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Abstract  This paper studies the global dynamics of competition in chemostat in which two
populations of microoganistns compete exploitatively for a single, essantial, nonrsproducing,
growth-limiting substrate and there is a direct interference between competitors. In order to un-
derstand the differences in the effects of intraspecific and interspecific interference, the both cases
are considered respectively.

Key words Population dynamics ecology chemostat competition interference inter-
specific intraspecific principal of competitive exclusion

1 The Model

The chemastat i a very important laboratory device for the study of microbial population dy-
namics under nutrient limication. See, for examplem , for a detailed description of the chemostat. In
this paper we study the global dynamics of comperition in chemostat in which two populations of
microorganisms compete exploitatively for a single, essential, nonreproducing, growth-limiting sub-
strate. Direct interfarence between competitors, both interspecific and intraspecific, is permirted.
21(5) pals)

o oy
£y =z1(~ Dy + £1(8) — qulz1) = qulx2)), (1.1)
23 =250~ D2) + £3(5) - qulz1) - anlz2))
5(0) =0, 2,(0) 20.i = 1,2.
where $(0)=0, z;=0,i=1,2 and §° D, D;, and y; are positive constants,

In these equations, as in Wolkowicz and Lu?), assuming for convenience that the volume of

S =(S°—S)D — X1

the culture vesssl is one cubic unit, ${¢) denotes the concentration of the substrate at time £5 x;
(¢) denntes the concentration of the ith population of microorganizms at time Z; 5% denotes the
concentration of substrate in the feed bottle; 2;{ 5(¢) )/ denotes the uptake rate of substrate of
the ith population. We assune that £,(S) represants the per-capita growth rate of the {th popula-
tion so that y; is a growth yield constant. g;( z; )}, describes intraspecific interference end g;(z;),
i5%;, . describes the effect of interspecific interference by population j on population i. D denotes
the input rate from the feed bortle containing the substrate and the washout rate of substrate, mi-
croorganisms, and byproducts from the growth chamber, Each D; = D + ¢;, where £; >0 can be in-
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terpreted as the species specific death rate of species z,. The analysis of the model requires only
that D; >0 and =0 £,=20 is also allowed. This leaves the D; open to other interpretations,

In order to understand the differences in the effects of intraspecific and interspacific interfer-
ence on the dynamics of the populations we consider two special cases of model (1.1).1In the case
that no interspesific interference, only intragpecific interference, is permitted, that is gi{z;)=0, i
# ], the model becomes:

S =(SG-S)D‘—11M—12&'(_S')',
Fi ¥z
1 =x1(~ Dy + p1(8) = g (1)), (1.2)
2y =22(= Dy + p3(8) — guu(x)),
5(0) =0, 2,(0) =20, = 1,2.
In the case that no intraspecific interfarence, only interspecific interference, is permitted, that is
¢ii (z;)=0, the model becomes;
5) p2(8)
1Ty,
# =x(- Dy + p1(8) = quixs)), (1.3)
3 =x3(= D2 + p3(8) = qulz1))s
5(0) 20, 5;(0) > 0,¢ = 1,2.
We make the following assumptions on the formn of the response functions;

5 =(5"-5)D -1 Ply(

Piy Qur @i Ry Ry, (1.4)
Pis Qiiv gy are continuously differentiable (1.5)
2:(0) = 0, ¢,(0) = 0,¢,;(0) =0, (1.6)
2:°(8) >0 dorall § >0, (1.7)
gw(2)20,and ¢";(z) 20, for all = > 0. (1.8)
There exist uniquely defined positive extended real numbers 1;, such that
pi(a;) = D; (1.9)
In the case that 2;{(5)< D; {or all 520, then A; = ®. When ar least one A; iz finite, we assume
that
Ap < Az (1.10)
Finally, we introduce the following notation.
;ll.n:q"-"('r) =% i,j=12 (1.11)

When the 7;; are finite, this indicates thar the corresponding response function, gy saturates, How-
EVer, i = ™ is not excluded, 5o that the results hold as well for unbounded response functions.
1.1 Preliminary results

By proofs similar 1o the ones used to prove lemma 2.1 and 2.2 in Wolkowicz and Luf?), the
following can be shown.
Lemma 1.1 (1) The solutions 5(r), 2;(t)yi=1,2 of models (1.1), (1.2), and (1.3) remain
nonnegative and hounded for all £ >0,

(2) T 8(¢)Z58" for all ¢ >0, then 5(z)~-+S5° and 2,(t) 0 as 1+,
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(3) If S(¢)< 5° for some ¢ >0, then $(r)< 5 for all £ 30,
(4) If 2,<< 5% then 5(¢)< 5" for all sufficiently large .
(5) If 2,28% =1 or 2, then 2:(e)=>0 ag g-w=co
1.2 The washout equilibrium, E,°
First, note that the washout equilibrium, Eg* = (5°,0,0), is always a solution.
Theorem 1.2 [f 5%<4,, then Eg® is globally asymptatically stable. If SOZ‘-‘-*-JL‘. then Eg is
unstable and the stable manifold of Eg° is the sat
M* (Es*) = {(S.zy,22)5xy = 0and 2, > 0} if 4, = S°, (1.12)
M?* (Eg) = {(S-Il-zz):-r1 =0and x; = 0} if A5, < 5°. {1.13)
Proof The global stability follows immediately from part 5.of Lemma 1.1.
The instability follows immediately if one linearizes about the equilibrium. One finds the
tigenvalues of the variational matrix are:
-~Dand - D; + p(8Y, i=1,2.
This also gives the dimension of the stable manifold of M * (Es®). The definition of M* (Eg?),
follows from the invariance of each of the faces where z, =0,

2 Intraspecific Competition-Model (1.2)

For thi= model we make the technical assumptions _
gualz) >0 forall >0, (2.1)
7 >— Dy + p(59). (2.2)
2.1 Existence of equillbrium solutfons-madel (1.,2)

Recall (from Section 1.2) that the washout equilibrium, Es?= (5%, 0,0), is always a solu-
tion. There exists a planar equilibrium of the form Eg =(5(,24,0), with ;>0 if and only if 4,
< _S". If it exists, it is unique and A, < $,< 5, Similarly, there exists a planar equilibrium of the
form E_glﬂ(Sg.ﬂ. x4}, with x;20 if and only if 1, < 8%, If it exists it is also unique, and A3 <
8:< 5% In both cases,

. _ »w(s8'-8)D

il m(s)
where 8; must satisfy

o

w0y b s,

That each planar equilibrium solution is uniquely defined follows easily from the technical assump-
tion (2.2), the monotonicity assumptions on p; and i and the fact thar the right hand side of the
above equation is a decreasing function of $; for A, < 8,< 5°,

There exists a coexistence equilibrium, if and only if ;< 8%, 1, 59, and $, > 1,. When it
exists it is denoted, E5 = (8§, £,, Z;) where 2; 0. It can be shown that when it exists, it is u-
nique and 4, < §< §,.

Ta see this, first note that the components of any mexistence equilibtivrn must satisfy,
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o _ - 21(S) __ p2(8) _
(8°-8)D ~ 1, " T2 0, (2.3)
= Dy + p(8) = qulzy) =0, (2.4)
— Dy + p3(8) ~ gulxy) = 0. (2.5)
Lemma 2.1 The following are equivalent.
(1) There exists a unique coexistence equilibrium, Ex.
(2)5; 4.
(3)There exist ¥, >0 satisfying
(SU—AQ)D—IIIEL% >0, (2.6)
and
=D+ 21(d2) ~ quln,) =0 (2.7)
Proof (a) (2.=3.) If 8,2 2,, then since by definition
~ Dy + p1(81) - qu(z,) = 0 (2.8)

in order for (2.7) to hold, _th{;:l.'l"hemfure,
0= (s°-sl)p—513‘%&5(50-,12)9-,—413‘;—;‘31
and =0 (2.6) holds,

(b) (3.=2.)1If 8,523, in order for (2.7) to hold..tlﬂ:nzi But

0=(8"~-8)D -1z, ﬂ(f-ﬁz (8°-24)D - -n,ﬂ%}z—)
and s0 (2.6) cannot hold. Therefore, (2.6) and (2.7) imply that §,>1,.

{c) (1.=3.) Suppose Egexists, but (3) does not. Therefore, if (2.7) holds, then (2. 6)
cannot hold by part (b) of this proof. In order for (2.5) to hold for some 730, cleacly 5 >24,.
Increasing S from Az to § in (2.4) and (2.5) forces z, to incresse from ), and 7, o increase
from 0, forcing the left hand side of (2.3) w0 be negative, contradicting the existence of Ez.

(d) (3.=1.) Consider the curve (R, z1(R), z2{R)), Ay<R=§" sarisfying (2.4) and
(2.35).If R=A,, then 2, (R) = xy and z2(R) =0, and from (3) it follows that the left hand
side of (2.3) evaluated at 5=R, x1=z(R),and x2=1,(R), is stictly positive.

On the other hand, if R=§,2>2,, (by part (b)) then z,(R) =z, and x5(R) >0, and so
the left hand side of (2.3) evaluated at S=R, .z, = 2,(R), and 12=z3(R), is stictly negarive,

Reducing R from 51, also decreases =;(R) and x2(R) in order to continue satisfing (2.4)
and (2.5), thus increasing the left hand side of (2. 3) . By continuity and the monotonicity of p;
and q, there exists a unique 5 satisfying A, < 5< 8, %o that for R = §, r1(R)Y=7x, and z,
(R)=1z4,(2.3)~(2.5) are satisfied.

2.2 Stabillty of equilibrlom solutions-model (1.2)

The stability of the washout equilibrium was already considered in the Section 1.2. Next we
consider the stability of the single species survival equilibria.

Theorem 2,2 (1) Assume that Eg exists, that is 1, < S If $, < ,, then Es_is locally
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asymptotically satble. If §,> 2., then Eg is unstable.

(2) Whenever Eg exists, that is 2,< 89, Eg, is unstable.

(3) In the gbsence of & competitor, each planar equilibrium Eg is globally ssymptotically sta-
ble provided A, < S°.

(4) If A, < 8% a5, then Egl is globally asymptotically stable with respect to all solutjons
with £,{0)>0.

(5) Assume that A;<CS?, Define

(§) = P2AS)(- £)(8)) + £:(8))(S° - §))
£ #1(81)(~ D; + 52(8))(8° - 5)

If it is possible to find a constant a0, satisfying

oﬂﬁ.g(miﬂg,‘:ﬁ: 2(35), (2.9)

and if §,<A,, then .Eglis globally asymptotically stable with respect to all solutions with x,(0) >
0.For example, for any response functions 7:(5) of the following forms:
(2) Lotka-Volterra; p;(5) = .5 where ri is & positive constant,

(b) Michaelis-Menten; p,{ §) = f% where ¢; and a; are positive constans,
i

2
(¢) Sigmoidal: p;(S) = Tt .;I;?b + §) Wwhere m;, a; and b; are positive constants.

it is always passible to satisfy (2.9), ,
Froof (1) The characteristic polynomial associated with the variational matrix about the e-
tuilibrium solution Eg is:
Lol - l(S . , -
(= Dy + p2(8)) = )| ¥* + 7(D + 1, ‘EL_,’,TQ + 119’ 1(x1))

+zyg"u{z (D + A 1143 )) + 1, 248 J21(5,) .
X1 M
It follows from assumptions (1.4)—(1,8) that all of the coefficients of the quadratic are positive
and =0 by the Routh-Hurwicz condition at least two eigenvalues always have negative real parts.
The remaining eigenvalue is — D, + p,(8,).

(2) The characteristic polynomial associated with the vanational matrix about the equilibri-
umn =alution Eg, is identical with the polynomial given: in part 1, provided all subscripts 1 and 2 are
interchanged. Since §;2> 1, 2> 1,, the result follows, that is there is always 1 real positive eigenvale
and the other 2 eigenvalues have negative real parts.

(3) From parts 1.and 2. it follows that in the absence of a compatitor, each planar equilibri-
win is locally asymprotieally stable. Consider,

A ESEFdiv(s.x.-)d:

=§r(- D- y‘iﬁ = D; + 5:(8) = qulz,) = z:g"s(z,))de
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§ (- D"‘ ( )+J:.'qH(J.'f))+__)df

Fl

=§r -(D+ ﬂLy‘(_Sl + xq (2, )de

<0,

Using the Poincare’ criterion!®!

» any periodic orbit in the plane must be orbitally asymprotically
stable and so no planar periodic orbit can exist,

(4) From part 5.0f Lamma 1.1 it follows that the T component of any point in the omega
limit set of a solution with z,(0)>>0 is identically zero. Using the Butler-McGehee Lemmal!*],
it can be shown that the x, component of any point is the omega limit set of a solution with =, (0)
=0 must be positive. From part 3. it follows that E-"'. must be in the omega limit set. From part
1..since 8§, < S"< 15, it follows that Eg is locally asymproically stable, and hence is the only
point in the omega Limit set.

(5) Define the Lyapunov function,

5 (p(8) - P1(Sl))(sn —- S‘l) _‘L ST -z
V(S 11, 7,) = ToZy, o a
(S Iy 12) J-Sl P1(51)(Su - e) 3'1 T dr +y

Then

(2108) — pi(S(S° -8, 6 ) p1(8)  z2p(8)
21(8,)(8° - 5) (5" 5D - n T »n )

+ i(a:: = 21)(= Dy + p1(8) = quiz) + p,(81) = p1(8))

V(Sv Fis IZ) =

+ gulz) = quiz1)) +y£1‘tl(_ Dy + p2(5) ~ gnlxi))

_ (50 - 51)2,(5)
(8° - 8)pi(S1)

=(21(8) - p($, )) (1

+ i(zl ~ z1)(qulx1) = qul=zy))

22(S)(pL(S) = py(8,))(5° - 50,
21(8)(8° ~ §)

+ i(d(Pz(S) = Dy — qun(x3)) -

=0,
with equality, if and only if S= 5, and £, =Ty, z3=0 (since 8; < ). Hence the result follows
by the LaSalle extension theorem 51,
Remarks concerning Theorem 2.2
1. This theorem can easily be shown to hold for the analogous model involving n competi-
tors.
2.0ne can also prove part 3. using the Lyapumv funetion

E.!(S)_' Ef(SI) .'I.'--.i'
-[3 Pr:i(8) .W I fd::,-. (2.10)

|
3.Part 5. also holds for certain nonmaonotone response functions as in Wolkowiez and Lu (2],
4.We conjecture that part 5. is true without assumption.
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Next we consider the possibility of coexistence of two tompetitor populstions.
Theorem 2.3 (1) When E% exists, it is locally asymprotically stable.
(2) When Ej exists, model (1.2) is uniformly persistent.
Remark We conjecture that whenaver £z exists, it is in fact globally asymptotically stable.
Proof (1) The characteristic polynomial associated with the variational matrix sbout the e-
quilibrium solution E; is
2 s Lo
1 1 S - F} xF - - b - i -
Y+ YD+ E(ﬂyf(_)' + 19 (X)) + v(x,229 ulzi)g nlzy)
=]
T T o egE, sE 2 T e 2
i Spi (8 i 3 -, =
+ > '{'E".(_y&'(—) +(D+ ) %’Q)(Eiﬂ alz:)))
im] 1 =1 i ]

z ‘T- r
+ -‘T-'l-;-‘zq'u(-‘:'j]q'zz(;z)(n + 2 = .‘.\:.'(s))

im]
+ ;1;;(9'11(;1) LL—P——(SJI)Z 2(5) + ¢ n(z3) L"EL—-(S; (S)) =0,

It follows from (1.4)~(1. B) and (2.1) that all the eoefficients of this polynamial are positive,
To prove thar all the roots have negative real part using the Routh-Hurwicz criteria, it remains on-
ly 1o show that the determinant condition is satisfied. This was done using the symbol manipula-
tion language MAPLE, since the computation is rather tedious.

(2) Note first that when Ej exists, both planar equilibria Es,i=1,2 are unstable, since 5,
> Az, in this case (see Lemma 2. 1) .Each planar equilibrium hes a one-dimensional unstable mani-

fold (pointing into the interior of the pasitive cone) and a two-dimensional stable manifold (in the
plane where the competitor is abzent) , First we show that the system is persistent, Clearly lim inf

S(t) >0, since the entire face where § (£) =0 repells into the interor. Suppose for some initial
point P in the interior of R2, lim inf,vaexy{2) =0. Then there exists a point P = (§, 0, z3)
with T3>0, in the omega limit set of the trajectory through P, " (P),
First we show that Eg is not in the omega limit set of any trajectory initiating in the interior
of R% .Note first that by Theorem 1.2 E¢* has the one dimensional stable manifold,
y M* (Eg?) = {(S..‘rl.:g):xl =0and z; = 0},
Therefore, be the Butler-McGehee Lemma if Es* is in 27 (P), then since it cannot be the only
peint in 2% (P), there must be another point in 2% (P) that is also in M+ (Eg").But then the
.entirr; trajectory through that point must be in N+ (FP).But any such trajectory either becomes
ucbounded or leaves the nonnegative cone as £—+<0, a contradiction, since by Lemma 1.1 the
omega limit set of any trajectory initiating in the nonnegative cone, is a compact subset contained
in the nonnegarive cone.
If a point of the form (5,0, 7)€ 27 (P), then by part 3. of Lemma 2.2, Es €07 (P).
But by Theorem 1.2
M*(Eg) = {(S,21,73):xy = O and z, > 0)

is two-dimensional and does not interset the interior of R3, . Tharefore, Egl iz not the only point in
27 (P) and so again by the Butler -McGehee Lemma, there exists a point in (02* (P))NM"
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( Ee, )\ Eg,.Bur then the entire trajectory through that point must be in 2 * (P). However, if 1
o, this trajectory leaves the nonnegative cone, hecomes ynboundad, or cotverges to Eg°, all im-
passible, Therefore, [im inf,~wz1(¢) >0, Similarly, lim infieam 22(¢) >0, Therefors, if Eg exists,
system (1.1} is persistent. That it is uniformly persistent follows easily from the maijn theorem in
Butler, Freedman, Waltman[6! .

3 Interspecific Competition-Model (1.3)

For this model we make the rechnical asSurnptions:
¢'y(z) >0 forall = >0, (3.1)
ni >=D; + p (89, (3.2)
3.1 Existence of equilibrium solutfons-model (1.3)
Recall (from Section 2.2) that the washout equilibrium, Es® = (8§°,0,0), is always a zolu-
tion. Next we consider the single species survival equilibria.
There exists a planar equilibrium of the form Eg =(8,,21,0), with 7,0 if and only if 4,
< 5% Ifie exists, it is unique and §; = 1,, Similarly, there exists a planar equilibtium of the form
Eg,=(5:.0,1;), with 2,20 if and only if 2, <X 8%, If it exists it is also unique, and S:=1;,. In

both cases,
. %(8°-2)D
I = D, .
There exists a coexitence equilibrium, if and only if A1< 8% 1,< 5% and
= Dy + p1(22) = qna(z;) < 0. (3.3

When it exists it is denoted, Ez=(35, .;1. 3) where x;>0. Tt can be shown thar when it exists,
it is unique and A,< §.
" Toses this, firat note that the components of any coexistence equilibrium must satisfy,

(50-3)0—11’"7(15—)-;,%@=o. G.4)
=Dy + py(8) - gqz{z3) = 0, (3.5
=Dy + p2(8) = gyu(x;) = 0. (3.6)

It follows immediately from (3.6) that 1,< 5. Since A2< 8, it follows from (3.4) that T3 2.
Hence, in order for a coexistence equilibrium to exist, (3.3) must hold.

On the other hand, if (3.3) holds, a coexistence equilibrium exists since increasing § in (3.
5) and (3.6) foress z; and z4 to increass in a continuous manner. But (3.4) is a decreasing func-
tion of 5, x| and x;, At $= 13, in order to satisfy (3.5) and (3.6) z,=0 and by (3.3), 3=
x "' < z3.,50 that the left hand side of (3.4) is positive. On the other hand, it §= 5% then the
left hand side of (3.4) negative for any choice of 1y and z, satisfying (3.5) and (3.6). (Solu-
tions always exists, not necessarily unique, by technical assumption (3.2)). Thersfore, there must
be some value of S€ (1,, $9) with corresponding values of 1, and z; satisfying (3.5) and (3. 6)
50 that (3.4) is also satisfied. Thus chere is at least one coexistence equilibrium, (5, .';.'1 , :?1) . That
it is unique lollows sinee increasing S from § alza would foree E,, 1 =1,2 toincrease and thus (3.

N\



i sterlin F003/010
DAAES20068 0358 IFAY scanner@mail. math. mcmaster. ca + Connie 0o

290 JOURNAL OF BIOMATHEMATICS Val. 13

4) would be viglated, Similarly, dedreasin.g S from § also would force ri=1,2 1o decrense and
thus (3.4) would again be violated.
3.2 Stability of equllibrimm solutions-model (1.3)

The stability of the washout equilibrium was already considered in the Section 2.2, Next we
consider the stability of the single species =urvival equilibria.

Theorem 3.1 (1) Aseume that A, < 5%, .EsJ is locally asymptotically srable.

(2) Assume that 1,< g9, Eg_ is locally asymptotically stable if - Di+p1(A2) ~ gpp(2,) <
0 and unstable if - D, + £1(23) — g2(z;) >0.

(3) In the absence of & competitor, each planar equilibrium Esd is globally asymptotically sta-
ble provided 4,< §°.

Froof (1) The characteristic polyniomial associated with the variational matrix about the e-
quilibrivm solution E,gl B5:

("Dz"‘ﬂz(iz)-h:(fl)—T)(7’2+7(D+";‘ 'y(ls ))+£I ’(A;I “ ))

Clearly, all of the coefficients of the quadratic are positive and so by the Routh-Hurwicz condition
&t least two eigenvalues always have negative real parts. The remaining eigenvalue is
— D2+ pa(2)) - gu(2)) <.

(2) The characteristic pPolynomial associated with the variarional matrix about the equilibri-
urn solution Esa is identical with the polynomial given in part (a) provided all subseripts 1 and 2
are interchanged,

(3) The proof is similar to the proof of part 3.of theorem 2.2,

Remark As in the intraspecific interference case one can also prove this result using Lya-
pimov funetion (2. 10),

Next we consider the possibility of coexistence of two eompetitor populations.

Theorem 3.2 1. When Ej exists, it i= unstable.

Proof The characteristic polynamial associated with the variational matrix about the equi-
librium eolution Ea is

2 - W
P+ 7D+ ‘Z;(ﬂ&;f‘(s—)) + (- -;1-;2?'11(;2)9':1(51)
. Z“) -;-'E't(i)E'(g) . (z‘) .-E;gi(S‘J)'.E',-(E)))

g iw]

. _ _ 2 - . - Eri g 21 .§'
- Lru;q';:(-‘tz)q'zx(-'ﬂ)(ﬂ + ‘zl) Zgils) y_(g)) *+ rx3(g 2(xy) (S;l (3)
+ g1y Lz S_Ejz 2(5_))) =0

From assumptions (1.4)~(1.8) and (3.1) it follows that the constant term is negative. This
implies that the product of the roots is positive. Hence, there exists at least on# real positive roor.
Thurefore. Ex is always unstable.
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