ~, and f " ( s )  < 0 if s > ~, it follows that  f" (s ' )  < 0. 
Deno te  the numera to r  of  f '"(s)  by n(s). Note  that  
n'(s) = 6m( 4Ks 3 + 12Ls 2 - 4L 2) and n"(s) = 6m(12Ks 2 + 24Ls) > 0, therefore 
n'(s) is increasing. As n ' (0)  < 0, n(s) initially decreases and then increases. Since 
n(0) < 0 and n(s - )<0 ,  it follows that  n ( s ) < 0  and hence f " ( s ) <  0 for all 
2 < s < g. This shows that  the hypotheses  of  Corol lary  3.5(c) are satisfied in this 
case. In every case then, for dynamics  of  this form, there are at mos t  two interior 
equil ibrium points. 

A more  direct me thod  of  observing that  there are at mos t  two interior 
equilibria is to note that  h " ( s ) = ( 2 K s  + 6 L - 2 s L ) / m s  4. Clearly h " ( s ) > 0  for 
s e (0, 3) and so h(s) is strictly convex for s ~ (2, 1 - 6). Thus there can be at 
most  two points  at which W(s) = O. 
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Fig. 3.2. Phase plane analysis of (3.9) for different intersections of g(s) and h(s). : isoclines g(s) 
and h(s), - : the stable manifold of each equilibrium transverse to the line g(s), . . . :  sample 
trajectories, a g(s) and h(s) do not intersect, E o is the global attractor, b g(s) and h(s) intersect exactly 
once. The stable manifold of E~ forms the separatrix. All trajectories above the separatrix converge 
to E 1, and those below converge to E o. e g(s) and h(s) intersect twice, E o and E 2 are locally 
asymptotically stable and E~ is a saddle. The stable manifold of E~ forms the separatrix. All 
trajectories above (below) the separatrix converge to E 2 (Eo). d g(s) and h(s) intersect many times at 
Ei = (g,, £i). Local stability of each equilibrium point is given by (3.10). The stable manifold of the 
saddle points and of the semi-stable equilibria partition the space 

The  in te r io r  equi l ibr ia ,  w h e n  they exist, are deno t ed  by 
~ = (cj, 5, 1 - 5 - CJ), where  W ( c j )  = V ( c j )  = 0 (by  (3.6)), 1 ~<j ~< n. The  order -  
ing o f  the E f s  is such tha t  cj > c j + l ,  1 ~<j ~ < n -  1. N o t e  tha t  the n u m b e r  o f  
in te r io r  equi l ibr ia ,  n, is gener ical ly  even.  

We  c o n t i n u e  to s tudy  m o d e l  (3.1) u n d e r  the a s s u m p t i o n  tha t  2 < 1 - 6  by  
m e a n s  o f  a phase  p l ane  analysis .  By (3.2) a n d  (3.3), we can  ana lyze  the flow o f  
(3.1) restr ic ted to the t w o - d i m e n s i o n a l  set F :  

s '  = 1 - s - x f  (s ) ,  

x '  = - x  + x q ( l  - s - x ) .  
(3.9) 
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If E =  (L/~, £) is an equilibrium of (3.1), then E = (g, £) denotes an equi- 
librium of (3.9) with g + ~ = 1 - 6. From the phase portrait of  (3.9) (see Fig. 
3.2), it can be seen that if 

(i) h'(g) < - 1, E is an asymptotically stable node, 
(3.10) 

(ii) h'(Y) > - 1, E is an unstable saddle point, 

where h(s)  is given in (3.7). (The eigenvalues of the variational matrix of (3.9) at 
any equilibrium are real and for case (i) are both negative, while for case (ii) they 
are of opposite sign.) E0 is always an asymptotically stable node. The one-dimen- 
sional stable manifold of each of the unstable critical points form the separa- 
trices. All solutions converge to one of the asymptotically stable equilibrium 
points. (E is semi-stable for the nongeneric case of h'(s-) = - 1,) 

From this analysis of (3.9) we can see that the indirect nutrient-biomass 
conversion modeled in (2.1) gives rise to growth dynamics very different from 
that in [2, 8]. In particular, the initial concentration of the species is an important 
factor for survival in the chemostat. Since E0 is always asymptotically stable, 
even when there exists an asymptotically stable interior equilibrium, washout is 
possible if the initial concentration of the species is too low. This might be an 
alternative explanation for the washout observed occasionally in experiments 
and usually assumed to be due to a problem with the equipment. 

Another feature of model (3.1) is that the nutrient "uptake" rate is not 
directly correlated with the growth rate of the species. This is illustrated in Fig. 
3.3 where s(1) > s(0), while x ( t )  increases at t = 0 but decreases at t = 1. Thus 
the species concentration can be decreasing at a nutrient concentration which is 
higher than a level at which it is increasing. 

If 3 ~ 0, the equilibrium concentration of p ~ 0 for all possible equilibria. 
Since 

( x  + p ) '  = - ( x  + p )  + x f ( s ) ,  

if 6 ~ 0 ,  one would expect the dynamics of (3.1) to eventually approach that of 
the system 

s '  = 1 --  s --  x f ( s ) ,  

p ' = 0 ,  

x '  = --  x + x f  (s),  

s(0) >/0, p(0) = 0, x(0) > 0, 

which is basically the system studied in [2]. Recall that for that system, whenf(s )  
is monotone increasing and 2 < 1, the washout equilibrium is always unstable 
and the interior equilibrium (2, 1 - 2 )  is globally attracting. Indeed, if 6 ~ 0 in 
(3.6), either ~ = 0 or ~ = 1 - 2, so El ~ E o  as 6 ~ 0 ,  and all trajectories of (3.9) 
converge to E2. (See Fig. 3.1.) Note that there is a change of stability of Eo at 
6 = 0. We can therefore regard 6 as an indicator of the "significance" of the 
delay caused by the indirect nutrient uptake process. Specifically, for small 
enough fi, a low initial concentration of the species is a less detrimental factor, 
and in the limiting case as 6 ~ 0, the species survives as long as ,~v < 1. 

The parameter 6 is also related to the growth rate of the species upon 
consumption of the intermediate product. A small 6 means a relatively small 
concentration of the intermediate product is sufficient for the species to break 
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Fig. 3.3. Time evolution of (3.1) illustrating that 
s(t) and x(t) are not directly correlated. 
- - :  s ( t ) , - .  : x( t ) ; f ( s )  =9s2/ (s2+s  +0.1), 
q(p) = 85p2/(9p 2 + 7.2p + 0.63), 2 = 0.1906, 
6 =0.15, s(0) =0.15, p(0) =0.25, x(0) =0.65. 
Note that s(1) > s(0), while x(t) is increasing at 
t = 0 but decreasing at t = 1 

even, whereas a large 6 means a much higher concentration of the intermediate 
product is necessary in order for the species to break even. From this perspective 
the above analysis has the following biological interpretation. I f  & is not negligible 
and the initial concentration of the species is low, then the conversion of the 
nutrient to the intermediate product proceeds at a low rate also. This could result 
in the concentration of the intermediate product decreasing for a long period of  
time. Consequently growth of the species by consumption of the intermediate 
product is not fast enough to replenish loss of  population by washout. 

On the other hand, the fact that the nutrient is only indirectly utilized makes 
it more difficult for the species to survive in the chemostat. This is more apparent 
when f ( s )  is given by Michael is-Menten kinetics as in Example 3.7, where 

< 6o(2), or 

m > m o ( & ) =  + 6 + a  

is a necessary condition for the species to survive in the chemostat. I f  no 
intermediate product is involved, i.e., 6 = 0, then 2 < 1, or m > m0(0) = a + 1, is 
sufficient to prevent washout. Since mo(6 ) is increasing for 0 < 6 < 1, the range 
of m (with a fixed) for which the species can survive decreases as 6 increases. 

4 Competit ion - same intermediate product 

We consider in this section the mode of competition between two species in the 
chemostat  when both species are of  type II and the extracellular enzymes they 
produce transform the nutrient to the same intermediate product. The model 
equations with the same assumptions as in Sects. 2 and 3 are: 

s'= 1 - s  - ! x ,  - -1  x2L(s), 
71 72 

p '  = - -p  + xl fl  (s) + Xzfz(s) --  x ,  ql ( P )  - x 2 q z ( P ) ,  

x] = -- xl + xl ql (P), (4.1) 

x'2 = - x2 + x 2 q 2 ( p ) ,  

s(0) t> 0, p(0)/> 0, x~ (0) > 0, x2(0) > 0, 



12 B. Tang and G. S. K. Wolkowicz 

where the scaled quantities are obtained as in Sect. 3, except here p = P / S  °, 
xi = X/q~S °, i = 1, 2. The subscripted quantities satisfy all the analogous prop- 
erties of the corresponding quantities in the previous section. In particular, 
f(2~) = 1 and q~(6~)= 1, i =  1,2. Note that since the intermediate product 
transformed from the nutrient by the extracellular enzymes secreted by one 
species can be consumed by the other species, the interaction between the two 
species in this case is actually a combination of competition and coopera- 
tion. 

It is easily seen that the nonnegative cone R 4 is positively invariant under the 
solution map of (4.1). Boundedness of the solution can be shown by the 
following argument, Let ] = max(71,72), then s' <~ 1 - s - x l f t  (s)/~ - x 2 f 2 ( s ) / ~ 7 .  

Denote ~Ts + p + xl + x2 by u. Since u' <~ f -  u, s(t), p(t), x l ( t )  and Xz(t ) remain 
bounded for all t ~> 0. 

It is quite obvious from the equations in (4.1) that no coexistence equilibrium 
exists except for the nongeneric case of 61 = 62. The set of equilibrium points of 
(4.1) are therefore quite simple in general. It includes E0= (1 ,0 ,0 ,0) ,  corre- 
sponding to the washout of both species, E l j = ( c l j ,  6~, 1 - 6 1 - c ~ j ,  0), 
1 ~<j ~< nl, corresponding to only the x~-species survives, and 
E2k = (c2k, 62, 0, 1 -- 62 -- c2~), 1 ~< k ~< n2, corresponding to only the x2-species 
survives. Conditions for the existence of E~, i =  1, 2, 1 ~< ~ ~< ns, are given 
in Theorem 3.4. Note that cg~ is the nutrient concentration of the correspond- 
ing equilibrium, i.e., W i ( c ~ ) =  V~(c¢)=0 ,  where IV, and V~ are as given in 
(3.7). 

The variational matrix of (4.1) at any equilibrium point is 

I 
- 1 - ul/Yl - u2/y2 0 -fl/°/1 - f2 /72 

j = Ul + U2 -- 1 -- Vl -- V2 f l  -- ql f2 0 q2 L 0 vl - 1  +q l  
0 v2 0 - 1  +q2J 

where 

f = f ( s ) ,  qi = qi(P) 

ui = xif~ (s), v~ = xiq~ (p), (4.2) 

i =  1,2. 

The stability of all the equilibria, if they exist, is summarized in the next theorem. 

Theorem 4.1 Suppose without loss o f  generality 6~ < 62, and all equilibria of(4.2)  
are hyperbolic. 

(a) Eo is always an asymptotically stable node. 
(b) Eli, 1 <~j <~ n~, i f  they exist, are stable in the x2-direction. Each E~j is an 

asymptotically stable node i f  h'l (clj) < 1, and a saddle point i f  h] (cij) > - 1 ,  where 
h 1(S)  = 1 - -  s / f ( s ) .  

(c) E2~, 1 <~ k <~ n2, i f  they exist, are unstable in the x~-direction and therefore 
are saddle points. 

Proof. (a) At Eo, ui = vi = 0, and all eigenvalues of J are - 1. 
(b) If E~j, 1 ~<j ~< nl, exist, q~ = ql(6~) = 0 and q2 = q2(61) < 1, so each E~j is 

stable in the x2-direction. Stability of each E~j is given by (3.10). 
(c) If E2k, 1 ~< k ~< n2, exist, ql > 1 and q2 = 0, so each E2k is unstable in the 

x~ -direction. 
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Note  that  the stability o f  each one-species equilibrium is determined indepen- 
dently o f  whether or  not  the other species can survive in the chemostat  without  
competit ion.  

Numerical  studies o f  (4.1), with both f .  and qi, i = 1, 2, being Michael is -  
Menten terms (n~ = n2 = 2) suggest that  all trajectories converge to some equi- 
librium. I f  the initial concentra t ion o f  any species is small, then that species will 
be washed out  o f  the chemostat .  I f  only one o f  the two species, say x~, can 
survive in the absence o f  competit ion,  then provided that the initial concentra-  
tion is high enough, the solution will approach  EI2 if 5~ < 52, and will approach  
E 0 if 5~ > 52. Apparent ly  the x2-species, which cannot  survive even in the absence 
o f  competi t ion,  is always washed out f rom the chemostat  eventually. This 
suggests that  if a species cannot  survive in the chemostat  without  competit ion, it 
will also be unable to survive when the compet i tor  is present. This observation 
is not  obvious from the model equations, since the intermediate product  is also 
t ransformed from the nutrient by the compet ing species. I f  there are equilibrium 
points o f  the form El  / and E2k , then it seems that the species with the lower 5 
value will be the sole survivor in the chemostat ,  provided that its initial 
concentrat ion is high enough. 

A significant feature in this mode of  competi t ion is the possibility of  a 
"kamikaze"  effect observed in numerical simulation. A species with both 5 and 
2 satisfying any one o f  the conditions in Theorem 3.4, and an initial concentra-  
tion high enough so that it can live indefinitely in the chemostat  by itself, can be 
eventually washed out from the chemostat  when a small amount  o f  another  
species, which produces and consumes the same intermediate product  but with a 
lower 6 value, is introduced into the chemostat.  This is the case even if this other 
species has a 2 value which does not allow the species to survive by itself in the 
chemostat .  (See Fig. 4.1.) 

0.8 

0.6 

x i 0 .4  

0.2 

r • •  . . . . . . . . . . . . . . . . . . . . .  

 iiii I ....... .... • 
50 

Fig. 4.1. Outcome of competition in model 
(4.2) illustrating the "kamikaze" effect. 
[~ (s) = 3.5s/(2.521 + s), ql (P) = 2 p / @  + p),  

f2 ( s )  - 10s/(922 + s), q2(P) = 16p/(15Z2 +P), 
tJ, I : 0.4, 6j = 0.04, ).2 = 0.75, 62 = 0.02, 
s(0) = 0.875, p(0) = 0.01, xl(0 ) = 0.4, 
x2(O) = 0.15. : x I (t) when x2 is present, 

: x t ( t )  when x 2 is absent, . -- :  x2( t  ) 
whenxj is present,. - - - :x~( t )  whenx2is 
absent. Note that x 2 dies out more slowly 
when x I is present than when x I is 
absent there is initially more intermediate 
product when x~ is present 

5 Competition - distinct intermediate product 

The equations describing competi t ion between two species when the nutrient is 
converted to two different intermediate products  each of  which cannot  be 
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assimilated by the compet i tor  are: 

s'  = 1 - s - x , f , ( s )  - Xz f z ( s )  

p'~ = - p ,  + x , f ~ ( s )  - x l q l ( p , )  

x~ = - x l  + x l q , ( p l )  (5.1) 

p2 = - P 2  + Xz f z ( s )  - x z q z ( p 2 )  

x'2 = - x 2  + x2q2(P2) 

s(O) >~ O, pi(O) >~ O, x , (O) > O, i = 1, 2. 

The paramete rs  2i and 6i, i = 1, 2, are defined as before. Also it can be shown 
that  the four-dimensional  set A c R4+ satisfying 

A = {(s, pl ,  x l ,p2 ,  x2) U'+ I s + p l  + Xl + p 2  + x2 = l} 

is positively invar iant  under  the solution m a p  of  (5.1) and contains the omega  
limit set o f  all trajectories. We therefore consider the flow of  (5.1) restricted to 
A: 

P~ = - P l  + x l f l ( 1  - P l  - Xl - P 2 -  x2) - - X l q l ( p l )  

X~ = - -Xl  + X l q l ( P l )  

P2 = --P2 + Xz f2 (  1 -- p,  -- X. -- P2 -- X2) -- x2q2(P2) (5.2) 

X '  2 = - - X  2 + x 2 q 2 ( P 2 )  

pi(O) >>, O, x i (O)  > O, i = l ,  2. 

In this case one can show that  if a species cannot  survive in the absence of  
the compet i t ion,  it will not  be able to survive when the compet ing  species is 
introduced. 

Theorem 5.1 In (5.2), i f  there is no equil ibrium o f  the f o r m  (6l ,  £1, O, 0), where 
£1 (t) > O, then Pl (t) --* 0 and Xl (t) --* 0 as t ~ oo. A s imilar s ta t emen t  holds f o r  the 
second species. 

Proof .  Define r(xl)  = -c~1 + x l f l ( 1  - c 5 1 - x l )  - x l ,  which is just P'I when 
Px = 61 and P2 = x2 = 0. Note  that  r(0) < 0 and r(1 - 61) < 0. Since there is no 
equil ibrium of  the fo rm (31, ~ ,  0, 0), r(x~) < 0  for all Xl e [0, 1 - 6 1 ] .  I f  
p l ( t )  >61 for all t ~>0, x'l > 0  for  all t ~>0 and so x l ( t )  ~ 2 ~  > 0  monotonical ly .  
But then x ' l ( t )  ~ 0  and thus p l ( t )  ~(31 as t ~ 0% i.e. (61,2,  0, 0) is an equil ibrium 
point,  a contradict ion.  Hence  there exists r > 0 such that  p~ (r) ~< 61. Note  that  if 
pl(z)  =c~t, p~(~) ~< r(xl)  < 0 ,  therefore p~(t)  <61 and x~( t )  < 0  for  all t > ~ .  In 
that  case x~(t)--*21 >~0 monotonica l ly  and thus x ~ ( t ) ~ 0  as t ~ o o .  I f  21 ¢ 0 ,  
p~(t)  ~ 61 as t ~ oc and we have the same contradict ion that  (61,21,0 ,  0) is an 
equil ibrium point.  Thus it must  be the case that  xl (t) ~ 0 and hence p~ (t) --, 0 as 
t ---~ OC. 

Corollary 5.2 For i =  1,2 ,  i f  2 s + 6 i > ~ l ,  or i f  W~(s) < O  f o r  Vi(s) < O  f o r  all 
s ~()ot, 1 - 6 i ) ,  ( W i ( s )  and Vi(s) are as defined in (3.7)), then p i ( t ) ~ O  and 
x i ( t ) ~ O  as t ~ o o .  

Coexistence of  the two species in the chemos ta t  therefore is only possible 
when each species can survive in the absence of  a compet i tor .  We will develop 
criteria that  guarantee  the existence of  coexistence equilibria. It is more  conve- 
nient to carry  out  the analysis with (5.1) than with (5.2). 
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Let /~=(~, /31 ,21 , f i2 ,22)  denote an equilibrium point  of  (5.1). If  /~ is a 
coexistence equilibrium, then 

6i 
/3e=6i,  2e f . ( ~ ) _ l ,  i = 1 , 2 ,  (5.3) 

where ~ > 7. = max(21,2~), so that 21 > 0 and 22 > 0, and ~ satisfies 

,~ : 1 - --S" -6iJi(s)- (5.4) 
e %  f ,  (~) - 1 " 

For  s > 7<, define 

Z(S) = -- ~ 6ifi(s) (5.5) 

Theorem 5.3 (a) I f  T< >~ 1 - 6 1 -  62, there is no interior equilibrium o f  (5.1). 
(b) A necessary and sufficient condition for  at least one interior equilibrium to 

exist is that 1 - s - z(s) ~ O for  some s ~ (2, 1 - 61 - 62). I f  strict inequality holds, 
there exist at least two inteiror equilibria. 

(c) I f  f~(s), i = 1 , 2 ,  satisfy f T ( s ) ( f ( s ) - l ) - 2 ( £ ( s ) ) 2 < O  Jor all 
s e (7<, 1 - 6~ - 62) ( for  example i f b o t h f i  are concave), then z(s) is strictly convex 
for the same values o f  s and hence there exist at most two interior equilibria. 

(d) I f 2  < 1 and 6e, i = 1, 2, are both sufficiently small then there exist at least 
two interior equilibria. 

(e) A necessary condition for  an interior equilibrium to exist is that 
z(l  - 6 1 - 6 2 )  < 1 -7<. 

Proof  (a) By (5.3), ~ < 1 - 61 - 62 and ~ > 7, so that  both 21 > 0 and 22 > 0. 
(b) This follows from (a), (5.4) and (5.5) and the observation that z(s) is 

cont inuous for s > 2 and z(s) ~ oo as s ~ 2  +. 
(c) Since 

z ' ( s )  = 
6efl (s) 1 

e=, < ° '  

z(s) is a decreasing function of  s. Note  that 2) 
z"(s) = ~ - 6, {f:' ( s ) ( f ( s ) ~  1) - 2 ( f :  (s)) 

i=1 \ ( f , ( s )  -- l)  3 > 0 

for s e (2, 1 - 6 1 -  62) by the hypothesis, so z(s) is strictly convex for s in the 
same interval. Thus there can be at most  two intersections o f  the curve z(s) and 
the line 1 - s ,  and hence at most  two interior equilibria. 

(d) follows from (b). 
(e) follows from the fact that 7< < ~ < 1 - 6 ~ -  62, that z(s) is a decreasing 

function, and that the line 1 - s  < 1 - 2  for all s > 2. 

In the case that the response functions f (s), i = 1, 2, are Michae l i s -Menten ,  
parts (c) and (d) of  the above theorem imply that if 7< < 1 and 6~, i = 1, 2, are 
sufficiently small, there are exactly two interior equilibria of  (5.1). In fact we can 
be more  specific. 

Theorem 5.4 Assume that f . (s)  = mis/(a e + s), me > 1 and ae > O, i = 1, 2, and 
that 21 < 22 < 1 and 62 < ( 1 - x/212~2)2a2/m222 (i.e. there are exactly two equilibria 
o[ the / form E2~. See Example 3.7.) I f  x/~2 < 1 - 61 - 62, t'hen 1 - x / ~ 2 -  
62g2(,,/22) > O. I f  61 < [1 - ~ -  62g2(x/'2f2~2)]/gl(x/~22), where ge(s) = ~ ( s ) /  
( f ( s )  - 1), i = 1, 2, then there exist exactly two solutions s* and s* of  (5.4). 
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Proof. Define F ( s ) = z ( s ) - ( 1 - s ) = 6 1 g l ( s ) + 6 2 g 2 ( s ) - ( 1 - s ) .  By (5.4), if 
(s*, p *, x *, p*,  x*)  is an interior equilibrium, F(s*) = 0 and 22 < s* < 1 - 61 - 62. 
Since 22<1  , 2 2 < x ~ - 2 2 < 1 - 6 ~ - 6 2 ,  and ( 1 - ~ 2 ) / g 2 ( x / ~ - . 2 ) = ( 1 - ~ ) 2  
a2/m22,>82, so that 62g2(x/22) < l - x ~ ,  2. If 8l < [ 1 - - ~ - - 6 2 g 2 ( ~ 2 ) ]  / 
gl(x~22), F ( ~ 2 ) < 0 .  Since F(s)-+o¢ as s--+2J- and F ( 1 - 6 , - 6 2 )  >0 ,  there 
must be at least two values of s, s~' and s*, such that F(s*) = F(s*) = 0. Lastly, 
F"(s) > 0 for s > 22, hence F(s) is convex and there must be exactly two interior 
equilibria. 

Next we determine the stability of the equilibrium points of (5.2): 
Eo = (0, O, O, 0), E~j = (61, 1 - 6 1 - c t j ,  O, 0), 1 <<.j <<.n~, E2k =(0,  0, 82, 1 --62--c2k), 
1 ~< k ~< n2, i = 1, 2. There is also, as we have seen, the potential for coexistence 
equilibria E*. 

The variational matrix of (5.2) is 

j =  Jl 

M2 J2 ' 

where Jr and Mi, i = 1, 2, are 2 x 2 matrices. J, has the form 

and Me has the form 

- 1 - u i - v r  -ur+fi-qi'~ 
J r  = Vr - -  1 + q i  ) 

:) 
where ui and v~ are as defined in (4.2), except here s = 1 - P l -  xl - P 2 -  Xz and 
qi = qi (Pi), i = 1, 2. 

It is easily seen that the local stability of Eo and of  E~j is determined by the 
eigenvalues of Jx and ./2, and the stability of each Erj is the same as the stability 
of the corresponding one-species equilibrium of  (3.t). The next theorem summa- 
rizes local stability of these equilibrium points. 

Theorem 5.5 Suppose all equilibria of  (5.2) are hyperbolic. 
(a) Eo is always locally asymptotically stable. 
(b) Each El;, 1 <<.j <<. nl, is stable in the P2- and xz-directions, and each Eek, 

1 <~ k <<. n2, is stable in the p~- and Xl-directions. 
(c) Each Eij, 1 = 1, 2, 1 <.j <<. ne, is asymptotically stable i f  h~ (co) < - 1, 

unstable i f  h ~ (c(/) > - 1, where hi (s) = ( 1 - s) f (s). 

The above theorem asserts that competitive exclusion holds if the initial 
concentrations of the two species is in the basin of attraction of  some E o for 
which h~ (st;) < - 1 .  Washout occurs if they are in the basin of attraction of E0. 
Therefore the outcome is initial concentration dependent. 

Finally we consider the interior equilibria E * =  (61, x*,  62, x*)  of (5.2). 
Direct substitution shows that at E*, qe = 1 and f - qr = 6r/x*, i = 1, 2. The 
eigenvalues of J evaluated at E* are solutions of the equation 

P(#) = P , (# )P2(g)+P3(g)  = 0 (5.6) 

where 
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p,( i t )  = It2 + (1 + u, + v,)it + vi(1 + Ul - f l ) ,  

P2(it) = / / 2 + (  1 -}- u2 't- u2)it +v2(1  "t- U2 --f2), 

P3(it) = - u l u 2 ( v l  + It)(v~ + It). 

Theorem 5.6 All solutions o f  (5.6) are real, at least two o f  them are negative and 
at least one o f  them is positive. Thus an), coexistence equilibrium o f  (5.2), i f  it 
exists, must  be unstable. 

The theorem is obta ined by est imating the roots  o f  P(it) relative to the roots  
o f  P1 (/0 and P2(it). We first prove  several lemmas concerning the polynomials  
Pl(it) and P2(it). 

Since Pi (it) ~ o(3 as It --, _+ ov and Pi ( - ui) ~ -  - -  u i f i ,  i = l, 2, it is clear that  
the roots  o f  Pi(it) are real and that  at least one of  them is negative. Denote  the 
roots  by ri and R~ where r~ < Ri. 

Lemma 5.7 r i < - v i  < rain(0, Ri), i = 1, 2. 

Lemma 5.8 If  1 + u~ - f  < O, then Pi (0) < 0 and therefore Ri > O, i = 1, 2. 

Lemma 5.9 Assume that - v 2  < - v l .  Then there exists It such that 
- v 2  <~ It <~ - v l  and Pl(it)P2(it ) > 0. The result is also true i f  the subscripts are 
interchanged. 

Proo f  First assume that  R 2 < R~. There are three different orderings of  the 
roots: (i) r 2 < rl < R2 < RI; (ii) r2 < R2 < rl < R1; (iii) rl < r2 < R2 < R~. In case 
(i), P ~ ( i t ) < 0 ,  i =  1,2, if rx < i t  < R 2 .  Therefore  it suffices to show that  
[--U2, --/)1] (3(rl, R2) ~ ~ .  This must  be the case, otherwise either - v  I ~ rl or  
R 2 ~ - v 2 ,  contradict ing L e m m a  5.10. In case (ii), P ~ ( i t ) > 0 ,  i =  1,2, for  
R 2 < i t < r  j and (R2, r l ) c [ - - v 2 , - - V l ] .  In case (iii), P 2 ( - v 2 ) < 0  and 
P l ( - V 2 )  < 0 since rl < - v 2  < RI.  In all o f  the three cases, there exists It such 
that  - v 2  <~ It <~ - v l  and Pl(it) and P2(it) are of  the same sign. 

I f  R~ < R 2, then there are only two possible orderings of  the roots: (i) 
rj < r2 < RI < R2 and (ii) r2 < rl < Rj < R2. (The ordering r 1 < R1 < r2 < R2 is 
not possible by L e m m a  5.7.) Case (i) is similar to (i) above,  and case (ii) is 
similar to case (iii) above.  

The p r o o f  is similar if the subscripts are interchanged. 

Lemma 5.10 There exist 7~, i = 1, 2, 3, such that 71 < 72 < 0 < 73, and P(7~) < 0, 
P(72) > 0 and P(73) < 0. 

Proof. Let ; q = m i n ( r l , r 2 ) < 0 .  Then P l ( 7 1 ) P 2 ( T i ) = 0  and P3(71)<0  since 
7 1 < m i n ( - v l , - v 2 )  by L e m m a  5.7. Hence P ( 7 1 ) = P 3 ( 7 1 ) < 0 .  Let 72 be the 
value of/~ in L e m m a  5.9. Then Pl(72)P2(~/2) > 0, P3(72) > 0 and hence P(72) > 0. 
Lastly, if 1 + u ~ - f  < 0 ,  i =  1 or  2, L e m m a  5.8 asserts that  there exists 
~'3 = max(R, ,  R2) > 0 such that  P1(73)P2(73) = 0. Therefore  P(73) = P3(73) < 0. 
I f  1 + ug - f  ~> 0, i = 1, 2, then since f .  - 1 = (5i/x* > O, 
P(0) = -v~v2[ ( !  + u 2 - f 2 ) ( f J  - 1) + u l ( . f 2 -  1)] < 0. So there must  exist 73 > 0 
such that  P("/3) < 0. 

Proo f  o f  Theorem 5.6 Since P(it) --* o0 as It --* _+ 0% by the In termedia te  Value 
Theorem there exists It~ <71 < 0  and I t4>73 > 0  such that  P ( i t~ )=  P ( i t 4 ) = 0 .  
Similarly, there exist #2 and #3, ;~1 < i t 2 < ~ 2  <it3 <73,  such that  
P(it2) = P(it3) = 0. Hence  all solutions of  (5.6) are real, and at least one of  them, 
It4, is positive, and at least two of  them, It1 and It2, are negative. 
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In all of our numerical simulations, the solution of (5.2) approaches one of 
the stable equilibrium points on the boundary of the state space. We conjecture 
that the solution of (5.2) approaches a stable equilibrium on the boundary. 

Finally we consider how the dynamics exhibited in this competition model is 
related to that in the standard model in [2, 8]. Assume that 21 < 22 < 1, and 61 
and 62 are sufficiently small so there are at least two interior equilibrium points 
by Theorem 5.3(d). To simplify our discussion, assume that there are exactly 
two, E* and E*, and let s* > s*, where s*, i = 1, 2, denotes the corresponding 
equilibrium concentration of the nutrient. Also by Corollary 3.5(d), if 6~ is 
sufficiently small, there are at least two equilibria at which species i is present and 
species j is absent, i , j  = 1, 2, i vLj. Again assume that there are exactly two, E~I 
and Ei2 , i = 1, 2. (See Fig. 5.1(a).) 

If 61 > 0 is fixed (small) and 62~0,  the model (5.1) approaches a model of 
competition of mode (c) in which x2 is of type I. (This will be further discussed 
in the next section.) In that case E* ~EI~ and E21 ~ E o  (see Fig. 5.1(b)). If61 -~0 
as well, E l l ~ E o  and E*~E22  (see Fig. 5.1(d)) and one gets the standard 
chemostat model as in [2, 8] in which Ej2 is the global attractor. 

On the other hand if we fix 32 (small) and allow 61 ~ 0 ,  then E* ~E2~, 
E * ~ E 2 2  and E~ ~ E  o, and there is no interior equilibrium (see Fig. 5.1(c)). If 

s E o 

E l E21 

XI+ Pl 

a b 

EI1 

x2+P2  x l +  Pl 

2 

x 2 

S E0 

E21 

E22 

x 1 x2+ 

2 

X 1 X 2 

Fig. 5.1. Change of  the phase portrai t  of  (5.1) restricted to the simplex A when 6~ --* 0 and/or  62 --~ 0, 
with .ft (s) = 3.5s/(2.5). I + s), ).j = 0.4, fz(s) = 10s/(9). 2 + s), )-2 = 0.5 > ).1. a ql (Pl )  = 2Pl/(6j + Pl )' 
~1 = 0 . 0 4 ,  q 2 ( P 2 )  = 16.02/( l 5~ 2 q - P 2 ) ,  32 = 0 .02 .  T h e  o u t c o m e  i s  i n i t i a l  c o n d i t i o n  dependent, b 62 -~  0,  

x 2 is type I, the outcome is still initial condition dependent, c 61 --*0, x~ is type I, E12 is the global 
attractor, d 6L--*0 and 6 2 ~ 0 ,  bo th  x I and x 2 are type I, E12 is the global at t ractor  
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cSl ~ 0  as well, then E21 ~ E o ,  and we again obtain  the s tandard  model  repre- 
sented in Fig. 5.1(d). 

In bo th  of  the above  cases, as 6i, i = 1, 2, decreases the basin o f  a t t ract ion of  
Ei2 increases. Thus  the species has a better  chance of  survival if it has a lower 
break-even concentrat ion.  

6. Competit ion - one species is of  type I 

Finally we consider the case when one of  the compet ing  species, x2 say, is o f  type 
I and can directly assimilate the nutrient supply: 

s'  = 1 - s - x , f l ( s )  - x2 f2 (s )  

p~ = - p ,  + x ,  f~ (s) - x l  q, ( p , )  

x] = - x l  + x l q l ( P l )  (6.1) 

X 2 = - - X  2 + x2U2(s) 

s (0) />  0, p t (0)  ~> 0, x ,(0)  > 0, i = 1, 2. 

As ment ioned in the last section, model  (6.1) can be considered as the 
limiting case of  (5.1) when 62--*0. See Fig. 5.1(b). 

The solution of  (6.1) remains bounded  in the nonnegat ive  cone of  ~4. Similar 
to previous sections, since s + p l + x ~ + x 2 ~ l  as t ~ o o ,  we can study the 
following system instead of  (6.1): 

P~ = - P l  + x l f l ( 1  - P l - X l - x 2 )  - x l q l ( P l )  

x'l = - x ~  + x l q l ( p l )  
(6.2) 

X 2 = - - X  2 -]'- x 2 f 2 (  1 - P l  - xl - x2) 

p~(0) ~>0, x,(0)  > 0, i = 1 , 2 .  

This system has the following bounda ry  equilibria: Eo = (0, 0, 0), 
Eli = (61, 1 -- 61 -- Clj, 0), 1 ~<j ~< nl,  and E2 = (0, 0, 1 - 22). E2 exists if and only 
if 22 < 1, and the criteria for the existence of  Eli are given in Theorem 3.4. Using 
a p r o o f  similar to the one for Theorem 5.1 as well as in [2, Theorem 3.2], it can 
be shown that  a necessary condit ion for the two species to coexist is that  each 
species can survive in the absence of  the compet i tor :  

Theorem 6.1 (a) I f  there is no equil ibrium o f  the Jorm (61, Y.I, 0), where Y~l > O, 
then p~ (t) --* 0 and x~ (t) ~ 0 as t ~ oo. 

( b )  I f ) ,2> 1, X2(/)  ----~0 as t - -*oc.  

Hencefor th  we assume that  there are bounda ry  equilibria of  the form E l / a n d  
E2. We first determine the condit ions under  which there are coexistence equi- 
libria of  (6.2). Recall f rom Sect. 3 that  nl is in general even and clj  > cw+ l, 
1 < ~ j < < . n l -  1. 

Theorem 6.2 Suppose  E j i  , 1 <~j <~ hi ,  where n I is even, and E 2 exist .  Then (6.2) 
has a coexis tence  equil ibrium i f  and only ~ 22 e (Cl,2j, cl.2j_ 1) f o r  some j ,  
1 <~j <~ nl /2 .  The coex is tence  equil ibrium, i f  it exis ts ,  mus t  be unique. 

Proof .  Direct  calculation shows that  the interior equil ibrium (61, x* ,  x*) ,  if it 
exists, must  be unique with x* = 61 / ( f l (22 )  - 1) and x*  = 1 - 22 - 61 - x* .  Note  
that  0 < x* < ce if and only i f2j  < 22, and x* > 0 only if22 < 1 - 61. Moreover ,  
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x* > 0 if and only if 1 - ;~2 - bl -- 61/(f1()~2) -- 1) > 0, i.e., V1()~2) > 0, where V1 
is as defined in (3.7). The necessary and sufficient condition on 22 for the 
existence of E* follows from the fact that for s ~ (21, 1 - 61), Vl(S) > 0 if and 
only if s ~ (q,2j, cl,2j i) for some j, 1 <~j <~ nl/2. 

The variational matrix of (6.2) at any equilibrium is of the form 

J - -  vl - 1  + q l  0 
- u 2  - u 2  - 1 + J 2  - u2 

where ul and vl are as defined in (4.3) with p replaced by Pl. Local stability of 
the boundary equilibria is summarized in the next theorem. 

Theorem 6.3 Suppose all equilibria o f  (6.2) are hyperbolic. 
(a) E o is a saddle point. 
(b) Eli, 1 <,j <. nl, is stable in the xz-direction i f  f2(ctj ) < 1, and is unstable i f  

f2(cli) > 1. 
(c) E2 is always an asymptotically stable node. 

Corollary 6.4 Suppose all equilibria o f  (6.2) are hyperbolic. Then ;t2#Cl/ ,  
1 <~j <~ nt, and 

(a) i f  22 < cl, ~, EIj is a saddle point for  all 1 <~j <~ nl. 
(b) I f  ;~2 > q l ,  each El j, 1 <<,j <~ nl, is either an asymptotically stable node or 

a saddle point as determined by (3.10). 
(C) if22 ~ (Cln,, Cli), there exists fl, 1 <~ fl <<, nl - 1, such that ClB < 22 < q.s~+ 1. 

Then Eli is a saddle point i f  j > fi, and is either an asymptotically stable node or 
a saddle point, as determined by (3.10), if 1 ~<j ~</~. 

It is interesting to note that in cases (b) and (c) of the above corollary, the 
x2-species, even though it has the more efficient mechanism to utilize the nutrient 
for growth (see Sect. 3), will still vanish from the chemostat if its initial 
concentration is not high enough. 

If an interior equilibrium E* exists, the eigenvalues of the variational matrix 
J at E* are roots of the characteristic polynomial 

Pl(~)(u2 + ~) - u,u~(v, + ~), 

where PI(/~) is the same as in (5.6). Using similar arguments as in the proof  of 
Theorem 5.6, it can be shown that all the eigenvalues are real and one of them 
is positive, thus E* is always a saddle point. 

Numerical simulations suggest that if none of the Eli's is asymptotically 
stable, the solution of (6.2) approaches E2, (of  course except when 
(p(O),x~(O),x2(O)) is in the stable manifold of E*, if it exists). Otherwise 
competitive exclusion holds and which one of the two species is the winner 
depends on the initial concentrations. The phase portrait when E* exists and 
nl = 2 is as given in Fig. 5.1(b). 

In the case when 22 < 21, one can obtain a global result on the asymptotic 
behavior of trajectories of (6.2). 

Theorem 6.5 I f22  < 2t, pl ( t )  ~ 0  and xl( t )  --+0 while x2(t) ~ 1 - -  22. 

The proof  of the theorem makes use of a version of Theorem 8 in [4, p. 28] 
for generalized type K functions on ~2. We follow the same notation as in [ 13]. 
A function F : B ~ R 2, where B c I~ 2, has property nK if 
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(i) Fl(u)<~Ft(v) for any u = ( u l , u 2 ) ,  v = @ l , v ~ )  in B with Ul=Vl and 
u2 >1 v2, and 

(ii) Fz(u) ~< F2(v) for any u, v in B with ul >/vl and u2 = v2. 
The next proposition, which is similar to Theorem 8 in [4], is required for the 

proof  of Theorem 6.5. The following partial ordering on N2 is assumed: for any 
u, v in ~ 2  U ~ K V if U 1 ~ V 1 a n d  u 2 ~ v 2. 

Proposition 6.6 Suppose F(t, u) : ~ x B ~ ~2 has property ~ for each f ixed value 
of  t and let u(t) be a solution of  the differential equation u' = F(t, u) on [0, ~ ) .  

(a) I f  v(t) is continuous and satisfies the differential inequality v' >~ x F(t, v).for 
t >~0, and v(O) >>-I~U(O), then v(t) > ~ u ( t ) f o r  t ~0 .  

(b) I f  v(t) is continuous and satisfies the differential inequality v' <~ ~ F(t, v)for 
t >~0, and v(O) <~u(O), then v(t) < ~ u ( t ) f o r  t >~0. 

Proof o f  Theorem 6.5 Let u e ~2 and 

F(t,u) \F2(t ,u)  = - u 2 + u 2 f 2 ( 1  u I - u 2 ) ] '  

which has property ~K- Define y(t) =p~(t) + x~(t). Then v(t) = (y(t), x2(t)) r 
satisfies the differential inequality v'(t) <~ x F(t, v) for t ~> O. Consider the equa- 
tion 

u' = F(t, u) 
(6.3) 

u~(0) = p , ( 0 )  + x,(0) >0 ,  u2(0) = x2(0) >0 .  

If )~2 < 21, the equilibrium point (0, 1 - ) -2)  is globally asymptotically stable [2, 
Corollary 3.5]. By Proposition 6.6, v(t) <~xu(t) for all t >/0, thus 
vl(t) = p ~ ( t ) +  x l ( t ) ~ 0  as t ~ or. Since the solution of (6.2) is nonnegative for 
all t ~> 0, Pl (t) ~ 0 and xl (t) ~ 0 as t ~ ~ .  As E 2 is globally asymptotically stable 
on the plane p~ = x~ = 0  whenever x2(0 )>  0, all trajectories of (6.2) must 
therefore approach £'2 as t ~ ~ .  

The phase portrait for the case of 22 < 2~ is as given in Fig. 5.1(c), with the 
subscripts 1 and 2 interchanged. 

7 Conclusions 

We have proposed and analyzed a simple model to describe the growth dynamics 
of microorganisms which secrete cell-bound extracellular enzymes to transform 
the nutrient to an intermediate product of a form that can be assimilated into the 
cells. Similar to the standard chemostat model studied in [2, 8], the species 
concentration will reach some equilibrium. However, the initial concentration of 
the species, in addition to the vital parameters, determines whether the species 
can survive in the chemostat. 

For the three modes of competition between two species considered here, the 
following features are of interest: 

(1) When both species transform the nutrient to the same intermediate product 
(mode (a)), under certain circumstances a one-species stable equilibrium can be 
destabilized when a small amount of the missing species is introduced into the 
chemostat, even if the new species is unable to survive when the first species is 
absent. This will obviously be the case when one of the species, x2 say, cannot 
convert the nutrient to an intermediate product, i.e., f z ( s ) = 0  in (4.1). The 
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species x2 could be, for example, a mutation of x 1 which cannot secrete the 
necessary enzymes. In the absence of xl there is no intermediate product in the 
chemostat and the mutated species x2 will eventually vanish. The crucial factor 
is that the second species has a smaller 6, the break-even concentration of the 
intermediate product for cell growth. This results in all the equilibria on the face 
x 2 = 0, except for Eo, being unstable in the x2-direction, i.e., stable equilibria 
corresponding to the survivial of x~ only are destabilized when a small amount 
of x2 is introduced into the chemostat. In numerical simulations both species are 
eventually washed out. Thus an inferior species, when sharing the same interme- 
diate product with another species better adapted to the environment, can drive 
both of them to extinction. This "kamikaze" phenomenon could be exploited in 
bacterial control and genetic engineering. 

(2) When each of the two species transforms the nutrient to an intermediate 
product distinct from the other one (mode (b)), all the boundary equilibria, if 
they exist, are locally stable. It is interesting to note that even though one species 
may have both the lower )~ and 6, the outcome is still initial condition dependent. 

(3) In mode (c) where one of the species can directly consume the nutrient, the 
washout equilibrium is a saddle whenever the type I species can survive in the 
absence of the competitor. The equilibrium corresponding to the survival of only 
the type I species can either he a global attractor or a local one. However, the 
type I species, even though it has the more efficient mechanism to utilize the 
nutrient for growth, under certain circumstances will still vanish from the 
chemostat when competing with a type II species. 

(4) In modes (b) and (c), the model predicts that it is possible to have 
coexistence equilibria, even though these equilibria are always unstable and 
therefore cannot be observed in natural ecosystems. However, their existence 
suggests that environmental factors that were neglected in the model, or modifi- 
cations of the nutrient consumption mechanism, might make it possible to 
stabilize the coexistence equilibria. Knowledge of the location of these equilibria 
also can help to estimate the basin of attraction of the boundary equilibria. 

(5) In all the competition models we consider, even though in numerical 
simulations the solution always approaches one of the stable equilibrium points 
on the boundary, coexistence in some other form, for example, periodic orbits or 
strange attractors, has not been ruled out. However, the possibility of a periodic 
orbit resulting from a Hopf bifurcation has been eliminated since we have shown 
that all of the eigenvalues of the variational matrix evaluated at any equilibrium 
point are real. 
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