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ABSTRACT 

A food web in a chemostat is considered in which an arbitrary number of competitor 

populations compete for a single, essential, nonreproducing, growth-limiting substrate, and 

an arbitrary number of predator populations prey on some or all of the competitor 

populations. Although any number of predator populations may prey on the same 

competitor population, each predator population preys on only one competitor population. 

The dynamics of substrate uptake is modeled by Lotka-Volterra or Michaeli-Menten 

(Holling type I or II), but the dynamics of competitor uptake is restricted to Lotka- 

Volterra. Based on certain parameters, the model predicts the asymptotic survival or 

extinction of each of the different populations and suggests how competitor and/or 

predator populations could successfully invade the chemostat with or without causing a 

diverse ecosystem to crash. Similarly, it suggests how the elimination of certain populations 

could result in a more diverse or less diverse system. 

1. INTRODUCTION 

In this paper we consider a food web in a chemostat in which an arbitrary 

number of competitor populations compete for a single, essential, nonrepro- 
ducing, growth-limiting substrate, and an arbitrary number of predator 
populations prey on some or all of the competitor populations. Although any 
number of predator populations may prey on the same competitor popula- 
tion, we assume that each predator population specializes exclusively in a 
single competitor population (see Figure 1). 

In a chemostat, pure competition for a nonreproducing substrate results 
in the asymptotic survival of at most one competitor population even in the 
case of very general response functions (see, for example, Butler and 
Wolkowicz [4]). This paper addresses the problem of whether or not preda- 
tion is one of the factors responsible for the diversity in ecosystems. 

*This paper is dedicated to the memory of Professor Geoffrey J. Butler. 
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Experimental evidence (e.g., Paine [17] and Slobodkin [21]) seems to indicate 
an affirmative response. Paine postulates that “Local species diversity is 
directly related to the efficiency with which predators prevent monopoliza- 
tion of the major environmental requisites by one species.” He showed 
experimentally that the systematic removal of a single predator species from 
a specific ecosystem reduced the number of species in the community from 
15 to 8. My results also tend to support Paine’s postulate. In addition, they 
predict which populations may be unable to invade an ecosystem and which 
may be able to successfully invade with or without causing a significant 
change in the number of other species in the system. They also suggest which 
populations can be eliminated without affecting the survival of the other 
species and which populations, if eliminated, could result in drastic changes 
in the size of the ecosystem. The criteria are based on the so-called break-even 
concentration of each species. For a competitor population this is the 
concentration of substrate at which that competitor population neither 
increases nor decreases, in the absence of predators and all other competi- 
tors. For a predator population it is the concentration of prey at which the 
predator population neither increases nor decreases in the absence of all 
other predator populations. Thus these break-even concentrations can be 
easily measured one species at a time before any competition takes place. 

Certain assumptions with respect to the dynamics of the interactions 
allow a complete global analysis of the model. In particular, the competitors’ 
dynamics are modeled by Lotka-Volterra or Michaelis-Menten responses 
and the predators’ dynamics by Lo&a-Volterra functional responses. As can 
be seen in Butler and Wolkowicz [5, 61, allowing more general functional 
responses in the case of only two competitors and one predator population 
complicates the dynamics considerably (in particular, it allows more compli- 
cated types of invariant sets) even if we restrict ourselves to the class of 
monotone functional responses. I comment further on how allowing differ- 
ent functional responses affects the interpretation of the results in Section 4. 
In any case, there is still a basic message. One can conclude that tampering 
with just one species in our environment could conceivably lead to far- 
reaching and drastic changes at many different levels that might be very far 
from what was expected. And these far-reaching changes could result from 
either the introduction of a species or the attempted elimination of a species. 

This paper is organized in the following manner. In Section 2 the 
mathematical model of the food web to be studied is set down and the 
underlying assumptions are indicated. For convenience the model is scaled 
to produce an equivalent nondimensional version that is then analyzed in 
Section 3, where I first introduce notation for the critical points of this 
system and then state and prove the mathematical results. For those inter- 
ested in the results but not in the related mathematics, this section can be 
omitted, since the results are restated in the discussion in Section 4, with 
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their biological interpretation and an explanation of their ramifications. A 
technical lemma and its proof (used to prove the main result, Theorem l), 
which concerns the possible invariant sets of Lotka-Volterra competitive 
systems coupled by a linear constraint, are given in the Appendix. 

2. THE MODEL 

The following model of predator-mediated competition in a chemostat is 
considered where S(t) denotes the concentration of substrate as a function 
of time. There are n competitor populations, indexed by the set Cl = 

{1,2,..., n }, and x,(t), i E D denotes the concentration of the i th competi- 

tor population as a function of time. Those competitor populations that have 
at least one predator population have their index in the set ‘I. Thus, if 
k E Q\l’, xk has no predators. If k E ‘I?, then rk denotes the number of 
different predator populations that prey on x,(t). The concentration of the 
jth predator population on xk( t) is denoted by &F(t), where k E l’ and 
j E {1,2,..., rk} (see Figures 1 and 2): 

S(f) +“-s(t)]Do- c xJr)y(r)) 
iCCl I 

-%(r) =E;(S(r),x,(r),y;(r),y;(r),...,~~,(r)) BF;, iE0 (1) 

j;(r) =y;(r)[-h;+qj(x,(r))], JET andjE {l,L...,r,} 

where 

S(0) 2 0, x,(O) > 0 i E Ll, y,‘(O) >o iET, jE {l,T...,r,} (2) 

r, is a positive integer for each i E T, and So, T,, D,, i E Cl, and ,$J, A>, i E T 

and j E {1,2 , . . . , ‘; }, are positive constants. A dot over a symbol denotes the 
derivative with respect to time. 

So denotes the concentration of the substrate in the feed bottle, and Do 

represents the input rate from the feed bottle to the growth chamber and the 
washout rate from the growth chamber to the collecting bottle. (It is also 
referred to as the flow rate or dilution rate.) The D, and A; each denote the 
sum of the dilution rate Do and the species-specific death rate. 

The per capita growth rate of the ith competitor as a function of 
substrate concentration is given by pi (S( r)), which will be assumed to satisfy 
either Lotlca-Volterra (i.e., Holling type I) or Michaelis-Menten (i.e., Holling 
type II) dynamics [see Holling [14] and Equations (8) and (9) below]. The 
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FIG. 1. The configuration of a sample food web. 
denotes the substrate and xk the kth competitor. xk 
predators, and _$ denotes the j th predator on xk. 

B = {1,2,3,4,5} and T’= Q\(4). S 
has I-~ (rl = 3, rz =l, r3 = 2, rs = 3) 

rate of consumption of substrate by the ith competitor population is 
assumed to be proportional to the per capita growth rate, and so the q, are 
growth yield constants. Similarly, qj (x, (t)) denotes the per capita growth 
rate of the jth predator population y,!(t) as a function of the concentration 
of the i th competitor population xi(t), and the 6;. denote the corresponding 
growth yield constants. Thus we are allowing the predators to compete, but 
each predator specializes in one particular prey (competitor) population. The 
qj. are assumed to be Lotka-Volterra. 

x3 

A 

Y: 
3 

Yl y: 

FIG. 2. The configuration of a sample food web. B = (1,2,3) and T = (1,3}. S denotes 
the substrate and xk the k th competitor. xk has rk (rl = 1, q = 2) predators, and y/k 
denotes the jth predator on xk. 
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It will be more convenient and there will be no loss of generality if we 
study a nondimensional version of the model. Let 

s^= S/SO, zi=xi/(?Jiso), j$ = y;/( 5;qiso)) 

jiti) =Pi(s)/DOY 4;w = $(XiVDO7 
bi = Di/DO) kj =&,/Do, i= tD,. 

With this scaling (omitting the hats, since this will not lead to any ambigu- 
ity), model (l)-(2) becomes 

s(t> =l-S(r)-,~~xi(t)p,(S(r)) 

~i(t)=~(S(t),X~(t),~~(t),Y;(t),...rY:;(t)) ‘43 iEf-2 (3) 

$(t)=yj(t)[-&j+qq)(xi(t))], iel’and jE{1,2,...,r,}, 

where 

e= 

i 

xi(t)[-Di+P,(S(t))]- i Y:(t)qj(xi(t)), if iET 
j=l 

xz(t)[-Di+Pt(S(t))I, if iEQ\T, 

s(0) 20, xi(O) >O, iE0, y:(O) >O, ieT, jE {1,2,...,r,). (4) 

Define Xi, iEQ, h’,f, ieT and j~{1,2 ,..., r,},sothat 

pi(&) = D, and q;(a;) =Af,. (5) 

Then Xi and 8; are called the break-even concentrations of the nutrient. 

Assume that 

xi < x, < *. . < A” (6) 

and 

S;<Sl< 1.. <ai, foreachiEr. (7) 

Since we are assuming that each p,(S(t)) satisfies either Lotka-Volterra or 
Michaelis-Menten dynamics, it follows that pi has the form of either 

pi(S) = DiS/Xi Lotka-Volterra (8) 
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or 

miDiS 
pi(S)=Xi(mi-l)+S’ m>l Michaeli- Menten (9) 

This functional response is also referred to as Holling type II. [Actually, the 
general form for Michaelis-Menten dynamics is p,(S) = ciS/( a, + S), where 
c, and ai are positive constants. The constant c, is called the maximum 
growth rate and ai is called the half-saturation constant or Michaelis-Menten 
constant. In order for Ai > 0 to exist, c, must be greater than 0,. Since the 
break-even concentration plays such an important role in our results, it is 
more convenient and there is no loss of generality if we use the formulation 
given in (9) where ci = m, 0, and so mi > 1 and a, = X, (m, - l).] 

Since qi ( xi) satisfies Lotka-Volterra dynamics, 

q;( x,) = ltjXi/b\:. (10) 

If we modify (8) by specifying a maximum level S reached by p,(S), 
that is, 

P,(S) = 
D,S/hi 9 s<s 
D,S/&, SaS’ 

S = positive constant (11) 

then pi(J) is referred to as Holling type I. For model (3) it can be shown 
that if S > 1, then there exists T > 0 such that S(t) < S for all t > T. (The 
argument is similar to that given in [4, Theorem 3.1 and Corollary 4.11 using 
a differential inequality.) Thus all the results in this paper also apply if (8) is 
replaced by (11) provided S > 1. Similarly (10) can be modified: 

4:bi) = ( Lvjxip;, x, < x, 

kj xi /a; , xi > xi (12) 

and the results apply if Xi > 1. 

3. ASYMPTOTIC PROPERTIES OF THE MODEL 

In this section we use a Lyapunov function approach to establish asymp- 
totic properties, including local and global stability and persistence results, 
for model (3)-(4). 

We introduce the following notation for the critical points: 

( S&,X, )...) X,,Jp,j$ )...) jp;;‘2 ,..., j> )...) jp )...) J?) 
‘2 “I 

whereO<mdn andforjE{1,2,...,m} 

i,ETA {il,i, ,..., i,}, i,<i,< ... <i,. (13) 

Recall that the index set T indicates which competitor populations have 

at least one predator population. Thus, in general, there are n competitor 
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populations but only m of them have at least one predator. For example, in 
the food web in Figure 2 there are n = 3 competitors, but only m = 2 of them 
have at least one predator population. ‘I’ = { i,, i, } = { 1,3}. Also, r,, indi- 
cates how many predators the i,th competitor has. In Figure 2, competitor 
i, = 1 has ‘;, = ri = 1 predators and competitor i, = 3 has 42 = r, = 2 preda- 
tors. The critical points for this example, therefore, have the form 
(3, Xi, X,, X3, J:,_J$, T; }. The critical points in the food web in Figure 1 

have the form (S, Xi, X,, X,, X4, X5, j$:, ji:, j$, Jiz:, jf, j;, J:,‘_i$, J: }. 

Model (3)-(4) only has two types of equilibria: 
(i) Equilibria for which each competitor population with nonzero con- 

centration has exactly one predator population with nonzero concentration, 
and 

(ii) Equilibria for which each competitor population with nonzero con- 
centration, except the one with the largest relative break-even concentration, 
has exactly one predator population, and the competitor population with the 
largest relative break-even concentration has no predator population with 
zero concentration. 

The substrate concentration is always positive at equilibrium. 
In order to distinguish each individual critical point we use the following 

notation. Equilibria of the form described in (i) will be denoted Ed;;$:::; &. 
The set of superscripts { ji, j,, . . . , j,} indicates which competitors have 

nonzero concentration at equilibrium. The set of superscript-subscript pairs, 
{ $,;$;:;,*,+k }, indicates which predators have nonzero concentration at the 
equilibrium. Similarly, critical points of the form described by (ii) will be 
denoted El;:Xl*::.* p-1, Jk, 2, ‘3 k-L 

Remark I. We define i, = 0. We use the convention that E!; = E = 

(LO,... ,O), the equilibrium at which all species die out and the substrate 
concentration equilibrates to 1, and E/i = E’l, the equilibrium at which only 
the competitor population i, has nonzero concentration (and the substrate 
equilibrates to a positive value). 

In the food web depicted in Figure 2 there are 11 different equilibria: E, 
E’, E2, E3, Et, E,3, E;, E;-2, EiT3, E;;;, and E’v3. Here Et*: is of form (i). 
Competitors xi and xg have nonzero concentratiki, as do the corresponding 
predators JJ: and ~2. On the other hand, E:*3 is of form (ii). Competitors xi 
and x3 have nonzero concentrations, but only the predator y: corresponding 
to xi has nonzero concentration. 

Next we specify exactly the actual equilibrium concentration of the 
substrate and of each competitor and predator population: 

(i) For h, E { 1,2; . ., 5, }, where ji < j, < . . . < j, and j, E T, 

Eh:‘:x’::::::& , kE{O}UO 
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satisfies s= 9, where s” is the unique solution of 

l-s’= i @p,,(s”). 
i - 1 

x; = 0 ifiEQ\{X,j2,...,jk} 

Xj, = fj/ if iG {1,2,...,k} 

j$ =84( - 0, +pj,(g))/A;, if iG {1,2,...,k} 

J?=O if~,~{j,,j~,...,j~} 

orif u, E { j,,j,,..., jk},say, u,= j,,but u;fh,; 

(ii) E/;;h/:::::;~~~yJk for k E D satisfies 

S= X, 

ifiEQ\{ jI,jz,...,jk> 

if iE {1,2,...,k-1) 

[ 

k-l 

x/, = ‘- A, - C ak Pj# ( Xi,) Ii DJ, 
i=l 

j$ = a,( 
- ‘j, + Pj, ( ‘jk ) 

Ai 
if iG {1,2,...,k-1) 

c = O 
ifuZ4 {j,,_&,...,jk-1) 
orifu,E{jI,j2 ,..., jk-I}rsay,u,=j,,butuj#h,. 

THEOREM I 

Consider model (3)-(4). Define A,, = 0 = A,,, and 

Then 0 Q I < m [see (13)]. Exactly one of (i) and (ii) below holds: 

(i) There exists a unique h E {0,1,2,. . . , 1} such that 

l-X,- i s;pi(x,) >o 
i-l 

and 

l-&l+,- t %Pi(&+,) <O 
i-l 

(14) 

(15) 

(16) 
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in which case 

h (a) W::j is stable, and all other critical points are unstable. 
(b) S + S, where s” is the unique solution of 

l-s’= i IQ+(S) 
i=l 

(17) 

and satisfies 

(18) 

xi+Oif i~Q\{1,2 ,..., h} and yjl+Oif i6E {1,2 ,..., h} orjfl. 

(c) If h E {0,1,2}, then E$::;” is globally asymptotically stable. 
(d) If h E {1,2 ,..., I}, then 

lim x,(t)>Oifi~{l,2 ,..., h} and lim y;(t)>Oifi~{1,2 ,..., h} - - 
l’b3 r+cc 

(i.e., the first h competitors and the first h corresponding predators 
persist). 

(ii) There exists a unique h E { 1,2,. . . , 1 } such that 

h-l 

l-h,- c s:p;(x,) >o 
i=l 

(19) 

and 

l-X,- i s;P,(hh) X0 (20) 
i=l 

or 

h=l+l (21) 

h-l 

l-A,,- c 6;p,($,)>o 

i=l 
(22) 

in which case 

(a) Eff;:;::,h-‘Th is stable, and all other critical points are unstable, 
(b) S-+x,, xi+Oif iEQ\{1,2 ,..., h}, and _yf+Oif i~C{1,2 ,..., h-l} 

or jzl. 
(c) If h E {1,2,3}, then E~;f;;;;;f-‘*h . IS globally asymptotically stable. 
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(d) If he {1,2;../,1+1}, then 

hm xi(t) >Oif iE {1,2,...,h} - 
t+m 

and 

lim y;(t) >Oif iE {1,2,...,h-1) - 
r+m 

(i.e., the first h competitors and the first h - 1 corresponding predators 
persist). 

Proof. Let 

f3A {1,2 )..., h}. (23) 

(i)(a) Define the Lyapunov function 

V=v(S,X,,X 2,...,x,,Yi”,Y~....,Y~,,Y;2 ,... ,y;: Y..., Y;~Y.,y;,) 

=S-$-$I+/$)+ c k. i~8 .[x.-s;-s;ln(~)]+i~,~k,x, 

where j{ = S;[ - Oi + pi(s”)]/A’i if i E 8 and if pi is Lotka-Volterra, ki =l, 
but if p, is Michaeli-Menten, then 

(q-1)&+$ 

A,(q-1) ’ 
iE8 

k, = 
(24 

mi (25) 
m,-1’ 

iEn\@ 

Note that (15)-(17) imply that 

A,<&++,. (26) 

Then after algebraic manipulation and the observation that the ki, i E 3, 

were chosen so that 

-Di+pi(S)-y 
'I 

=O, i~8 (27) 
1 

and 

(g_s)Ap +ki[-Di+pi(S)] ~0, iELI\@ (28) 
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[In fact (27) ensures that the coefficient of xi in e vanishes for each i E 0, 

and (28) ensures that for each i E Cl\@ the coefficient of xi is nonpositive. 
The constant ki needed for (27) to hold can be found only if pi satisfies 
Lotka-Volterra or Michaelis-Menten dynamics.] It follows that 

- C k,6;[-D;+p,(S)]- C i kiXiy 
ice ice j=l J 

=(S-S)q + ,Feki&[ Pi(s”)-Pi(‘)I 

-Di+pi(S)-ji:s +P,(S)~ 
1 I 

+ c i k&y;? - 
i=ej-2 

c i k+tjy; 
I iET\B j=l 

60 by (17) and (26). 

Therefore Et;:;;::;: is stable. 
(i)(b) p= 0 if and only if S = g, xi = 0, i E Q\0, and yf = 0, i E T/6, 

or j stl. The result now follows by the LaSalle extension theorem (see Hale 

P31). 
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(i)(c) If h E (0, l}, then it is easy to see that the only invariant set in 

&=((S,x, ,..., x,,y+ ,..., v::, ,..., y;- ,..., JJ;,:) ER”=~+‘: ti=O) (29) 

(where R :” m + * is the (n + m + l)-dimensional nonnegative cone) is the 
equilibrium solution, that is, E if h = 0 and Et if h = 1. If h = 2, any 
invariant subset of ~6’ must satisfy 

k;(t)=x;(t)[-D;+p;(S”)-y;(t)~~/S;], i=l,Z 

y;(t)=y;(t)[-A;+x;(~)A’~/S;], i=l,Z 
(30) 

andsinceS=S”(whereX,<S”<A,), S=O,andso 

xl(r)PI(~)+x,(t)p,(~) =1-s” forall t>O. (31) 

If we let-a,=-D,+p,(g), ui=til, /3i=&1/Si, y,=p,($), i=l,Z, and 
W = 1 - S, then (30) and (31) take the form of system (A.l) of Lemma A.1 
(see Appendix), and so it follows that the only invariant subset of JX? is the 
equilibrium solution E,,, . g ‘J A ain the result follows by the LaSalle extension 
theorem. 

(i)(d) If h = 1 or 2, the result follows from (c) 
x;-,Oif i=4,..., n and y,f-+Oif i>,4orif j#l. 
the unique solution of 

above. If h = 3, by (b), 
Also, S + 3, where s’ is 

1-g= t: 6;p;(sI) 
i-l 

and X, -C s”< X,. Therefore any invariant subsets of 
satisfy 

(32) 

& [see (29)] must 

i =1,2,3 

X(t) =y;(t)(-til+xi(t)A~/6;), i =1,2,3 
(33) 

and 

5 x;(f)p,(~) -1-s” forallt>O. (34) 
i-l 

These are three simultaneous, independent Lotka-Volterra predator-prey 
systems coupled only the condition that a certain linear combination of the 
xi is constant. Therefore for each i E {1,2,3}, either (xi(t), x(t)) + (0,O) or 
(x,(t), y;(t)) converges to the positive equilibrium or (xi(t), y;(t)) is a 
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periodic solution with xi(t) z= 0 and y,(t) > 0 for all t > 0. Therefore it 

suffices to show that (xi(r), yi( t)) does not converge to (0,O) for any 
i E (1,2,3). If it did, by Lemma A.1 and (i)(c) we would obtain a contradic- 
tion to (32). For h > 3 the result follows by a straightforward induction 

argument. 
(ii)(a) Define the Lyapunov function 

v=Ijs,x,,x, ,..., x,,y*,y;l,..., y&J+ )..‘) y;; ,..., J+ I..., +) 

+ c ki[y:-Rlh($)] 
ice\(h) 

+ c i k,yf + c I? kiYf 
i=@\(h) j=2 isT\(B\(h)) j-l 

where 

Xi=8i, iE@/(h}, Xh = 
l-X,-E rs8\(h)6;Pi(Xh) 

Dt, 

and if pi is Lotka-Volterra, ki =l, but if p, is Michaelis-Menten, then 

(“i-l)&+& 

k, = X,(+-l) ’ 
iE8 

m,/( “i -l)T iEG!\8 

It follows [as in (i)(a)] that 

Ti=(S-A,) 
l-~!?-Ci~osiipi(S) + ~icZG\,xiPi(S)(hh-Xi) 

S S 

h-l ‘, 

+ c c kikjy;y - c i k&y,! 
iE1 j-2 J icT\B j=l 

Xh - SJh 

+ XT(~) t kh+,+- 
j-l J 

60 by the definition of Sz, and by (19) or (22)) 
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where 

XT(h) = :, i 
ifhET 

if her. 
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That E’.2*...,h-‘.h is stable follows since V is a Lyapunov function. l,l....,l 

(ii)(b), (c), and (d). The proof is similar to (i)(b), (c), and (d), above, 
provided one notes that in the case h = 3, any invariant set in .& must 
satisfy S = X, and y3 = 0, which implies that is = 0 and so x3 is constant. 

Remark 2. I conjecture that Lemma A.1 is true for any positive integer 
k. If this is so, then the global asymptotic stability of the equilibrium 
solution in Theorem 1 (i)(c) and (ii)(c) would hold without the restrictions 
on h. 

4. SUMMARY AND DISCUSSION 

We begin this section by summarizing the results of Section 3 in a less 
technical manner. First note that the model allows only two types of 
equilibria: 

(i) Equilibria for which each competitor species with nonzero concentra- 
tion has exactly one predator species with nonzero concentration, and 

(ii) Equilibria for which each competitor species with nonzero concentra- 
tion, except the one with the largest relative break-even concentration, has 
exactly one predator species. The one with the largest relative break-even 
concentration has no predator species with nonzero concentration. 

(At equilibrium, the concentration of substrate is always positive.) 
Second, there is always exactly one asymptotically stable equilibrium. (All 

other equilibria are unstable.) Which equilibrium is stable is determined by 
the values of the break-even concentrations of the predators and the prey 
[see (15)-(16) and (19)-(22)]. The smaller the break-even concentrations, the 
better the chance that more species will have nonzero concentration at the 
asymptotically stable equilibrium. In all cases, if the stable equilibrium has 
exactly h competitor species with nonzero concentration, then they are the 
first h competitor species (i.e., the h competitor species with the lowest 
break-even concentrations, Xi). The single surviving predator species for 
each of these competitors is the associated predator species with the lowest 
break-even concentration, 8:. (I shall henceforth refer to this associated 
predator species as the best predator for that particular competitor species.) 

Third, if the stable equilibrium contains at most two competitor species 
with nonzero concentration (and hence at most two predator species with 
nonzero concentration) or if it contains three competitor species with nonzero 
concentration and two predator species with nonzero concentration, then it 
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is globally asymptotically stable with respect to the interior of the positive 
cone. In fact, it seems likely that the stable equilibrium is always globally 
asymptotically stable; however, I was not able to prove this. In any case, if it 
is not globally asymptotically stable, then the only other possibilities for 
attractors are periodic orbits in which exactly the same populations are 
represented with nonzero concentration as in the stable equilibrium. Thus 
the model predicts that if a population has positive concentration in the 
stable equilibrium, then that population always persists (in the mathematical 

sense defined by Butler and Waltman [2] (i.e., its lim -,-CC is positive), which 
is purely deterministic and does not take into consideration the possibility of 
extinction due to stochastic effects as in Stephanopoulos and Fredrickson 
[22]), whereas if it has zero concentration in the stable equilibrium then it 
eventually dies out, regardless of the initial (positive) concentrations of the 
populations. 

As far as the effects of invasion by or attempted elimination of species, 
one can make the following predictions based on the analysis of the model in 
Section 3: 

(i) A predator-prey pair can successfully invade a food web (where we 
assume the invading predator species preys solely on the invading prey 
species) if the corresponding break-even concentrations, say 6* and X* of 
the predator and prey, respectively, are sufficiently small. For example, if a 
food web is at equilibrium or its populations are predicted to approach an 
equilibrium or periodic orbit at which precisely the first h competitors 
persist, and either 

X,<X* and 1-x*- ; &+(A*)-S*p*(X*)>O 
i-l 

or there exists an integer k such that 

X,<h*<X,+,<h, and l-h’- i S;p,(X*)-s*p*(x*) >o 
i=l 

where p* denotes the response function of the invading competitor, then the 
invasion will be successful (i.e., the invading predator-prey pair will persist). 
Whether or not the invasion is successful and whether or not it results in the 
extinction of other populations depends on how the inequalities in (H-(16) 
and (19)-(22) are affected. The only species that could be driven to extinc- 
tion due to the invasion are competitor populations with break-even concen- 
trations larger than X* and/or the associated predator populations. The 
model predicts that invasion by a predator-prey pair will not further 
increase the diversity by resulting in the persistence of any other new 
populations. 
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(ii) The model predicts that a predator species alone can successfully 
invade provided there is an appropriate prey (competitor) population at 
nonzero concentration at the time of the invasion already in the food web, 
the invading predator species is the best predator associated with that prey, 
and the break-even concentrations of the invading predator and the already 
existing prey are sufficiently small. As in case (i), how small depends on the 
inequalities in (lS)-(16) and (19)-(22). Invasion by a predator can actually 
result in a significant increase in the number of species persisting. For 
example, if before an invasion there is a food web in which xi has no 
predator, then regardless of initial conditions all the populations of preda- 
tors and competitors would eventually approach extinction except possibly 
xi. If, however, the invading predator preys on xi and competitor popula- 
tions xi- x5 all have relatively small break-even concentrations and the 
associated predators also have relatively small break-even concentrations, in 
particular, if 

l-A,- i &7,(X,) >o, 
i=l 

then the model predicts that the invasion will result in xi- x5 and their 
associated best predators all persisting. Similar reasoning suggests how 
systematic elimination of a predator could result in the collapse of an 
ecosystem. This certainly adds support to the claim of many ecologists that 
predation is one of the factors responsible for the diversity in natural 
ecosystems. It appears that in this model, predator-mediated coexistence 
works because a predator limits a given competitor, say xi, and prevents it 
from holding substrate concentration at too low a level Xi. This allows some 
competitors with A such that X, -C X to coexist with xi. Of course, predation 
is not the only mechanism for obtaining coexistence. For example, self-regu- 
lation by competitors or interference competition can also lead to coexis- 
tence of several competitors. 

(iii) A competitor population alone could successfully invade a food web 
provided its break-even concentration, say X*, is sufficiently small. More 
precisely, if the stable equilibrium contains h nonzero competitor popula- 
tions and X* < X,, then the invading competitor will persist. This could lead 
to a significant collapse in the food web since the invading competitor 
population has no predators. All previously persisting competitor popula- 
tions with break-even concentration larger than X* and their associated 
predators would now be driven to extinction except possibly one competitor 
population. Again, using the same reasoning, the model predicts that system- 
atic elimination of a competitor population could result in a significant 
increase in the diversity of the ecosystem. 
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One must be careful not to take the results too literally. The predictions 
obtained were derived from a mathematical model in which the prey 
response to substrate density was modeled by either Lotka-Volterra or 
Michaelis-Menten dynamics and predator response to prey density was 
modeled by Lotka-Volterra dynamics. Unfortunately, these assumptions 
were for technical reasons. Although for many simple microorganism popu- 
lations Michaelis-Menten is a good model of the dynamics, it is unlikely 
that Lotka-Volterra would be a good model of the predator dynamics. 

In Butler and Wolkowin [5] a model involving at most two competitors 
competing for substrate and a predator preying on the best competitor was 
studied. General monotone response functions were allowed. One of the 
main differences between their results and ours is that in their model there is 
the possibility of a Hopf bifurcation. Also it may be the case that if the 
break-even concentrations are sufficiently small none of the equilibria in 
their model is stable. On the other hand, although they did not prove it, in 
all the examples they considered, if some equilibrium was not a global 
attractor there was a globally attracting periodic orbit. And just as in my 
model, which species survived and which were driven to extinction depended 
on the relative values of the break-even concentrations. In fact they proved 
that provided all the break-even concentrations were sufficiently small, all 
populations in their model persisted uniformly (although not necessarily at 
equilibrium). 

In Butler and Wolkowicz [6] a model involving three competitors compet- 
ing for substrate and a predator preying on the best competitor was 
considered. Again, general monotone dynamics were used to model the 
species response functions. Just as in this model they found that if any 
competitor persisted one of them was always the competitor with the lowest 
break-even concentration and a second competitor was able to persist only 
provided the predator was able to persist. However, they found that the 
second survivor was not necessarily the one with the second lowest break-even 
concentration. Instead, the second survivor depended on the initial concen- 
trations of the species. 

Cohen [8] found that in the food webs he surveyed the number of species 
of predator typically exceeded the number of species of prey by an average 
of 1.3 predator species per prey species. This model seems to indicate that if 
each predator species preys on only a single prey species, each prey species 
will ultimately (asymptotically) have at most one surviving predator species. 
It might be enough to allow more general predator response functions as in 
Butler and Wolkowin [5] to account for this discrepancy in predator-prey 
ratio. Clearly, more modeling must be done using more general response 
functions before the situation can be completely understood. 

Modeling of a similar food web in which the predators are allowed to 
prey on more than one competitor would also be of interest. This, of course, 
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requires modeling the predator strategy for consumption of prey. For 
example, does the predator just consume whatever prey it can catch, or does 
it have a preference for one particular prey species and only consume the 
other when the preferred species falls below some threshold? 

Shigesada et al. [20] consider a classical Lotka-Volterra n-species compe- 
tition model (i.e., they do not explicitly model the substrate) in which they 
consider the effects of interference competition and derive criteria for the 
invasion of a new species. Understanding the effect of allowing interference 
competition in the chemostat model studied in this paper would also be 
useful. 

There is a vast amount of research, both theoretical and experimental, on 
related submodels of the model analyzed here. In particular, the food chain 
that consists of the substrate, one consumer, and its predator or the food 
web that consists of one substrate, two competitors, and a predator has been 

studied in [l], [3], [5], [7], [9]-[12], [15], [16], [18], [19], [22], and [23], just to 
mention a few sources. The articles by Fredrickson [lo] and Butler and 
Wolkowicz [5] describe many of the contributions. 

APPENDIX 

LEMMA A.1 

Consider the simultaneous Lotka - Volterra predator-prey systems 

k,(t) =xi(t)(%-l4Yiw), iE {l,...,k) 

j;(t)=):(t)(--,+&x,(t)), iE{l,...,k) 

k 

C Yixitt) = w for all t a 0 
i=l 

xi(o) ’ O9 X(O) ’ ‘7 i= {l,...,k} 

(A.11 

where k E {1,2} and y, i E {l,..., k} and W are positive constants. Then 

(i) W = Cf= *yi ai //Ii, and 
(ii) The only solution of (A.l) is the positive equilibrium solution 

(o1/&,...9 ak/Bk,l)L1/P1,...,OLk/Bk). 

Proof. If k = 1 the result is obvious. Assume that k = 2. 

(i) Since ylxl(t) = W- y2x2(t), it follows that xi and x1 are periodic 
with the same minimum period, say T. Assume T > 0, or there is nothing to 
prove. T is finite since for each i the phase portrait of each Lotka-Volterra 
predator-prey system is a center. Now, for each i E { 1,2}, 

0 = iT$# dt = lT[ - ai + &x,(t)] dt. 
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This implies that 

267 

But then 

W=f~T~dt=f~Ti~lyixi(t)dt= t Y$. 
0 ;=I ’ 

(ii) As in (i) we may assume that x1 and xz have the same finite 
minimum period T > 0. (Then y, and y, each also have the same period T.) 

There exists T 2 0 such that x1(~) = crl/&. Since n&(t) = - y2jt2(t) for all 

t>, 0, 

Y~Xl((r,-81Y1)2-Blx,~~= -u2x2(% -132Y2)2+P2x2~2 forall t20. 

But x1(7) = oI/& implies that x2(~) = q/&, and so j1(7) = 0 = j2(7). 
But then y,( 7) = ai/&, i E (1,2}. This implies that we are at equilibrium, 
contradicting the assumption that the minimum period T > 0. The result 
follows immediately. 
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