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Abstract

We investigate some properties of a very general model of growth in the chemostat. In the classical
models of the chemostat, the function describing cellular growth is assumed to be a constant multiple
of the function modeling substrate uptake. The constant of proportionality is called the growth yield
constant. Here, this assumption of a constant describing growth yield is relaxed. Instead, we assume
that the relationship between uptake and growth might depend on the substrate concentration and
hence that the yield is variable.

We obtain criteria for the stability of equilibria and for the occurrence of a Hopf bifurcation. In
particular, a Hopf bifurcation can occur if the uptake function is unimodal. Then, in this setting, we
consider competition in the chemostat for a single substrate, in order to challenge the principle of
competitive exclusion.

We consider two examples. In the first, the function describing the growth process is monotone
and in the second it is unimodal. In both examples, in order to obtain a Hopf bifurcation, one of
the competitors is assumed to have a variable yield, and its “uptake” is described by a unimodal
function. However, the interpretation is different in each case. We provide a necessary condition for
strong coexistence and a sufficient condition that guarantees the extinction of one or more species.
We show numerically by means of bifurcation diagrams and simulations, that the competitive ex-
clusion principle can be breached resulting in oscillatory coexistence of more than one species, that
competitor-mediated coexistence is possible, and that these simple systems can have very complicated
dynamics.

1 Introduction

Numerous papers deal with the growth of microorganisms in the chemostat. Most originate from bio-
engineering and microbiology, where the chemostat finds a wide variety of applications, from theoretical
studies of bacteria to the use of bacteria in biological waste decomposition and water purification (see,
e.g., [6, 25]). As well as being an experimental system that generates reproducible results, it has been
modeled extensively with good success. When browsing the corpus of literature dedicated to modeling
the chemostat, it appears that although approaches and applications are varied, most of the models rely
on a simple relationship between two fundamental processes, nutrient uptake and cellular growth. In par-
ticular, in most models these processes are assumed to be proportional. The constant of proportionality
is referred to as the growth yield constant or yield constant.
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The notion of yield dates from the beginning of continuous bacterial culture, and is for example
defined by Monod [24] as the ratio K of the amount of bacterial substance formed per amount of limiting
nutrient utilized. He notes that if the growth is expressed as “standard” cell concentration, then 1/K
represents the amount of limiting nutrient used up in the formation of a “standard” cell. He also notes
that the yield has, for a given strain and a given compound and under similar conditions, a remarkable
degree of stability and reproducibility. But this reasoning is based on the assumption of constant yield.

In most of the early models of microbial growth in the chemostat, besides assuming constant yield,
it was assumed that growth was a monotone increasing function of substrate concentration. However,
for some organisms, high concentrations of substrate can be detrimental, as was pointed out in 1925 by
Briggs and Haldane [3]. See also [32] for a comprehensive review of the mechanisms involved. Inhibition
was subsequently incorporated into models of bacterial growth (see, e.g., [2, 11]). Attempting to fit
experimental data, many authors have used different functional forms to model inhibition (see, e.g.,
[9, 22, 29]).

Under the assumption of constant yield, mathematical models predict that there can be no sustained
oscillations (see, e.g., [5, 15, 30, 34]). Since such oscillations have been observed in experiments (see, e.g.,
[10] for Arthrobacter globiformis and [18] for Lactobacillus plantarum), it is then useful to find models
that reproduce these oscillations.

With this in mind, we explore models involving variable yield. In the case of batch experiments, it
was shown [19] that oscillatory solutions occur only if the yield is a function of both the substrate and
the cell concentration. In continuous culture, this is not necessary, and most of the work has focused
on the simpler assumption of a substrate dependent yield. Different explanations can be given for this
dependence. In the case of chemical reactors, the yield is obtained from mass balance equations. For
biological reactors, it is more complicated. See [31] for a recent review of various thermodynamical
models. For a description of how units of substrate are converted into units for cellular (bio)mass, see
[25, p. 28-38].

The earliest model considering a more accurate relationship between uptake and growth was developed
by Koga and Humphrey [16]. They introduce a respiration coefficient, R. They note that when respiration
is considered, the observed yield coefficient Yobs is given by 1/Yobs = 1/Y +R/µ(S), where Y is a constant
yield coefficient and µ(S) is the specific growth rate of the microorganisms. In subsequent work on the
subject, [7, 8, 13] assume that growth and uptake are related through a linear function of the substrate
concentration. In [1, 26, 27], linear and nonlinear functions modeling yield are considered and conditions
are derived for the existence of a Hopf bifurcation.

It is a difficult task to determine which part of the dynamics stems from the “higher” level processes
that are modeled, and which part stems from the nature of the hypotheses made on nutrient uptake and
cellular growth. The objective of this paper is to explore the dynamics resulting from the different ways
of modeling variable yield in the chemostat model. We review the commonly used methods describing
uptake and growth, and study their interplay. To do this, we consider that the uptake, i.e., the process
through which a cell absorbs nutrient, can be different from growth, i.e., the process through which a cell
transforms the uptaken nutrient into biomass. However, we do not consider the effect of delay. We also
do not consider long term nutrient storage directly.

The rest of this paper is organized as follows. In Section 2, we consider a very general model of
single species growth in the chemostat and first restrict our attention to what all such models have in
common. We give preliminary results, and in particular, show that the behavior of chemostat models
about the washout equilibrium point is generic. We are able to deal with the local stability analysis in this
very general setting as well as some global properties of the model. Then we look for differences in the
dynamics based on differences in the monotonicity assumptions on the nutrient uptake and cellular growth
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and show that under certain assumptions Hopf bifurcation is possible, whereas under other assumptions
it is not. In Section 3, we briefly discuss the yield term and give different interpretations justifying a
substrate dependent yield function. In Section 4, we extend the model to the case of competing species.
We provide a necessary condition for strong coexistence and a sufficient condition for the extinction of
a population. We give numerical evidence indicating that, unlike in the constant yield case, assuming a
variable yield can lead to rather complicated dynamics and give numerical evidence that indicates that
the principle of competitive extinction need not hold and that competitor-mediated coexistence seems to
be possible.

2 The general model for single species growth in a chemostat

Consider the following model of a chemostat in which a microbial species, with concentration (or biomass)
at time t denoted x(t), consumes a single substrate with concentration S(t) at time t.

dS

dt
= D(S0 − S) − xu(S) (1a)

dx

dt
= x (g(S) − D1) (1b)

S(0) ≥ 0, x(0) ≥ 0

S0 denotes the substrate concentration in the input feed, and D denotes the dilution rate. We assume
only that D1 > 0 and we make no assumption on the relative values of D and D1. However, the most
common interpretation for D1 is that it is the sum of the dilution rate and the species specific death
rate. Substrate is consumed by cells at the rate u(S(t)). This results in growth of the cellular biomass
at the rate g(S(t)). The functions u and g are assumed to be continuously differentiable. The uptake
function u(S) is further assumed to satisfy u(0) = 0. By this, we mean that if there is no substrate in
the environment, then there is no substrate uptake. As mentioned earlier, we do not model storage of
nutrient directly and so in the absence of substrate, we assume that there is no growth so that g(0) = 0.
Otherwise, u(S) and g(S) are positive for S > 0. Finally, we assume that each one of these functions is
either monotone increasing or unimodal.

2.1 Local analysis

The washout equilibrium, E0 ≡ (S0, 0), always exists.

Condition 2.1. E∗ ≡ (S∗, x∗) =
(

S∗,
D(S0 − S∗)

u(S∗)

)
, where S∗ is any solution of

g(S) = D1 (2)

is a feasible positive equilibrium if, and only if, S∗ < S0.

In what follows, we restrict our attention to functions u(S) and g(S) that are either monotone in-
creasing or initially monotone increasing and unimodal. Thus, there are at most two values of S that
satisfy (2). They are denoted λ, µ ∈ R̄, with λ < µ. We adopt the convention that µ = ∞ if (2) has only
one solution, and λ = ∞ if (2) has no solution. Therefore, S∗ must equal either λ or µ. We refer to E∗

as E∗
λ or E∗

µ when it is necessary to make the distinction. See Figure 1.
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Figure 1: Definition of λ and µ, in the case of (a) monotone growth (µ = ∞); (b) nonmonotone growth.

We are not aware of any experimental evidence of growth or uptake processes limited by a single
substrate that exhibit more complicated behavior (such as two-humped responses). A similar analysis
for more complicated functions is however possible, but involves treating more cases.

The Jacobian matrix evaluated at an arbitrary point (S, x) is given by[ −D − u′(S)x −u(S)
g′(S)x g(S) − D1

]
. (3)

Thus, the Jacobian matrix evaluated at the washout equilibrium, E0, is given by[ −D −u(S0)
0 g(S0) − D1

]
. (4)

Condition 2.2. The washout equilibrium, E0, is locally asymptotically stable if g(S0) − D1 < 0.

Evaluated at a positive equilibrium, E∗, the Jacobian matrix is[ −D − u′(S∗)x∗ −u(S∗)
g′(S∗)x∗ 0

]
. (5)

Thus, det(J) = u(S∗)g′(S∗)x∗ and Tr(J) = −D − u′(S∗)x∗. Since D, u, (S) and x∗ are positive, by
the Routh-Hurwitz criterion, we obtain the following condition.

Condition 2.3. A feasible positive equilibrium, E∗, is locally asymptotically stable if the following two
inequalities are satisfied simultaneously:

g′(S∗) > 0, and u′(S∗) > − u(S∗)
S0 − S∗ . (6)

Another consequence of (5) is that the existence of complex eigenvalues, i.e., oscillations (both damped
and sustained), is determined by the following condition, which follows directly from the characteristic
polynomial of (5).
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Condition 2.4. The linearization of (1) about a feasible positive equilibrium, E∗, has complex eigenvalues
if, and only if, (D + u′(S∗)x∗)2 < 4u(S∗)g′(S∗)x∗.

This implies that there are no oscillations in a neighborhood of a positive equilibrium, E∗, if g′(S∗) < 0.

Condition 2.5. The eigenvalues of the linearization (5) of system (1) about a positive equilibrium, E∗,
are purely imaginary if, and only if,

g′(S∗) > 0, and u′(S∗) = − u(S∗)
S0 − S∗ , (7)

Thus, a Hopf bifurcation of a locally asymptotically stable equilibrium point can only occur at an
equilibrium, E∗

λ, since it is necessary that u′(S∗) < 0 and g′(S∗) > 0. Since the bifurcation requires g to
be increasing at S∗, it follows that S∗ must equal λ, not µ.

Select one of the parameters in the model as the bifurcation parameter and call it α.

Theorem 2.6. Assume that there exists α = αc, the critical value of α, such that x∗
αc

u′(λαc) + D = 0.
System (1) undergoes a Hopf bifurcation at E∗

λαc
= (λαc , xαc) if g′(λαc) > 0 and

d

dα
(−Dx∗(α)u′(S∗(α)))|α=αc

�= 0. (8)

This bifurcation is supercritical if CH defined by

CH ≡ −u(λαc)g
′(λαc)u

′′′(λαc) + u′′(λαc)(u
′(λαc )g

′(λαc) + u(λαc)g
′′(λαc))

is negative, and subcritical if CH > 0.
Equivalently, the bifurcation is supercritical if the sign of

ĈH ≡ h′′′(λαc)u(λαc) + 2h′′(λαc)u
′(λαc ) −

h′′(λαc)g′′(λαc)u(λαc)
g′(λαc)

is negative, and subcritical if it is positive, where h(S) = (S0−S)D
u(S) , the S-isocline.

The proof of this result follows from the formula derived in Marsden and McCracken [23] and is
postponed to Appendix A. Another technique for determining the criticality of the Hopf bifurcation in
this context is to use the divergence criterion as in [26] or the rescaling method as in [27].

2.2 Global analysis

2.2.1 Boundedness of solutions.

Lemma 2.7. Both the nonnegative cone and the interior of the nonnegative cone are positively invariant
under the flow of (1).

Proof. The line {S ≥ 0, x = 0} is invariant under the flow of (1). Also, for S = 0 and x > 0, S′ = DS0 > 0,
i.e., the vector field points strictly inwards.

Lemma 2.8. Solutions of (1) are defined and remain bounded for all t ≥ 0.
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Proof. The proof is identical to the proof of Theorem 4.1 in Section 4 in the case that n = 1.

Lemma 2.9. For any ε > 0, there exists Tε ≥ 0 such that S(t) ≤ S0 + ε for all t ≥ Tε. If in addition,
λ < S0, g(S) > D1 for S ∈ (λ, S0], and x(0) > 0, then there exists T such that S(t) < S0 for all t > T .

Proof. First suppose that x(0) = 0. Then, clearly S(t) converges to S0.
Now assume that x(0) > 0. If there exists T ≥ 0 such that S(T ) = S0, then S′(T ) = −u(S(T ))x(T ) <

0. This implies that if there exists t̂ ≥ 0 such that S(t̂) ≤ S0 then S(t) < S0 for all t > t̂. If S(t) > S0

for all t ≥ 0, then S′(t) < 0 for all t > 0. Therefore S(t) converges to some α ≥ S0. If α > S0, then
S′(t) < (S0 − α)D < 0 for all t > 0. But this implies that S(t) converges to −∞ as t tends to ∞, a
contradiction. Therefore, either S(t) ≤ S0 for all sufficiently large t or S(t) converges to S0 as t → 0.

Now assume that λ < S0, g(S) > D1 for S ∈ (λ, S0], and x(0) > 0. Suppose S(t) > S0 for all t > 0.
Then, by the continuity of g(S), there exists ∆ > S0 such that g(S) > D1 for all S ∈ [S0, ∆] and there
exists a T∆ > 0 such that S0 < S(t) < ∆ for all t > T∆. Define ḡ ≡ minS∈[S0,∆] g(S). Then ḡ > D1. But

then, since by Lemma 2.7, x(t) > 0 for all t > 0, x′(t)
x(t) > (ḡ − D1) > 0, for all t > T∆. Integrating both

sides from T∆ to ∞, it follows that x(t) → ∞. But, by Lemma 2.8, x(t) is bounded, a contradiction. The
result follows.

2.2.2 Global stability of equilibrium points

Theorem 2.10. If S0 ≤ λ, then the washout equilibrium, E0, of (1), is globally asymptotically stable.

Proof. Since the nonnegative cone is invariant and all solutions are bounded, the result follows immedi-
ately from a standard phase portrait analysis.

Theorem 2.11. If λ < S0, g′(λ) > 0, g(S0) > D1, u′(λ) > − u(λ)
S0−λ and 1 − u(S)(S0−λ)

u(λ)(S0−S) has exactly
one sign change for S ∈ (0, S0), then the equilibrium, E∗

λ = (λ, x∗
λ), is globally asymptotically stable with

respect to the interior of the positive cone.

Proof. First, note that since g(S0) > D1, it follows that λ < S0 ≤ µ, and so by Condition 2.1, E∗
µ is not

feasible and that by Condition 2.3, E∗
λ is locally asymptotically stable. Also, by Lemma 2.9, without loss

of generality, we need only consider S ∈ [0, S0].
Consider the following function,

V (S, x) =
∫ S

λ

(g(ξ) − D1)(S0 − λ)
u(λ)(S0 − ξ)

dξ + x − x∗
λ ln(

x

x∗
λ

), (9)

that is defined and continuously differentiable for S ∈ (0, S0) and x > 0. For brevity of notation, let

Ψ(S) =
u(S)

S0 − S
. (10)

Then, using (10) it follows that

V̇ = x(g(S) − D1)
(

1 − u(S)(S0 − λ)
u(λ)(S0 − S)

)
= x(g(S) − D1)

(
1 − Ψ(S)

Ψ(λ)

)
. (11)
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Note that V̇ = 0 if and only if S = λ or x = 0 or S = µ = S0. The derivative of Ψ is given by
u′(S)(S0 − S) + u(S)

(S0 − S)2
. From Condition 2.3 and by the continuity of u′, we have that for S close to λ,

u′(S)(S0 − S) + u(S) > 0, and thus the function Ψ is increasing. Also, g is monotone increasing for S
near λ. Since each term in (11) changes sign at S = λ, this implies that for S close to λ, V̇ < 0. In fact,
V̇ remains negative as long as neither term in (11) changes sign. But this is ruled out by the hypotheses.

Let η = {(S, x) ∈ [0, S0] : V̇ (S, x) = 0}. Therefore, η = {(S, x) ∈ [0, S0] : x = 0 or S = λ or S = S0 =
µ}. Let E denote the largest invariant subset of η. Then E = {(S, 0), 0 ≤ S ≤ S0}∪{E∗

λ}. As solutions are
bounded, E attracts all solutions with nonnegative initial conditions (by the modified LaSalle’s Extension
Theorem, as stated in [34, Th. 1.2]). Noting that from our hypotheses, E0 is unstable and E∗

λ = (λ, x∗
λ)

is locally asymptotically stable, using a standard argument involving the Butler-McGehee Lemma (see
[30]), it follows that no points of the form (S, 0), S ≥ 0 can be in the omega limit set of any solution
initiating inside the positive cone and so the result follows.

3 Discussion of the yield term

There are different mechanisms that lead to the use of a yield term in chemostat models. Consider the
following expression relating growth and uptake:

g(S) = ρu(S). (12)

As mentioned in the Introduction, one rationale for including the yield term is, historically, to express
substrate and organic biomass in the same units. In this case, the yield term is the constant of propor-
tionality in (12).

Another use of the yield coefficient, often confused with the previous one, is to decribe the efficiency
of the processes involved. If substrate and microorganism were evaluated in the same units, a perfect
reaction would transform one unit of substrate into one unit of microorganism. However, such reactions
are not perfect. It is for example possible, in the case of chemical reactions, to compute theoretical yield
values from the mass-balance equations of the reactions involved; see, e.g., [31]. It is then possible to
state that for a given reaction, it takes one mole of reactant to produce ρ moles of product. Equation
(12) would in this case give the rate of formation of moles of the new compound as a function of the
number of moles of the reactant. Again, in this case ρ would be a constant.

Things are more complicated for more complex processes. In particular, biological processes are prone
to a lot of individual variability, making it more difficult to obtain a measure of the efficacy of a biological
reaction. Since this measure is very important, for example in the bioprocess field where it serves as an
indicator of the economic viability of a given process, the yield has been the object of numerous studies.
However, a functional form for the yield has not yet been validated by experiment.

Formally, the yield is the ratio between the amount of matter taken up and the resulting cellular
growth, and so it is likely that the yield is not actually constant, but could depend on the substrate
concentration, the microbial concentration, and environmental conditions among other things.

In the model studied by Crooke and Tanner [7] and Agrawal, Lee, and Ramkrishna [1], they assumed
that the yield is a function of the substrate concentration, Y (S). They considered monotone growth g(S)
and modeled the uptake in system (1) by u(S) = g(S)/Y (S), where Y (S) = a + bS. They let

I. g(S) = µmS
Km+S , and so u(S) = µmS

(a+bS)(Km+S) ,
or
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II. g(S) = kSe(− S
K ), and so u(S) = kSe(− S

K
)

(a+bS) .

Pilyugin and Waltman [27] proved that only super-critical Hopf bifurcations are possible in case I.
However, if Y (S) = a+ bS2, they proved that both super- and sub-critical Hopf bifurcations are possible.

In the case of constant yield, including the yield term in the substrate equation is mathematically
equivalent to including the reciprocal in the microorganism equation instead. One of the important dif-
ferences in the case that the yield is not constant is that the variable yield term can lead to uptake and
growth terms that have different monotonicity properties. Therefore, careful attention to the interpreta-
tion of the yield term resulting in its correct placement in the equations is necessary. This is especially
true, since the explicit form of the yield function is not yet known. Thus, it is currently only possible to
represent the yield in the model using a function that we suspect has similar qualitative properties, e.g.,
similar monotonicity properties.

If it is assumed that the yield is constant, but that cells need some maintenance energy, then in [16],
the yield is given by :

−dS

dt
=

1
Y

dx

dt
+ Rx,

where R can be interpreted, for example, as the portion of nutrient used for respiration. An alternative
approach to modeling the maintenance energy is to consider the yield as a function of the substrate
concentration.

Modeling the yield as a function of substrate concentration could also provide an indirect way of
modeling storage of nutrient. As well, Godin, Cooper, Rey [14] provide experimental evidence that
indicates that critical division mass increases as substrate concentration increases and so reproduction
rate depends on substrate concentration.

The different interpretations of yield can lead to different forms for the yield functions and different
ways to include the yield terms.

4 The general competition model

We consider the more general case of several species competing for a common resource using the framework
of the previous sections. Here, xi(t) denotes the concentration of the ith population of microorganisms
at time t.

dS

dt
= D(S0 − S) −

n∑
i=1

xiui(S) (13a)

dxi

dt
= xi (gi(S) − Di) , i = 1, . . . , n, (13b)

S(0) ≥ 0, xi(0) ≥ 0, i = 1, . . . , n

For each species, we define the break-even concentrations λi and µi as in Section 2. In the case of
constant yield, i.e. ui(S) is proportional to gi(S) for each i = 1, 2, . . . , n, if the species specific death
rates are assumed to be insignificant compared to the dilution rate (i.e. Di = D for all i or at least Di

sufficiently close to D for all i), the dynamics are well understood. See for example, [5, 30, 35]. With
constant yield and monotone or inhibitory growth, the competitive exclusion principle holds. At most
one species avoids extinction, and its concentration rapidly approaches an equilibrium concentration. In
the case of monotone response functions, the species that survives is the one with the lowest break-even
concentration. Similar results hold in the case that Di may not equal D, see for example, [15, 20, 34, 35],
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although this case is not yet completely understood. However, in the case of constant yield, numerical
simulations of model (13) to date have only displayed competitive exclusion with convergence to an
equilibrium with at most one surviving species.

In the rest of this paper, we demonstrate that in the case of variable yield, more exotic dynamical
behavior seems to be possible.

Before we consider specific examples we make the following observations.

Theorem 4.1. Both the nonnegative cone and the interior of the nonnegative cone are invariant under
the flow of (13) and all solutions are defined and remain bounded for all t ≥ 0.

Proof. An argument similar to that given to prove Lemma 2.7 can be used to establish that solutions are
nonnegative and hence bounded below, so it remains only to prove that all solutions are bounded above.

Without loss of generality, assume that xi(0) > 0 and thus xi(t) > 0 for all i ∈ {1, ..., n} and all
t ≥ 0 in the domain of definition of the solution (S(t), x1(t), ..., xn(t)). Let Ŝ = max(S(0), S0). Then the
nonnegativity of solutions implies that S(t) ≤ Ŝ for all t ≥ 0 for which S(t) is defined. Since gi(0) = 0,
by the continuity of gi, there exists ε > 0 such that gi(S) ≤ Di

2 for all 0 ≤ S ≤ ε and all i ∈ {1, ..., n}. In
addition, there exists Mε > 0 such that

gi(S) − Di + D

ui(S)
≤ Mε, ∀S ∈ [ε, Ŝ], ∀i ∈ {1, ..., n}.

Let x̂ > Mε(Ŝ − ε) and define Ω̂(x̂) to be the set

Ω̂(x̂) = {(S, x1, ..., xn) ⊂ Rn+1
+ : S ≤ Ŝ,

n∑
i=1

xi ≤ min(x̂, x̂ − Mε(S − ε))}.

Choose x̂ sufficiently large so that (S(0), x1(0), ..., xn(0)) ∈ Ω̂(x̂).
We have already established that 0 ≤ S(t) ≤ Ŝ. If (S, x1, ..., xn) is a point on the relevant part of the

boundary of Ω̂(x̂), then either S < ε and
∑n

i=1 xi = x̂, or ε ≤ S ≤ Ŝ and
∑n

i=1 xi = x̂ − Mε(S − ε). In
the former case, we have that

( n∑
i=1

xi

)′
=

n∑
i=1

xi(gi(S) − Di) ≤ −
n∑

i=1

xiDi

2
< 0,

since we assumed xi > 0. In the latter case, we have that

(
S +

n∑
i=1

xi

Mε

)′
= D

(
S0 − S −

n∑
i=1

xi

Mε

)
+

n∑
i=1

xi

Mε

(
−Mεui(S) + (gi(S) − Di + D)

)
.

Since ε ≤ S ≤ Ŝ, the choice of Mε warrants that

n∑
i=1

xi

Mε

(
−Mεui(S) + (gi(S) − Di + D)

)
≤ 0.

Consequently, (
S +

n∑
i=1

xi

Mε

)′
≤ D

(
S0 − S −

n∑
i=1

xi

Mε

)
= D(S0 − ε − x̂

Mε
) < 0,
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because S0 ≤ Ŝ < ε + x̂
Mε

by the choice of x̂. We conclude that the vector field of (13) points strictly
into the interior of Ω̂(x̂) when restricted to the part of the boundary ∂Ω̂ with xi > 0, i = 1, 2, . . . , n
and 0 ≤ S ≤ Ŝ. Also, since xi(0) > 0, we have that xi(t) > 0, for all i = 1, . . . , n, and t > 0. Thus
(S(t), x1(t), ..., xn(t)) ∈ Ω̂(x̂) for all t ≥ 0. Since Ω̂ is bounded, (S(t), x1(t), ..., xn(t)) must be bounded
for all t ≥ 0.

Lemma 4.2. In (13), if for some i ∈ {1, . . . , n}, λi > S0, then xi(t) → 0 as t → ∞.

Proof. Using an argument similar to that given to prove Lemma 2.9, it follows that there exists ε > 0,
and T > 0 such that S(t) < S0 + ε < λi, for all t ≥ T . By Lemma 4.1 xi(t) is nonnegative, and so
x′

i(t)
xi(t)

< −Di + gi(S0 + ε) < 0 = −Di + gi(λi), for all t > T . Integrating from t = T to ∞, it follows that
xi(t) → 0 as t → ∞.

The next two results are helpful for constructing examples in which coexistence is possible.

Theorem 4.3. Suppose that
(i) there exist nonempty sets I−, I+ ⊂ {1, ..., n} and αi > 0 such that I−

⋂
I+ = ∅ and

G(S) =
∑
i∈I−

αi(gi(S) − Di) −
∑
i∈I+

αi(gi(S) − Di) < 0, for all S ∈ (0, S0); (14)

(ii) there exists j ∈ I+ such that gj(S0) > Dj.
Then for any positive solution (S(t), x1(t), ..., xn(t)) of (13),

lim
t→∞

∏
i∈I−

xαi

i (t) = 0.

Proof. By Theorem 4.1, there exists M > 0 such that 0 ≤ xi(t) ≤ M for all i = 1, ..., n and t ≥ 0.
Equation (13a) then implies that there exists a sufficiently small δ > 0 such that S(t) ≥ δ for all
sufficiently large t. By an argument similar to that given in Lemma 2.9, S(t) < S0 for all sufficiently
large t. Therefore, there exists T > 0 such that 0 < δ < S(t) < S0 for all t > T .

For all i ∈ I−
⋃

I+, define zi(t) = xαi

i (t). Then

z′i(t) = αix
αi−1
i (t) xi(t)(gi(S(t)) − Di) = zi(t) αi(gi(S(t)) − Di).

Let

ξ(t) =

∏
i∈I− zi(t)∏
i∈I+

zi(t)
,

then
ξ′(t) = ξ(t)G(S(t)).

Since S(t) ∈ [δ, S0) for all t > T , G(S(t)) < 0 so that ξ(t) is a strictly decreasing function for t > T
bounded below by 0. It follows that there exists ξ0 = limt→∞ ξ(t) ≥ 0. Now there are two possibilities.
The first possibility is that ξ0 = 0 in which case

0 ≤ lim
t→∞

∏
i∈I−

zi(t) ≤
( ∏

i∈I+

Mαi

)
lim

t→∞ ξ(t) = 0.

10



The second possibility is that ξ0 > 0, in which case, a theorem by Hadamard and Littlewood [21] implies
that limt→∞ G(S(t)) = 0. Since S(t) ∈ [δ, S0) for all t > T , it must be the case that limt→∞ S(t) = S0.
But this conclusion would contradict the boundedness of xj(t) and hence the assertion ξ0 > 0 is invalid.
The result follows by observing that

lim
t→∞

∏
i∈I−

xαi

i (t) = lim
t→∞

∏
i∈I−

zi(t) = 0.

Corollary 4.4. If the set I− is a singleton, that is, I− = {i∗}, then the assumptions (i) and (ii) imply
that for any positive solution (S(t), x1(t), ..., xn(t)) of (13),

lim
t→∞xi∗(t) = 0.

In the population dynamics literature, two types of coexistence are distinguished: strong and weak.
We say that a positive solution (S(t), x1(t), ..., xn(t)) exhibits strong coexistence if lim inft→∞ xi(t) > 0,
for all i ∈ {1, ..., n} and it exhibits weak coexistence if lim supt→∞ xi(t) > 0, for all i ∈ {1, ..., n}. Using
this terminology, Theorem 4.3 provides a necessary condition for strong coexistence. The conclusion that

lim
t→∞

∏
i∈I−

xαi

i (t) = 0

is insufficient to eliminate the possibility of weak coexistence. We would like to point out that Rao
and Roxin [28] have obtained an equivalent criterion for strong coexistence using the methods of control
theory for constant yields (gi(S) = kiui(S)) and a time dependent input feed concentration (S0 = S0(t)).

4.1 Yield included in the uptake equation

Here, we consider model (13) of the chemostat in which two microbial species x1 = x and x2 = y compete
for a single substrate S. We assume that the species x has a variable yield while the species y has a
constant yield. As we pointed out previously, there are two ways to incorporate the variable yield into the
model. In this section we choose to incorporate the yield into the consumption (uptake) rate of species
x. In addition, we assume that the variables x, y, and S, and time t, have been rescaled appropriately so
that both the dilution rate D and the substrate feed concentration S0 equal unity, that is, D = S0 = 1.
The model then takes the form

dS

dt
= 1 − S − x

p1(S)
γ1(S)

− y
p2(S)

γ2
, (15a)

dx

dt
= x(p1(S) − 1), (15b)

dy

dt
= y(p2(S) − 1), (15c)

S(0) ≥ 0, x(0) ≥ 0, y(0) ≥ 0.

11



We assume that the specific growth rates p1(S) and p2(S) are expressed in the traditional Monod
formulation

pi(S) =
miS

ai + S
, i = 1, 2,

and the variable yield coefficient of the species x is given by γ1(S) = b1 + c1S
n where b1, c1 > 0 and n is

a positive integer. For a more detailed description of the model (15) we refer the reader to [27].
For reasons that will be explained below, we choose to treat c1 and m2 as bifurcation parameters.

The rest of the parameters will be fixed as shown in Table 1.

Table 1: Parameter values for model (15).
m1 = 2.0 m2 varies
a1 = 0.7 a2 = 6.5
b1 = 1.0 γ2 = 120.0
c1 varies n = 4

The break-even concentrations λi of the species x and y can be obtained by solving pi(λi) = 1:

λ1 =
a1

m1 − 1
= 0.7, λ2 =

a2

m2 − 1
.

Since λ1 < 1, species x will persist in the absence of species y. A necessary condition for the species y to
persist in the culture is that λ2 < 1, or equivalently, m2 > 7.5.

Corollary 4.4 implies that a necessary condition for coexistence is that the graphs of p1(S) and p2(S)
intersect at some point 0 < Ŝ < 1. In model (15),

Ŝ =
m1a2 − m2a1

m2 − m1

so that a necessary condition for coexistence is

8.82 = m1
a2

a1
< m2 < m1

a2 + 1
a1 + 1

= 18.57.

If m2 < 8.82, then x will always drive y to extinction. If m2 > 18.57, then y will always drive
x to extinction. Both of these conclusions hold regardless of any particular dynamic behavior of the
full system (e.g., equilibrium, periodic solution, or other) and specifically they are independent of the
functional form of the variable yield coefficient γ1(S). If γ1(S) = γ1 were constant, then the outcome of
competition would be completely determined by the inequality λ1 < λ2 and whether or not λ < 1. The
critical value of m2 for which λ1 = λ2 is given by m2 = 1 + (m1 − 1)a2

a1
= 10.286.

4.1.1 Bifurcation to coexistence

The fact that single species continuous cultures with variable yields may exhibit sustained oscillations has
an important implication for coexistence. The principle of competitive exclusion states that two species
cannot coexist at equilibrium when they compete for a single substrate in continuous culture. The first
proof of this assertion was presented in [15] for Monod uptake rates and it was later extended to a much
broader class of growth rates and uptake functions in [34]. In [4], a two predator - one prey ecosystem was

12



studied in the chemostat setting. It was shown that such a system may exhibit a stable periodic solution
with both competing predators present at all times. Specifically, it was shown that the stable limit cycle
corresponding to sustained oscillations of a single predator population can bifurcate into the region of
coexistence and preserve its stability. In [27], it was demonstrated that the same type of bifurcation can
occur in the chemostat when one competitor exhibits a variable yield and the other competitor has a
constant yield. If Γ = (S(t), x(t)) is a stable periodic solution of (15) of period T > 0 with y = 0, then Γ
undergoes a transcritical bifurcation when m2 increases past the bifurcation value

m∗
2 =

T∫ T

0
S(t)

a2+S(t) dt
. (16)

The stable periodic solution of (15) with x(t), y(t) > 0 exists for m2 > m∗
2.

If we let y = 0 in (15) then the reduced model (15a–15b) undergoes a Hopf bifurcation when c1 crosses
the value

ĉ1 =
(m1 − 1)4

(
(m1 − 1)2 + a1

)
a4
1(3m2

1 − 4m1a1 − 2m1 − a1 − 1)
. (17)

For the parameter values given in Table 1, the Hopf bifurcation occurs at ĉ1 = 10.115. Furthermore, the
Hopf bifurcation is supercritical for m2 = 2, a2 = 0.7, n = 4, that is, the stable limit cycle of (15a–15b)
exists for c1 > ĉ1.

To compute the bifurcation value m∗
2 for different values of c1, we implemented the formula (16) as

follows. If c1 < ĉ1 and the stable limit cycle of (15a–15b) does not exist, then we let

m∗
2 =

a2 + λ1

λ1
,

which is the limiting case of (16) as S(t) → λ1 and T → ∞. If c1 > ĉ1, then the stable limit cycle Γ does
exist and we first integrate (15a–15b) with y = 0 in forward time to approximate Γ and then use (16) to
find m∗

2. The output of this numerical procedure is shown in Figure 2.
In the remainder of this section, we present a numerical study of the dynamics exhibited by solutions

which correspond to competitive coexistence in the case λ1 < λ2 < 1, c > ĉ and m2 > m∗
2. Considering

the dynamics on the invariant planes Fx = {S, x ≥ 0, y = 0} and Fy = {x = 0, S, y ≥ 0}, this is the case
when almost all positive solutions correspond to coexistence, that is,

lim sup
t→∞

x(t) > 0, lim sup
t→∞

y(t) > 0.

To see this, let W s(E) and Wu(E) denote the stable and unstable manifold of the equilibrium E,
respectively. Observe that both Fx and Fy contain the (trivial) equilibrium E0 = (1, 0, 0) which is a
saddle with dimWu(E0) = 2. In addition, Fx contains the equilibrium E1 = (λ1, x

∗, 0) and Fy contains
the equilibrium E2 = (λ2, 0, y∗). Since y has a constant yield, E2 is a local attractor relative to Fy, that
is, dim W s(E2) = 2 with W s(E2) ⊂ Fy and the inequality λ1 < λ2 guarantees that dimWu(E2) = 1
with Wu(E1) ⊂ R

3
+. Thus, E1 repels towards the interior of R

3
+. If c > ĉ, then dimWu(E1) = 2 with

Wu(E1) ⊂ Fx and dimW s(E1) = 1 with W s(E1) ⊂ R
3
+. Furthermore, since c > ĉ and m2 > m∗

2, there
exists an unstable limit cycle Γ sitting in Fx that is a saddle with respect to R3. It is attracting in Fx,
but repels into the interior of R

3 and dim W s(Γ) = 2, dim Wu(Γ) = 2, and Wu(Γ)
⋂

R
3
+ �= ∅ so that

Γ repels towards the interior of R
3
+. Using the Butler-McGehee lemma, we conclude that no solution

except those on W s(E1) can have their ω-limit sets contained entirely in Fx or Fy . Consequently, almost
all positive solutions correspond to coexistence.

13
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Figure 2: A transcritical bifurcation to coexistence for a given value of c1 occurs at m∗
2 given by the lower

curve on the graph. The straight line shows the value m2 = 10.286 at which the break-even concentrations
are equal (λ1 = λ2 = 0.7). The transcritical bifurcation occurs only in the region c1 > ĉ1 = 10.115 where
the reduced system (15a–15b) with y = 0 exhibits a stable limit cycle. If c1 is fixed and m2 crosses the
bifurcation value m∗

2, the stable limit cycle bifurcates into the coexistence region x, y > 0.

4.1.2 Period-doubling cascade leads to chaos

The proven tool for studying periodic solutions is the Poincaré map. We observe that any positive solution
of (15) that corresponds to coexistence must have the property that S(t) attains the values S = λ1 and
S = λ2 infinitely often with the signs of S′ alternating. Therefore, it is natural to study the Poincaré
map defined on one of these surfaces. Since we decided to fix m1 and a1, it is appropriate to consider the
Poincaré map P on S = λ1 = 0.7. For convenience, we define the Poincaré map to be the second return
map so that the sign of S′ is the same for all consecutive intersections.

Our first finding is that the periodic solution that bifurcates into the positive cone giving coexistence
can undergo a cascade of period-doubling bifurcations ultimately resulting in a chaotic attractor. The
bifurcation diagram illustrating the period-doubling cascade is shown in Figure 3. Figure 4(a) shows
the forward trajectory approximating the attractor and Figure 4(b), the cross-section of the attractor
with m2 = 10.0, c1 = 45.0. Numerically, we computed the cross-section by constructing a sequence
{(xn, yn)|n = 1, ..., N} (N = 5000) with

(xn+1, yn+1) = P (xn, yn)

by performing a different forward integration for each n to avoid error accumulation for long trajectories.

4.1.3 A nontrivial periodic trajectory

A natural consequence of a period-doubling cascade is the existence of periodic trajectories of arbitrarily
large periods. In addition to these, we have found periodic trajectories that have a rather peculiar
geometry. We present a numerical example of such a trajectory in Figure 5(a). We speculate that
this trajectory switches between the domains of influence of W s(E1) (when it spirals towards the lower
values of y) for small amplitudes and of Wu(Γ) (when it spirals towards the higher values of y) for large
amplitudes.

We obtained the periodic trajectory shown in Figure 5(a) by integration in forward time and then
determined the period by minimizing the distance between the initial point (S(0), x(0), y(0)) and
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Figure 3: A cascade of period-doubling bifurcations leading to a chaotic attractor shown here with
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Figure 4: (a) Chaotic attractor corresponding to m2 = 10.0, c1 = 45.0. (b) The cross-section S = λ1 of
the attractor.
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(S(T ), x(T ), y(T )) so that

T = argmin
T

√
(S(T ) − S(0))2 + (x(T ) − x(0))2 + (y(T ) − y(0))2.

If we write (13) using vector notation z = (S, x, y) as ż = F (z), the variational system of (13) along the
periodic solution z(t) = (S(t), x(t), y(t)) is expressed as φ̇(t) = ∂F

∂z (z(t))φ(t). After obtaining an estimate
of the period T , we numerically integrated the initial value problem

Ẋ(t) =
∂F

∂z
(z(t))X(t), X(0) = I,

where I is the 3 × 3 identity matrix, from t = 0 to t = T . Then we estimated the Floquet multipliers of
the periodic solution z(t) = (S(t), x(t), y(t)) as the eigenvalues of X(T ).

The estimates of Floquet multipliers are

µ1 = 1.0008, µ2 = 0.827, µ3 = 6.73 · 10−6.

Of course, the actual value of the first multiplier should be µ1 = 1. But the fact that µ2, µ3 < 1 supports
the evidence that this periodic solution is stable.

4.1.4 Existence of linked attractors

Here, we present the case c1 = 38.3, m2 = 10.1 where we found two stable periodic trajectories shown
in Figure 5(b). The most interesting feature of these trajectories is that they are topologically linked.
The first trajectory (thick line) has the period T1 = 17.055 and the second trajectory (thin line) has the
period T2 = 98.933. The linking exists because the second trajectory passes inside of the thick loop on
its way “down” and outside of the loop on its way “up”. Both periodic trajectories were obtained by
forward integration.

4.1.5 Neimark-Sacker bifurcation

In a Neimark-Sacker bifurcation, both eigenvalues of the Poincaré map cross the unit circle. The periodic
orbit persists but changes its stability The stable limit cycle is replaced by a stable invariant torus that
may have either rational or irrational rotation number. In either case, the species still coexist although
the corresponding orbit may no longer be periodic. Specifically, in case of an irrational rotation number,
such an orbit will be dense on the invariant torus produced via the Neimark-Sacker bifurcation. Figure
6(a) is a bifurcation diagram that shows one instance of the (supercritical) Neimark-Sacker bifurcation.
This diagram was computed with c1 = 37.0, and it shows quite nicely how the stable periodic orbit
is replaced by an invariant torus, and then the torus itself is replaced by a more complicated strange
attractor. Figure 6(b) shows a cross section of the strange attractor when the invariant torus loses its
smoothness and breaks up.

4.2 Yield included in the growth equation

In the following, we specialize system (13) to the case of three competing species and assume that xi

models the concentration of species i. We assume that ui(S) models the uptake of nutrient and that the
growth term takes the form gi(S) = Yi(S)ui(S). One interpretation of the yield Yi(S) in this section is
to model the efficacy of the conversion process and allow it to depend on the substrate concentration.
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Figure 5: (a) A periodic solution of period T = 672.713 for c1 = 55.0 and m2 = 10.1809 with initial
conditions S(0) = 0.711, x(0) = 3.199, y(0) = 9.779. The numerical values of Floquet multipliers are
µ1 = 1.0008, µ2 = 0.827, µ3 = 6.73 · 10−6. Of course, the true value of µ1 must be unity. Since
|µ2|, |µ3| < 1, we believe that this solution is stable. (b) Two stable periodic trajectories shown here for
c1 = 38.3, m2 = 10.1 are topologically linked. The first trajectory (thick line) has the period T1 = 17.055
and initial conditions S(0) = 0.547, x(0) = 1.282, y(0) = 2.227. The second trajectory (thin line) has
the period T2 = 98.933 and initial conditions S(0) = 0.808, x(0) = 1.823, y(0) = 4.033.

We will study an example in which Y1(S) depends on substrate concentration, and hence is variable,
whereas the Yi(S) = Yi, i = 2, 3 are constant. Our aim here is not only to show three species coexistence is
possible in this setting providing another example that contradicts the principle of competitive exclusion,
but also to show that competitor-mediated coexistence is possible. In particular, it is possible that all
three species can coexist, but that if one of the species is removed, then only one species is able to survive.

Since Yi, i = 2, 3 are constant, in the absence of species x1, under very general assumptions on the
form of ui(S), i = 2, 3 (see e.g. [20, 34, 35]) at most one species can survive and the concentrations
of substrate and organisms equilibrate. Thus we will try to show that by introducing population x1

with a variable yield, we can obtain coexistence of all three populations, and hence competitor-mediated
coexistence.

As discussed in the previous subsection, in order to obtain coexistence it is necessary to have oscillatory
solutions. By (7), if we restrict ourselves to (S − x1)-space, and assume xi(t) ≡ 0, i = 2, 3, then a Hopf
bifurcation can only occur at an equilibrium of the form E∗

λ1
where g′1(λ1) > 0 and u′

1(λ1) < 0. Here we
also assume that g1(S) = Y1(S)u1(S). Therefore, u1(S) must be inhibitory at high concentrations, and
hence we use unimodal functions to model uptake.

Since the input concentration S0 is one of the parameters that the experimenter often has control
over, in this section we consider S0 as a bifurcation parameter.

For our purposes, the uptake functions ui, i = 1, 2, 3, are taken to be the following one humped
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Figure 6: (a) The bifurcation diagram for c1 = 37.0. Here m2 is the bifurcation parameter. (b) The
cross-section of the strange attractor with c1 = 37.0, m2 = 10.181.

functions:
u1(S) = 4S

0.25S2+0.5S+0.2

u2(S) = 11S
S2+S+2

u3(S) = 2.98S
1.227S2+3.5S+3.225

They have the relative forms shown in Figure 7(a).
Since we are interpreting the yield as the efficacy of the conversion process, we expect the yield to

be a positive fraction. Since we have not been able to find any experimental support for any particular
functional form modeling this efficacy, we assume that it is unimodal, initially increasing. In our example,
we take Yi(S) to have the form:

Yi(S) =
1

1 + εi + αi(S − ki)2

Since we assume that only species x1 has a variable yield, this means that α2 = α3 = 0. We set
α1 = 0.5, ε1 = 0.5, ε2 = 6, ε3 = 0.15, and k1 = 7. Figure 7(b) shows the yield functions Yi(S), for the
three species.

The dilution rate is assumed to be D = 0.31. We take D1 = 0.33, D2 = 0.345, D3 = 0.315. Thus the
per capita growth rate of the various populations is given by:

g1(S) − D1 =
u1(S)

1 + 0.5 + 0.5(S − 7)2
− 0.33

g2(S) − D2 =
u2(S)

7
− 0.345

g3(S) − D3 =
u3(S)
1.15

− 0.315
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Figure 7: (a) Consumption rates ui(S), i = 1, 2, 3. (b) Yield functions Yi(S), for i = 1, 2, 3. Only species
x1 has a variable yield. All yields are fractions (less than one). (c) Per capita growth rate, gi(S) − Di

for values of substrate on a coexistence periodic orbit, 1.475 < S < 4.24, and S0=9.3.

The graphs of these functions, demonstrating how they intersect, are shown in Figure 7(c). Here, S is
in the range 1.475 < S < 4.24. This corresponds to values on a periodic orbit in which all three species
coexist, shown later in this section (see Figure 10(d)). It is clear that each population has an advantage
over both of its competitors at some concentrations of the substrate and that the hypotheses of Theorem
4.3 and Corollary 4.4 are not satisfied.

Recall that by definition the break-even concentrations λi and µi are the solutions of gi(S)−Di = 0.
For the parameters that we have selected,

λ1 = 3.1239 µ1 = 9.3421
λ2 = 0.7007 µ2 = 2.8541
λ3 = 0.8865 µ3 = 2.9657

Hence, if we were in the case of constant yield, based on the relative values of these break-even
concentrations, if S0 > λ2, we would conclude that species x3 would be driven to extinction, if x2(0) > 0.
Whether population x1 or x2 would win the competition or whether both populations would wash out of
the chemostat would depend on the initial conditions and the concentration of S0.

To obtain coexistence of all three species, it is important that the substrate concentration oscillates
between values where each of the species has an advantage. The “trick” to obtain coexistence in the
variable yield model is to set things up so that as the bifurcation parameter S0 varies, there is a Hopf
bifurcation in the (S − x1) plane, followed by a transcritical bifurcation of limit cycles, resulting in a
periodic orbit with two species coexisting, and finally another transcritical bifurcation of limit cycles
involving all three species. Of course, to claim coexistence, the resulting limit cycle involving all three
species must be orbitally asymptotically stable in some open set of parameter space.

We illustrate this in the following sequence of bifurcation diagrams and numerical simulations. We
use the XPPAUT interface to Auto (see [12]) to produce the bifurcation diagrams shown in Figures 8(a),
9(a)-9(c) and 10(a)-10(c). In these figures solid lines indicate asymptotically stable equilibria, dashed
lines, indicate unstable equilibria, filled in dots indicate orbitally asymptotically stable periodic orbits,
and open dots indicate unstable periodic orbits. For periodic orbits, we use the “Hi-Lo feature”, i.e. for
each value of the bifurcation parameter S0, the largest and smallest value of the coordinate labeled on
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(a) (b)

Figure 8: (a) Bifurcation diagram with stability with respect to (S − x1)-space only. This figure shows
two bifurcations: at S0 = 8.984, there is a subcritical Hopf bifurcation; at S0 = 8.833, a saddle node of
limit cycles. (b) Numerical simulation showing two periodic orbits in the (S − x1)-face when S0 = 8.92,
as predicted by the bifurcation diagram. The inside one is unstable and the outside one is orbitally
asymptotically stable.

the ordinate axis is graphed.
First we restrict our attention to the (S − x1)-face. Figure 8(a) shows two bifurcations with the

stability with respect to this face only. An analogous bifurcation diagram is shown in Figure 9(a) with
the stability given with respect to (S, x1, x2, x3)−space. This diagram was plotted with XPPAUT, and
shows the minimal and maximal value of x1, along the periodic orbit, for different values of S0. There is
a subcritical Hopf bifurcation at S0 = 8.984, and a saddle node of limit cycles at S0 = 8.833. Figure 8(b),
shows two periodic orbits in the (S, x1)-face, for S0 = 8.92. There are two periodic orbits. The inner
orbit is unstable and the outer one is asymptotically stable. The unstable orbit was plotted using reversed
time integration.

Figure 9 shows bifurcation curves for which x1 and x2 are nonnegative, but x3 = 0. In this figure the
stability is given with respect to (S, x1, x2, x3)-space. Comparing Figure 8(a) with Figure 9(a), we see
that besides the Hopf bifurcation and the saddle node of limit cycles in the (S, x1)-face, there is a branch
point at S0 = 8.899. The outer periodic orbit that is stable with respect to (S, x1)-space is unstable
for 8.833 < S0 < 8.899 with respect to (S, x1, x2, x3)-space. There is a transcritical bifurcation of limit
cycles as S0 increases through the branch point S0 = 8.899, resulting in a branch of unstable periodic
orbits with xi > 0, i = 1, 2. Along this branch, when S0 increases through 9.315 this branch stabilizes
and the periodic orbits remain stable until S0 decreases through 9.155. Hence, there is stable coexistence
of species x1 and x2 for 9.155 < S0 < 9.315. Continuing along this branch, it stabilizes again as S0

decreases through 8.968 and remains stable until it collapses into the plane via a transcritical bifurcation
at approximately 8.833. So there is also stable coexistence of x1 and x2 for 8.833 < S0 < 8.968. An
example of this oscillatory coexistence of x1 and x2 is shown shown in Figure 9(d).

Figure 10 shows bifurcation curves for which xi ≥ 0, i = 1, 2, 3. There is a transcritical bifurcation of
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Figure 9: (a)-(c) Bifurcation diagrams showing stability with respect to (S, x1, x2, x3)-space. (a) Bifur-
cations in the (S, x1)-face. Besides the Hopf and saddle node bifurcations shown in Figure 8(a), there
is a branch point at S0 = 8.899. Only bifurcations with x1 > 0 and xi = 0, i = 2, 3 are shown. (b)
and (c) Only bifurcation curves with species x1 and x2 nonnegative and x3 = 0 are shown. There is
stable coexistence of species x1 and x2 for 8.833 < S0 < 8.968 and 9.155 < S0 < 9.315. (d) A numerical
simulation showing stable oscillatory coexistence of x1 and x2, for S0 = 8.92.

the limit cycle in the (S, x1, x2)-face (with x3 ≡ 0) into the positive cone. This branch of periodic orbits
remains stable until S0 increases through 9.479. Hence there is stable coexistence of all three species for
8.965 < S0 < 9.479. Examples of such stable limit cycles, for different values of S0, are shown in Figure
10(d).

Note that Figure 10(d) shows that at one of the boundaries of the coexistence state, S0 = 9.479, a
Neimark-Sacker is detected, and hence more complex dynamics is likely for S0 > 9.479.

Finally, we note that this is an example of competitor-mediated coexistence. For 8.965 ≤ S0 ≤ 9.479,
all three species coexist. However, x3 cannot survive in the presence of x2 unless x1 is also present.
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Figure 10: (a)-(c) Bifurcation diagrams showing branches where xi ≥ 0, i = 1, 2, 3. There is stable
coexistence of all three species for 8.965 < S0 < 9.479. (a) x1 on the ordinate axis, (b) x2 on the ordinate
axis, (c) x3 on the ordinate axis. (d) Three species stable oscillatory coexistence for a range of values
8.965 < S0 < 9.479. This figure was done using CONTENT (see [17]). At S0 = 8.965, a branch point is
detected corresponding to a transcritical bifurcation of limit cycles, and at S0 = 9.479, a Neimark-Sacker
bifurcation is detected.

5 Discussion

Clearly, the fact that the yield may vary with the nutrient concentration has profound implications for
coexistence of several microbial species. The principle of competitive exclusion states that at most one
species can survive on a single nutrient at steady state. If one of the competitors exhibits a variable yield,
then oscillatory coexistence of more than one species becomes possible.

We have presented one scenario in which the variable yield resulted in the coexistence of two species.
Variable yield of the stronger competitor x was beneficial to the weaker competitor y. Specifically, we
demonstrated that if the stronger competitor x has a variable yield which generates a stable limit cycle
in the plane y = 0, than the limit cycle can bifurcate into the coexistence region so that both x and y
can stably coexist in oscillatory fashion. Interestingly, a weaker competitor can also benefit if its own
yield is variable. If x is a weaker competitor than y at steady state and x exhibits variable yield, then it
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is possible that both the steady state with x = 0 and the limit cycle with y = 0 are stable and therefore
the outcome of competition will depend on the initial conditions. This is a clear benefit to the weaker
competitor x because it enables x to outcompete y for some open nonempty set of initial conditions. The
second scenario corresponds to bistability.

We also demonstrated that three species coexistence in this context is possible and that competitor-
mediated coexistence can occur. In this case, two competitors x2 and x3 with fixed yields, a situation
that would normally lead to competitive exclusion, are lead to coexistence by the intervention of a third
competitor with variable yield, x1. The latter acts as a mediator, causing oscillations in the substrate
density that make the value of S alternatively beneficial for x2 and x3.

In addition to facilitating oscillatory coexistence, the model with variable yield can display much
more complicated dynamics. We have presented several examples of dynamically nontrivial attractors
corresponding to coexistence (long periodic orbits, invariant tori, linked stable periodic orbits). In a
special limiting case, model (15) can exhibit intermittent trajectories if the break-even concentrations of
x and y are sufficiently close.

We also explained why it is important to understand how the yield depends on the substrate in
order to incorporate the term correctly in the model. In any model in which the yield is considered a
measure of the efficacy of the conversion process, the growth and uptake terms are related by the equation
g(S) = Y (S)u(S). In order for such a single species growth model to exhibit a Hopf bifurcation, the
uptake rate u(S) must be decreasing at high substrate concentrations. In formulating such a model, one
therefore must assume that uptake of the substrate is inhibited by high concentrations of substrate. This
observation may prove important if one is actually going to try to find organisms in order to observe this
phenomenon in the laboratory.
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A APPENDIX – Proof of Theorem 2.6

Equation (8) is the transversality condition.
Let ω0 =

√
x∗u(S∗)g′(S∗), denote the imaginary part of the eigenvalue at the critical value αc, of the Hopf

bifurcation parameter. Take

T =

[
0 −1

ω0
u(S∗)

0

]
and T−1 =

[
0 u(S∗)

ω0−1 0

]

(
r
v

)
= T−1

(
S
x

)
⇒

{
r = x u(S∗)

ω0

v = −S

Thus, in canonical form the system is

dr

dt
= r(−D1 + g(−v)) ≡ f(r, v)

dv

dt
= −(S0 + v)D + r

ω0

u(S∗)
u(−v) ≡ g(r, v)

Now the system is in the canonical form so that a straight forward application of the formula in Marsden and
McCracken [23] shows that the sign of CH determines the criticality of the Hopf bifurcation as indicated in
Theorem 2.6.

Alternatively, defining h(s) = D(S0−S)
u(S)

, one can write the system (1) in the form:

dS

dt
= (

D(S0 − S)

u(S)
− x)u(S) ≡ (h(S) − x)u(S)

dx

dt
= (g(S) − D1)x.

In [33] the criterion for the criticality of the Hopf bifurcation based on the sign of ĈH was derived.
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