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GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF
COMPETITION IN THE CHEMOSTAT: GENERAL RESPONSE
FUNCTIONS AND DIFFERENTIAL DEATH RATES*

GAIL S. K. WOLKOWICZt AND ZHIQI LU}

Abstract. A model of exploitative competition of n species in a chemostat for a single, essential,
nonreproducing, growth-limiting resource is considered. S. B. Hsu [SIAM J. Appl. Math., 34 (1978),
pp. 760-763] applies LaSalle’s extension theorem of Lyapunov stability theory to study the asymptotic
behavior of solutions in the special case that the response functions are modeled by Michaelis-Menten
dynamics. G. J. Butler and G. S. K. Wolkowicz [ SIAM J. Appl. Math., 45 (1985), pp. 138-151], on the other
hand, allow more general response functions (including monotone and nonmonotone functions), but their
analysis requires the assumption that the death rates of all the species are negligible in comparison with
the washout rate, and hence can be ignored. By means of Lyapunov stability theory, the global dynamics
of the model for a large class of response functions are studied, including both monotone and nonmonotone
functions (though it is not as general as the class studied by Butler and Wolkowicz) and the results in Hsu
are extended for this class, to the differential death-rate case. That is, it is shown that for this class the
outcome depends on the relative sizes of the break-even concentrations. Provided that these concentrations
are distinct, at most one competitor population avoids extinction, the one with the lowest break-even
concentration. All populations approach limiting values.

Key words. chemostat, competition, Lyapunov function, differential death rates, global dynamics
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1. Introduction. In this paper we study the global dynamics of the following model
of the chemostat in which n populations of microorganisms compete exploitatively
for a single, essential, nonreproducing, growth-limiting substrate:

o xi(1) pi(S(1))

(1.1) S'(t)=(S°—S(t))D—E1

xi(t) =x()(=D;+pi(S(1))), i=1,2,---,n,

where S(0)=0and x;(0)>0,i=1,2, - -, nand S°, D, D;, and y, are positive constants.

In these equations (assuming for convenience that the volume of the culture vessel
is one cubic unit), S(¢) denotes the concentration of the substrate at time ¢; x;(¢)
denotes the concentration of the ith population of microorganisms at time ¢; p;(S)/y;
represents the uptake rate of substrate of the ith population; we assume that p;(S)
represents the per-capita growth rate of the ith population and so y; is a growth yield
constant; S° denotes the concentration of substrate in the feed bottle; D denotes the
input rate from the feed bottle containing the substrate and the washout rate of substrate,
microorganisms, and byproducts from the growth chamber; each D;= D+ ¢;, where
g; denotes the species specific death rate of species x;. (It is interesting to note that
the analysis of the model requires no assumptions on the signs of the ¢;’s, as long as
the D;’s all remain positive. This leaves the D;’s open to other interpretations.)
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For general background on model (1.1), in the case of both monotone and
nonmonotone response functions, the reader is referred to Butler and Wolkowicz [6]
and the references given therein. As in [6], keeping in mind that certain substrates are
growth-limiting when their concentrations are low, as well as growth-inhibiting when
their concentrations are high (see, for example, [1], [2], [4], [5], [11], [16]), whereas
other substrates only limit growth when their concentrations are low (see, for example,
[11], [14]), we make the following assumptions on the form of the response functions
pi, i=1,2,- -+, nin model (1.1):

(1‘2) pi:R"'_)R-i—,
(1.3) p; is continuously differentiable,
(1.4) p:i(0)=0,

and there exist uniquely defined positive extended real numbers A; and w;, with A; =< y;

such that
(1.5) pi(s)<Di if Se[A;, wil,
' pi(8)>D; if Se (k).

Here A; and u; represent the break-even concentrations of the substrate for the ith
competitor. In the case where p;(S) < D; for all S>>0, then A; = u; =+00. On the other
hand, if p;(S) is monotone increasing or if p,(S)> D; for all $> A;, then w; =+0c0.

In particular, we consider the following prototypes of response functions often
found in the literature (see, for example, [1], [2], [4], [11], [14], [16]). Three prototypes
of monotone response functions are

(1.6) (i) Lotka-Volterra: pi(S)=rS;
By (1.5), = Di//\i'

aS
(a;+8)’

(1.7) (ii) Michaelis-Menten: pi(S) =

For convenience, let ¢, =m;D;. By (1.5), if A; is finite, then m; > 1
and a,' = A,'(m,' - 1).
m;D,S> )
((a;i+8)(b;+S))’
_ (a;+ )\i)(zbi +A;) ~1.
¥

(1.8)  (iii) sigmoidal:  p;(S)=

By (1.5), if A; is finite, then m;

A prototype for a nonmonotone response function is

m;D,S )
(a;+8)(b;+8)’

By (15), if Ai iS ﬁnite, then m; = (a,+A,)(b,+A,)//\,

(1.9) (iv) inhibition:  p;(S)=

and b,' = /\,‘M,‘/ai.

Forms (i)-(iii) are also often referred to as Holling type I, II, and III, respectively.
For a derivation of the model and the underlying assumptions in the special case

that the response functions are of Michaelis-Menten form, the reader is referred to

Waltman, Hubbel, and Hsu [15]. In this case, model (1.1) is often referred to as the
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Monod model. In [9], Hsu, Hubbell, and Waltman give a complete global analysis of
(1.1) in the case where all the response functions are assumed to be of Michaelis-Menten
form and the species specific death rates are assumed to be negligible in comparison
with the washout rate, i.e., D;=D for all i=1,---, n. Hsu [10] applies a LaSalle
extension theorem (see [12]) of Lyapunov stability theory to give a simple, elegant
proof of the results in [9]. The Lyapunov function he uses works in the case of
differential death rates. However, this Lyapunov function seems to work only for
Michaelis-Menten or Lotka-Volterra response functions p;(S). On the other hand,
Butler and Wolkowicz [6] relax the restriction in [9], [10] of Michaelis-Menten kinetics.
Their analysis of (1.1) is valid for any realistic response functions (including non-
monotone response functions). However, the proof in [6] depends critically on the
technical assumption that D, =D for all i=1, - - -, n. Under this assumption, it can
be shown that the substrate concentration is a linear function of the competitor
concentrations. Armstrong and McGehee [3] analyze the n-dimensional model that
results if the equation for the substrate is eliminated from the model and the substrate
variable in the competitor equations is replaced by this linear function. Their analysis
is valid for any monotone response functions.

In this paper we generalize [3], [9], [10] by allowing a larger class of response
functions, and we generalize [3], [6], [8] for this class of response functions by allowing
differential death rates. In particular, we show that for this class of response functions
all populations approach limiting values independent of their initial concentrations,
but rather dependent on the relative sizes of the break-even concentrations. If all the
break-even concentrations exceed the concentration of substrate in the feed vessel,
then all populations of competitors die out asymptotically. Otherwise, provided these
concentrations are distinct, exactly one competitor population survives, the one with
the lowest break-even concentration. Thus, in this situation, the principle of competitive
exclusion holds.

For competeness, we include a statement of the extension theorem (invariance
principle) of Lyapunov stability theory used in this paper. It is a slightly modified
version of the statements given in LaSalle [12] and Hsu [10].

Consider the system of differential equations

(1.10) ver, (=4):

where the vector-valued function f: ¥*<R" > R" is assumed to be continuous.
DErINITION 1.1. We call V a Lyapunov function on ¥< ¢* for (1.10) if
(i) V is continuous on ¥,
(ii) V is not continuous at X € ¢ (the closure of ¥) implies that

lim V(x) =400,
xed

(iii) V=VV-f=0 on %

THEOREM 1.2. Assume that V is a Lyapunov function for (1.10) on 9. Define
€={xc 9N ¥*: V(x)=0}. Let M denote the largest invariant set in &€ Then every
bounded (for t=0) trajectory of (1.10) that remains in 4 (for t =0) approaches the set
M as t - co,

The proof requires only minor modifications of the proof given in Hale [7, Thm. 1.3,
p. 296], where V is assumed to be continuous on ¥, and so (ii) in Definition (1.1) can
be omitted.
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2. Analysis of the model. Throughout, we identify the set
{(S, %, --,x,)eR"™:8=0 and x;=0,i=1,---,n}
with R7™", and we assume that the populations are labelled so that
(2.1) M<A=---=),.
For convenience we define
(2.2) pi=min (S°, w;), i=1,2---,n

LEMMA 2.1. The solutions S(t),x;(t), i=1,2,---,n of (1.1) are positive and
bounded, and if \; < S° < u; for some ic{1,2, - - - , n}, then S(t) < S° for all sufficiently
large t.

Proof. S(t) is positive for all t > 0 since S(7) =0 forany 7= 0 implies that S'(7) > 0.
Also, x;(t)> 0 for all t> 0 since the boundary face where x; = 0 is invariant, and hence,
by uniqueness of solutions, it cannot be reached in finite time by trajectories for which
x;(0)> 0. It holds that

Y xi(t)D; 2oxi(t)

(s0+ £ 22) ss=s00p- 5 0Pz o s+ § 20),

i=1 yl

where D=min (D, D, D,, - - - ,D,). Therefore,

Lot _ o o ( " x,.(O)_DSO) Ds°
S(t)+i§1 ) =exp (—Dt) S(0)+i§1 ) 5 + D
and, since all solutions are positive, it follows that all solutions are bounded.

Suppose that A; < S°< ;. If S(¢)> S° for all sufficiently large ¢, and hence S'(1)<0
for all sufficiently large 1, then S(¢)|S*=S°. However, $*> S° implies that S'(1)=
(8°—S$*)D <0 for all ¢ and hence S(t)|—, a contradiction. If §* = S°, since A, < §°<
i, S(¢)8°, which implies that S(¢)e (Ai, m;) for all sufficiently large t. This implies
that x;(#)> 0 for all sufficiently large r. Therefore x;(#)1x¥>0. Since x;(¢) and x/(¢)
are bounded for all ¢>0, using the mean value theorem (see Miller [13]) it can be
shown that x;(#) > 0 as t >0, and hence S(¢) > A; or u;, again a contradiction. Therefore,
either (1) <S° for all ¢ or there exists a =0 such that S(r)=S°. Then, however,
S'(7)<0, and so S(t)<S°for all t=r. 0

LEmMMA 2.2. For all solutions of (1.1), if \; = 8°, then lim,_ . x;(¢) =0.
Proof. By an argument similar to the one given in the previous lemma, it follows
that either S(¢)|S° as t->c0 or S(¢) < S° for all sufficiently large .

If S(t) <S°= ), for all sufficiently large ¢, then x{(t)=0 and so x;(t)|{x¥=0. As in
the previous lemma, it can be shown that x(¢) > 0 and so either x¥ =0 or S(¢)-> A, or
w;. However, u;>S° so S(t)> u,; is impossible. If A;> S°, then S(t)—A; is also
impossible. If ;= S° and S(¢) - A;, then

(S°=S(1)D~x(1) pi(S(1) . x}D,

Yi (4y:)

for all sufficiently large ¢ This implies that S(t)|—o0, a contradiction.
If S(t)|S° as t> oo, the proof is similar. [

THEOREM 2.3. Assume that A, <A,=---=A, and A, <S8°<u,. If it is possible to
find constants a;> 0, for each i =2 satisfying \; < S° such that

A~

S'(1) < <0

. == i .
(2.3) omax g&(S)=e = min 8:i(9),
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where

 (S)=Dy+p(S))(S°= )
(24) &) = D D+ p(SH(S=S)

then all solutions of (1.1) satisfy lim,,. S(t)=2A,, lim, . x,(t)=y,D(S°—A,)/D,,
and  lim,,, x;(t)=0, i=23,""+,n (ie., the  critical  point E, =
(A, 1D(S°—Ay)/ Dy, 0, - -,0) is globally asymptotically stable with respect to the
interior of R7*").

Proof. From Lemma 2.2. it follows that there is no loss of generality if we assume
that A;<S°for i=1,- - -, n since any population with A; = S° approaches extinction,
independent of whether there is any competition. Define the Lyapunov function
V(S, x,,* "+, Xx,) as follows:

s _ 0_ "
Vo [ PAOBICEM e L st xtn - (i + £ S

A Dl(SO“f) N1
on the set 4={(S,x,, -, x,): S€(0,8°, x;€(0,0) i=1,2,---,n}, where a; i=
2, -+, n are positive constants to be determined and x} =y, D(S°—,)/D,. Then the

time derivative of V computed along solutions of the differential equation is

JL—MJ
(8°-8)D,

o Xil o _Pi(S)(=D1+pi(5))(S°—\y)
+i§2 Vi [ai( Di+Pi(S)) D1(S0—S) ] .

First, note that the first term in the above sum is always nonpositive for 0< S < §°
and equals zero for S € [0, S°) ifand onlyif S = A, or x, =0. Foreach i =2, - - -, n, define

P.-(S)(—D1+p1(S))(S°—/\1)]
Dy(5°-S) '

If Se[Ay, A, or if u; <S° and Se[u;, S°), then h,(S)<O0 for any choice of a;>0.
Thus h,(S) <0 for every S € (0, S°), provided that it is possible to find a; > 0 satisfying
(2.3). By the LaSalle extension theorem [12] every bounded solution of (1.1) contained
in ¥, and hence by Lemma 2.1 every solution of (1.1), approaches the set ./, the largest
invariant subset of €={(S, x;,*--,x,)€ %: V=0}. € is made up of points of the
following forms:

(2.6) (S,0,---,0), where Se[0, S,
2.7) (A1, %,,0,-++,0), where x,€[0, ).

If any point of the form (A, x;,0,---,0), where x,>0, is in the omega limit set O
of any solution initiating in the interior of R’"", it would follow that E, €Q since E,,
is globally asymptotically stable on the face {(S, x,0, - - -, 0): S=0, x> 0}. However,
E,, is a locally asymptotically stable equilibrium point of (1.1), and so if E, €4, it
would follow that O = {E, }. No point of the form (2.6) is in Q, if S # S°, because the
entire trajectory through any point in Q must lie in Q. This would imply that () is not
compact, yielding a contradiction. If S = S°, since E°=(S°,0, - - -, 0) is unstable and
its stable manifold does not intersect the interior of R*', this implies that Q # { E°},
and hence some other point of &€ must lie in ). However, we have just shown that
this is impossible, unless Q = {E, }. 0

It is of interest to identify classes of response functions where a; can always be
found, and hence Theorem 2.3 can be applied. The general form of g;(S) (see Fig. 1)

V=—y"—i<p1(S)—Dl)[1

(2:5) hi(S) = [ai(—Di+pi(S))—



COMPETITION IN THE CHEMOSTAT: GLOBAL DYNAMICS 227

g,(8)

0 A A p
1 i i
Concentration of substrate, S

F1G. 1. A graphical depiction of criterion (2.3). In general, g;(S) is continuous on [0, A,] and on (A,, p;);
8:(8)=0 for all S€[0,2,]JU(A;, p;); £:(0)=0=g;(A,); limg_, ,* g,(8) =+00=limg., - &(S). Criterion (2.3)
requires that for each i=2 for which \;<S° there exist a,>0 such that max,=g= 7, &i(S)=a;=
minz\,<s<p, £(8).

seems to indicate that it may be possible to find such «; for a very general class of

response functions.
COROLLARY 2.4. Assume that A\, <A,= +-- =\, and A\, <S8°<u,. For each i=2
for which X; < S8°, if w,(S) satisfies

wi(S) = w; (1), Se[0,A,],

(2.8)
wi(S)gwi(Al)s SE(A,‘, pi)’
where
_ (=)
(2.9) wi(S) = gi(S) (5-n)

(e.g., if wi(S) is increasing for all Se(0,p;)), then the critical point E, =
(A1, 21D(8°—1,)/ Dy, 0, --,0) is globally asymptotically stable with respect to the
interior of R, for model (1.1).
Proof (See Fig. 2). The function (S—A,)/(S —A;) is decreasing on [0, A,] and on
(As, pi). Also, A/ A; <(p;— A1)/ (pi—A;). Therefore,
(S—Ay) . (S—Ay)

max ———< min .
0<S<Ay (S—A'l) A <S<p; (S_A.,)

If w;(S) satisfies (2.8), then

max w;(S)= min w(S).
0<S<Ay Ai<S<p;

However, g;(S)=w;(S)(S—A,;)/(S—A;). Hence, since all terms are nonnegative,

max g;(S)< min g(S),

0<S<xn Ai<S<p;

and hence the result follows by Theorem 2.3. 0
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A p

Concentration of substrate, S

F1G. 2. Graphical multiplication to determine g,(S) and thus verify the hypotheses of Corollary 2.4.
8.(S)=w,(S) (§=2,)/(S—A,)); - - - indicates (S—A,)/(S—A;), —— indicates w,(S).

Before stating the next corollary, we introduce the following notation. For each
i=1,---,n let k; denote a positive real number (provided one exists) satisfying

(2.10)

and

(2.11)

Then define
(2.12)

and

(2.13)

pi(S)
S

is continuous on [0, S°]

pi(S) )
lim
S—)O SK'

S"i(=D;+pi(S))

ns)s-n) o SEOS]

Si(8)=

£(S) = pl(S)fl(S)’ se[o, SO).

Note that f;(S) and f(S) are continuous and nonnegative on their respective domains.
In particular, for the four prototypes (1.6)-(1.9), a unique «; exists:
(i) Lotka-Volterra: fi(S)=1,

(ii) Michaelis-Menten: £i(S)= T’
(iii) sigmoidal:  fi(S)=

(iv) inhibition: fi(S)=

m;—1
(Aab; +S(Ai(a; + b))+ ab,))
(a;i+A;)(b;+ ;)

a;(pui—S)
(ai+)‘i)(ﬂi+ai).

s
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With f£;(S) and f(S) defined by (2.12) and (2.13), it follows that

(2.14) 2(8) = S(SSZS)‘ _)f ()i)((;ol;"‘) — w(S)n(s) =M 01;1’“),

where

(2.15) u;(S)=S"""1f(S) and v,-(S)=——SL‘
(S—1:)£(S)

COROLLARY 2.5. Assume that A\, <A, =---=A,, A, <S°, and u;> S° for all i=
1,- -+, n. For each i =2 satisfying \; < S°, if u;(S) is increasing on [0, S°) and v,(S) is
decreasing on [0, A,] and on (A;, S°], then there exist unique points y€ (0, ;) and
1€ (A;, S° such that

(2.16) u(y)=v(y) and u(n)=vin).
If
(2.17) v:(0)=u(n) and v(S))=u(y),

then the critical point E, =(A,, y»D(S°—A,)/ Dy, 0,--+,0) is globally asymptotically
stable with respect to the interior of R} for model (1.1). In particular, if either

(2.18) 0,(0)=u;(A;) and v;(S°) = u;(A,)
or
(2.19) 0;(0) = v,(S°),

then (2.17) holds, and hence the critical point E, = (A, y,D(S°—1,)/D;,0, - -,0) is
globally asymptotically stable with respect to the interior of R}"" for model (1.1).

Proof (See Fig. 3). Since u;(0)=0, v;(0)>0, u;(1;)>0, and v;(A,)=0, and on
(0, A1), u;(S) is increasing, v;(S) is decreasing, and both functions are continuous, it
follows that the two functions have a unique intersection point ye (0, A;). Since
0i(S)>00 as S> A}, u(S)> as S S°, u;(A;)>0 (finite), and v;(S°)>0 (finite),

v o)

v,

0 A A S
1

Concentration of substrate, S

FIG. 3. Graphical multiplication to determine g,(S) and thus verify the hypotheses of Corollary 2.5.
£:(S) = u,(S)v,(S)((8° = A,)/(D,); — -~ indicates u;(S), —— indicates v;(S).
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and on (A;, S°), u;(S) is increasing, v;(S) is decreasing, and both functions are con-
tinuous, it follows that the two functions have a unique intersection point 7 € (A;, S°).
Define

_Ju(S) 0=S=y _Ju(S) 0=S=y
XI(S)_{u,-(S) y=S=A Xz(s)"{vi(S) y=S=A

fu(S)  n<S=9 fuw(S) M=S=7
YI(S)_{ui(S) n=S<8” YZ(S)‘{v.-(S) n=8=8"

If (2.17) holds, then

= = o
(2.20) O;nsaé)il X,(S)_)"ggils0 Y, (S) and O;nsaé)&l Xz(S)S/\'Lnsngso Y,(S).

Therefore
(8°=1y)
D,

This implies that (2.3) holds, and hence Theorem 2.3 can be applied. In particular, if
(2.18) holds, then

max X,(S)X. (S)(SO;A‘)< min _ Y;(S) Yy(S)
0sSs=r, 1 2 D, ~ a<s<s® ! 2

u,(y) = vi(y) <vi(0) = wi(A;) <ui(m)
and
Ui(SO) = u;(Ay) > ui(y),
and so (2.17) holds. Similarly, if (2.19) holds, then
u(y) = v:(y) =0:(0) = 0:(S°) <vi(m) = ui(n),
and again (2.17) holds. ]

Remark 2.6. If we take any combination of the four prototypes (1.6)-(1.9) as the
response functions p;(S), then under the hypotheses of Theorem 2.3 it is always possible
to find appropriate constants «;, and hence in model (1.1) the critical point E,  is globally
asymptotically stable with respect to solutions initiating in the positive cone. See Table
1 for an indication of how this is proved, i.e., which corollaries apply. In the case
where p,(S) and p;(S) are both sigmoidal response functions of form (1.8), note that
the symbolic manipulation package MAPLE was used to perform the computations,
as they were particularly tedious.

TABLE 1.
For prototypes (1.6)-(1.9): an indication of which corollary applies. (a) indicates that w;(S) is increasing for
S (0, p;) and so Corollary (2.4) applies; (b) indicates that w,(S) is increasing for S € (0, A;) and w;(S) > w;(A,)
for Se (A;, p;) and so Corollary (2.4) applies, ((a)=>(b)); (c) indicates that u,(S) is increasing for S € (0, 59),
v,(S) is decreasing for S€[0, A,] and S € (A,, S°), and v;(0) > v;(S°). Therefore Corollary (2.5) applies.

pi(S) Lotka- Michaelis-
p:(S) Volterra Menten Sigmoidal Inhibition
Lotka- (a), (¢) (a), (c) (a) (a)
Volterra
Michaelis- (a), (¢) (a), (¢) (a) (a) -
Menten
Sigmoidal (c) (c) (a) (a)

Inhibition (b) (b) (b) (b)
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3. Discussion. In this paper we considered a mathematical model of exploitative
competition of n populations in a chemostat for a single, essential, nonreproducing,
growth-limiting resource. Using a Lyapunov stability theory approach, we generalized
the results in [3], [9], [10] by allowing a larger class of response functions, and we
generalized the results in [3], [6] for this class of response functions by allowing
differential death rates. This class includes all functions that satisfy the usual conditions
assumed to be satisfied by most realistic response functions (conditions (1.2)-(1.5)),
along with the technical hypothesis of Theorem 2.3. We showed that this class is quite
large, containing any combination of all four prototypes discussed in the paper: the
three prototypes for monotone response functions—Lotka-Volterra, Michaelis-
Menten, and sigmoidal—and the prototype for a nonmonotone response function
describing inhibition by the substrate at large concentrations.

For this class of response functions, we proved that the outcome of competition for
the resource depends on the relative values of the break-even concentrations. Each
population asymptotically approaches an equilibrium concentration, independent of
the initial concentrations of the populations. If the smallest break-even concentration
A; of a population x; is larger than S°, the concentration of resource in the feed vessel,
then that population dies out whether or not there are other competitors. Otherwise,
assuming that there is only one population x; with the lowest break-even concentration
Ay, provided that A, < S°< u, (where u, = +00 is possible, as in the monotone response
function case), we showed that x, is the only population that avoids extinction, and
the limiting concentration of the resource S(¢) is A,, and that of competitor x; is
)"1D(SO_ A1)/ D;.

In [6], assuming D; = D for all i, the same conclusions were obtained for a larger
class of response functions. Population x, was shown to be the sole survivor, provided
that the set Q= U,_, (A;, u;) is connected and S°c Q, where N ={i: A, < S°}. We
conjecture that these results are also true in the differential death-rate case. However,
if u; <S°, it is not possible to show this with the Lyapunov function that we used. In
fact, finding a characterization of the class of response functions for which this
Lyapunov function works remains an open question.

In [6] it was also shown that if either S°¢ Q, or if Q is not connected, though all
population concentrations still approach limiting values and at most one population
avoids extinction, the outcome of the competition depends on the initial concentrations
of the competitors since, in this case, there is more than one locally asymptotically
stable equilibrium. Only those populations x; with their corresponding A; equal to the
endpoint of one of the connected components of Q have a chance of winning the
competition. If S°¢ Q, there will be an open set of initial concentrations for which all
populations will wash out, even if A; < S° for several populations.

There is an advantage to using a resource-based approach rather than the seemingly
simpler and more general classical approach for modeling competition. In the classical
models of competition, parameters describing the carrying capacity of the environment
as well as competition coefficients appear. It would be very difficult, if not impossible,
to measure these competition coefficients without growing the competitor populations
together. Thus these models tend not to be predictive. On the other hand, the parameters
in model (1.1) can be measured by growing each species alone either in batch or
continuous culture and, based on the relative sizes of the parameters describing
break-even concentrations, the model predicts the qualitative outcome of mixed-growth
competition in advance of the actual competition.

The predictions of this model could easily be tested in the laboratory. In fact, the
predictions in [9], [10] were tested by Hansen and Hubbell [8]. They considered several
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auxotrophic bacterial strains competing for limiting tryptophan. The response functions
were modeled by Michaelis-Menten dynamics (see (1.7)), and so to determine the
break-even concentrations, they first measured the maximum-per-cell division (birth)
rate ¢; and the half-saturation constant a; for each bacterial strain by growing each
strain alone in batch culture on tryptophan. From these measurements they calculated
A;. They then carried out several experiments to rigorously test whether they could
predict the outcome based on the break-even concentrations. Their experiments
confirmed the mathematical predictions of qualitative outcome. Similar experiments
could be performed to test the predictions using microorganisms known to have
response functions of other forms, including those described by forms (1.8) and (1.9).
See [1], [4], [11], [15] for examples of such microorganisms.

The results in this paper and in [6] suggest another approach for determining the
break-even concentrations and, hence, testing the predictions. It seems that it might
be possible to predict the outcome of competition of n competitors in a chemostat
without knowing the actual form of the response functions. Instead, if each population
x; is grown alone in the chemostat with the appropriate feed concentration S° and
dilution rate D, then it should be possible to determine the break-even concentration
A; experimentally by allowing enough time for the concentrations to reach steady-state
and then measuring the equilibrium concentration of S(¢). If it is known that all the
response functions are monotone increasing for concentrations of substrate less than
S° then each steady-state concentration of the substrate should be A, if A; < S° or S° if
A; = S°. Once the population with the smallest steady-state concentration is determined,
this population is predicted to be the winner and sole survivor (unless, of course, the
smallest steady-state concentration is S°, in which case all populations wash out). If
nothing is known about the monotonicity properties of a response function for a
population x;, and the steady-state concentration of substrate equals S°, this means
that either A;=S° or u; <S°. From the phase portraits in [2], [5], it seems that by
repeating the experiment with the initial concentration of the microorganism population
relatively high, if u; < S°, it should be possible to avoid the basin of attraction of the
washout equilibrium, and hence determine A;. Once the population with the smallest
steady-state concentration of substrate, say x,, is found, it remains to determine whether
> S° This can be done by starting up the chemostat with the concentration of
substrate in the culture vessel initially greater than S°. Measurements can then be taken
to determine whether the concentration of the microorganism population is increasing
or decreasing when the concentration of the substrate is close to S°. If the concentra-
tion of x, is increasing, then u,> S° and the theory predicts that x, will be the only
surviving population. If u, < S° then in a similar manner (beginning with determining
whether u,> A,), to make predictions, we must determine whether Q is connected.

Recall that D, = D +¢;, where D is the flow rate and ¢; is the specific death rate
of x;. The model makes some other predictions that might be useful for industrial
applications. First, D changes the A;’s, and hence can change their relative values.
This could result in a reversal of the outcome of competition. Second, changing S°
can affect whether a species is washed out, independent of competition. However,
unless the ¢; are affected by changing S°, changing S° does not affect the relative sizes
of the A;. Thus, if all the response functions are monotone increasing, changing S°
should not affect the outcome of the competition unless it is decreased so that S°<A,,
in which case all populations wash out. On the other hand, if some of the response
functions are nonmonotone, changing S° could change the outcome of the competition.
For example, suppose that A; <pu; <A, <u,. If A; <S°<pu,, the theory predicts that
x; will be the sole survivor, regardless of the initial concentrations. However, if S° is
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increased so that A, <u, <\,<S° then the outcome will depend on the initial con-
centrations and, for certain initial conditions, x, could be the winner, driving x; to
extinction.
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