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The main concern of this paper iz with survival or extinction of predators in models of
predator—-prey systems exhibiting group defence of the prey. It is shown that if there is no
mutual interference among predators, enrichment could result in their extinction. However,
if there i mutual interference, the predator population survives (at least deterministically).

1. Introduction. 1In a well-known and controversial paper, Rosenzweig
(1971) warns that “Man must be careful in attempting to enrich ecosystems
in order to increase its food yield, There is a real chance that such activity
may result in a decimation of the food species that are wanted in greater
abundance.”™ He considers six different mathematical models of predator—
prey (or parasite-host) interaction and shows that sufficient ennichment or
increase of the prey-carrying capacity can cause destabilization of an
otherwise stable interior equilibrium. Using a truncation for the sake of
biological reality he also integrates the equations numerically and obtains
cxtinction of the predator.

Several authors including Gilpin (1972), May (1972) and Riebesell (1974)
criticize Rosenzweig’s predictions. They show that the destabilization of the
equilibrium results in the birth of an asymptotically stable periodic orbit.
Freedman (1976, 1980) shows that for a class of generalized Gause models
of predator—prey interaction this destabilization of the equilibrium is due to

*Research partially supported by the Matural Sciences and Engincering Rescarch Council
of Canada, Grant No. NSERC A 4823,

tResearch partially supported by a Natural Scienees and Engineering Research Council of
Canada postddetoral fellowship.

$Prezent address: Division of Applied Mathematics, Brown University, Providence, BRI
02912, U.5.A.

423



DA/21/2008 15:03 IFAY scanner@mail. math. mcmaster. ca + Paula Marcoux @002 016

494 H. I. FREEDMAN AND G, 5. K, WOLKOWICZ

a Hopf bifurcation. Most of the models that Rosenzweig (1971) considered
are special cases of models in this class. Rosenzweig (1972a,b) defends his
conclusions by pointing out that if the amplitude of the periodic orbit is
sufficiently large, sections of it may become dangerously close to one or
both of the coordinate axes. It might therefore be very likely that some
random perturbation (of even a minor nature) could result in the extinction
of onc or both populations.

McAllister er al. (1972) criticize Rosenzweig's warning by giving
experimental evidence that shows moderate enrichment can be beneficial.
However, there is exerimental evidence that seems to indicate that in some
situations Rosenzweig’s warning is valid. For example Huffaker ef al. (1963)
were able to obtain destabilization and extinction of an otherwise stable
exploitation system involving an acrophagous mite (exploiter) and
herbivorous mite (victim) by trebling the food density of the victim.
Luckinbill (1973) and Schaffer and Rosenzweig (1978) were also able to find
evidence connecting enrichment to dynamic instability.

It is the purpose of this paper to provide more support for Rosenzweig’s
warning, although for different reasons. In most predator—prey models
considered in the literature, the predator response to prey demsity is
assumed to be monotonic increasing (Holling 1965), the inherent assump-
tion being that the more prey in the environment, the better off the
predator. However, there is experimental and observational evidence that
indicates that this need not always be the case, for example in the case of
‘group defence.’

Group defence is a term used to describe the phenomenon whereby
predation is decreased, or even prevented altogether, due to the increased
ability of the prey to better defend or disguise themselves when their
numbers are large enough. An example of this phenomenon is deseribed by
Tener (1965). Lone musk ox can be successfully attacked by wolves. Small
herds of musk ox (2-6 animals) are attacked but with rare success. No
successful attacks have been observed in larger herds. A second example
described by Holmes and Bethel (1972) involves certain insect populations.
Apparently, large swarms of the insects make individual identification
difficult for their predators.

Related examples of non-monotone consumption occur at the microbial
level where there is considerable evidence (Andrews, 1968; Aris and
Humphrey, 1977; Boon and Laudelout, 1962; Bush and Coak, 1976; Yang
and Humphrey, 1975), which indicates that when faced with an overabund-
ance of nutrient the effectiveness of the consumer can begin to decline.
That is, certain nutrients may be growth-limiting at low concentrations as
well as growth-inhibiting at high concentrations. This is often seen when
micro-organisms are used for waste decomposition or for water purification.



DA/21/2008 15:03 IFAY scanner@mail. math. mcmaster. ca + Paula Marcoux 003/ 016

PREDATOR-PREY SYSTEMS 495

This phenomenon is called ‘inhibition’ of the consumer by high densities of
the resource.

With the phenomenon of group defence in mind it is therefore of interest
to study mathematical models of predator—prey interactions in which the
predator response function is not necessarily a monotone increasing func-
tion of prey density, but rather is only monotone increasing until some
critical density and then becomes monotone decreasing. We are unaware of
literature reports of predator—prey models incorporating such non-
monotone functional responses.

In Section 2 of this paper we re-examine the paradox of enrichment in the
light of group defence. We show that enrichment can, indeed, lead to
extinction in a closed ecosystem as originally postulated by Rosenzweig
(1971). However, just as in Rosenzweig’s original paper we draw the con-
clusion only if we assume that “the exploiters do not actually interfere with
each other”. In Section 3 we incorporate mutual interference of the
predators in the model as was done in Erbe and Freedman (1985),
Freedman (1979) and Freedman and Rao (1983). See also Beddington
(1975), Hassell (1971) and Rogers and Hassell (1974). Just as in the
previous work mentioned we find that mutual interference is stabilizing (at
least deterministically). However, we observe by means of a series of
numerical examples that, viewed stochastically, there might be a larger
probability that the predator population may become extinct as mutual
interference becomes stronger and stronger. We conclude with a discussion
in Section 4.

2. Group Defence—No Mutual Interference. Wc propose the following
system of autonomous ordinary differential equations. of generalized
Gause-type as a model of predator—prey interaction with group defence
exhibited by the predator

x=xg(x.K)=yp(x)
y=y(~s+q(x)) ™
x(0)z0, y(0)=0, =#
where x(f) and y(f) denote the density of prey and predator, respectively,
We assume that the functions g, p and g are continuously differentiable and
that s and K are positive constants.

Here, g(x,K) represents the specific growth rate of the prey in the
absence of predation and is assumed to satisfy

g(0,K)=0, g(K.K)=0, g,(K,K)<0
£:4x,K)=0 and gg{x,K)>0 for any x>0.

@)
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The function p(x) denotes the predator response function. We assume
p(x) satisfies

p(0)=0, p(x)>0 for x>0 (3)
and that there exists M =0 such that

p'(x)=0 for 0=x<M.
and

7' (x)<0 for x=>M.

The rate of conversion of prey to predator is described by g(x). In
Gause’s model g(x)=cp(x) for some positive constant ¢. We assume g(x)
has properties similar to p(x). In particular

q(0)=0, g(x)==0 for x>0, g(M)=s
g'(x)=0 for O=x<M 4)

and
g’ (x)<0 for x>M.

Specific examples of g(x,K), p(x) and g(x) can be found in Boon and
Luadelout (1962), Hoiling (1965), May (1972), Rosenzweig (1971), and
Yang and Humphrey (1975).

The existence of M>0 is precisely the assumption which models group
defence. It is also only reasonable to assume that the same M holds for both
p and g since the conversion of prey to predator should increase and
decrease as the consumption of prey increases and decreases. We assume
that g(M)>s since otherwise the predator cannot survive on the prey at any
density. Therefore, there exists A<<M such that g{A\)=s and there may exist
p>M such that g(p)=s5. We assume that A<.X or again the predator cannot
survive on the prey.

From the above assumptions one can conclude that there is always an
interior equilibrium, E,, of the form (A,Ag(A,K)/p(A)) where g(Ah)=s,
p'(\)=0 and q'(\)>=0. Furthermore, it follows from a standard linear
analysis (see Freedman 1976, 1980) that this equilibrium is stable or
unstable according to whether the slope of the prey isocline at E, is negative
or positive.

O first observation follows as in Freedman (1976, 1980) (see Figs 1 and
2).
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A K x
Figure 1. Fredator—prey dynamics for (1) in the case g(x)>s5 for x=>M:
15oclines; — — — orhits.

A K u ®
Figure 2. Predator—prey dynamics for (1) in the case A< K< isoclines;
-— = — orhit.
THEOREM 1. If
lim g(x)=s (5)

X—0o .
(i.e. no w>>M exists such that q(p)=s) or if g(n)=s where A<<K>p, then
solutions of (1) with positive initial conditions either approach E, or
approach a positive limit cycle surrounding E, or are themselves periodic
solutions surrounding E, .

If on the other hand <K, the dynamics differ substantially (see Figs
3a—c). In particular, for a significant set of initial conditions the predator
can be driven to extinction (see Figs 3 and 4).

The variational matrix about any equlibrium (x*,y*) is:

Ve yy= [ FEERIEDTE) e ]
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Figure 3. Predator-prey dynamics for (1) in the case A=p<K: isoclines;
———=— W¥E,); ——— periodic orbit(s) surrounding E,. (a) I' comes
from x(f)>p. Solutions starting outside the region bounded by W(E,)
converge to Ey. (b) I" is a homoclinic orbit. The only solutions that do not
converge to Eg originate inside the region bounded by I or lic on W4(E,). (&) T
satisfies x(r)<<p. for all 1. The only solutions that do not approach Ej are those
that lie on W*(E,,) or those originating insi)de the outermost periodic orbit (if one
exists).

At (x*,y*)=(K,0) this becomes

Ke(K.K) -
V(K,0)=[ g (0 %) -€£?+(K)J )

f,md so both eigenvalues are negative. Therefore, the equilibrium E,=(K ,0)
is locally asymptotically stable which implies that there is a set of initial
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conditions of positive measure in the interior of the positive cone for which
lim y(f)=0.
=
Also, in the case p<K, there exists a second interior equilibrium

E, =(p,pg(1,K)/p(n)).

V(E}L):V(H:Y)z {HEI(M:K)';EEFGIS)_Y*P'(H) _Pél"") ] . (8)

The constant term in the charactenstic equation is therefore equal to
y*q'(n)p()<<0 since g'(n)<0. Therefore, E, is always a saddle point.
Observing the direction the solutions must cross the predator and prey
isoclines one observes that there cannot be a periodic orbit surrounding E,
(see Figs 3a—<).

Since E, is a saddle point, it has a one-dimensional stable manifold,
W*(E,) and hence there are two orbits that approach E,, asymptotically.
Consider the orbit that approaches £, from the left and call it I'. There are
at most three possibilities (see Figs 3a—c), Case 1: in negative time I' can
leave the strip 0=x=p. (Fig. 3a). In this case all solutions with positive initial
conditions that start outside the region bounded by W*(E,) approach Ej
asymptotically. Case 2: secondly, I can be a homoclinic orbit, that is tends
to E, in negative time (Fig. 3b). In this case the only solutions with positive
initial conditions that do not approach E, originate inside the region
bounded by I" or on W*(E,). Case 3: finally, I' can remain in the strip
O=x<p for all backward time. In this case E, is either unstable with no
periodic orbit surrounding it or it must be surrounded by one or more
periodic orbits and the outermost one must be unstable from the outside. I'
then either approaches E, (in the case of no periodic orbit surrounding E, )
or the outermost periodic orbit if time is followed in reverse. The only
solutions that do not approach Eg are those that lie on W*(E,) or those
originating inside the outermost periodic orbit (if one exists).

Since enrichment results in an increase of the carrying capacity K, it is
now casy to see that our model predicts that sufficient enrichment could
result in extinction of the predator if the prey practice group defence.
Consider model (1) with K<pu. Then Eg is unstable and at least
deterministically both populations persist uniformly (see Butler er al.,
1986). In fact, all solutions approach E) or some periodic orbit surrounding
E,. At K=y, there is a bifurcation of the critical point Ey,. As K increases
beyond ., Ey becomes asymptotically stable and E,, appears in the interior
of the non-negative cone. Thus there is a set of initial conditions of positive
measure for which extinction of the predator results and so Rsenweig’s
warning applies. It is interesting to note that these outcomes are
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independent of the local stability of E, and hence of which side of the prey
1socline E, lies on. Rather they depend upon whether or not p<K and
hence on whether or not E, lies on the positive cone.

In the following numerical example we see that as the carrying capacity K
increases, the model exhibits the dynamics described in each of the three
cases described above. Consider

x Oxy

¥=2(- )" 2335, 1155
)
i1t 11.3x )
Y 2+3.352+13.5 "

The functions and the values of the parameter have been chosen solely for
convenience and have no biological significance. In Fig. 42 we see how
increasing K affects the prey isocline. When K=4, then A<: K<, and since
the slope of the prey isocline is negative at E;', then E; is asymptotically
stable. (The superscripts differentiate the critical points for K=4 from those
for K=6 or K=7.) If enrichment causes K to increase to X=06 (see Fig. 4b)
we see that we are in Case 1. In this example, Ef is unstable and there is a
unique asymptotically stable periodic orbit surrounding it. At K=7 (see Fig.
4c), we are in Case 3 (with no periodic orbit surrounding Ey)). Therefore,
there must be some critical value K*, 6<K*<7 for which the periodic orbit
coalesces with a homoclinic orbit that is stable from within and unstable
from without (i.e. Case 2).

This example illustrates that a sudden enrichment of a stable system
could result in extinction of the predator. Let us assume that before
enrichment (K=4) the predator-prey population densities stabilized near
E}. Enriching this sytem to K=6 would probably not cause extinction since
the point E,* is within the region of attraction of the stable periodic orbit
surrounding E,%. However, enriching the system further, to K=7, would

Figure 4. Predator—prey dynamics for example (9). (a) isoclines. As K is
inereased from 4 to 6 to 7 the predator isoclines (the vertical lines x=A=-2.45822
and x=p.=5.49178) remain unchanged. However, the prey isocline increases as
K increases. W denotes B, O, @, denote £ and E!, respectively, and A, O
denote E; and E, respectively. (b) isoclines, — — — — solutions
starting close to E; and spiralling out to a periodie orbit. Solutions which initiate
inside the region bounded by W¥(ES) converge to the periodic orbit surrounding
E{. Solutions initiating outside ES converge to Eg (c) isoclines,
— — — — solution starting close to Ef. All solutions with positive initial
conditions converge to Eg except the sEglutiun Ef and solutions initiating on
WHED).
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most likely cause the extinction of the predator. (In fact, almost all initial
conditions with K=7 result in extinction of the predator.) Thus enrichment
could cause an otherwise stable ecosystem, one that had even reached
steady state, to crash.

3. Group Defence Model with Mutual Interference. 'We now incorporate
mutual interference in our model and write it in the form

x=xg(x,K)=~y"p(x)
y=—sy+y7q(x) (10)
x(0)=0, y(0)=0

where 0<<m<1. Hence m denotes the mutual interference constant. All
assumptions on the functions g, p and g are as in Section 2. The positive
equilibria of this model are given by the intersection of the curves
representing the predator and prey isoclines:

y M =q(x)ls

_ xg(x,K)
y’"——p(x) . (11)

There is always at least one such equilibrivm. Several examples are given in
Figs 5a—c. In previous work (Freedman, 1979; Freedman and Rao, 1983),
for a model without group defence, it was shown that mutual interference
has a stabilizing influence on the positive equilibria of predator-prey
systems. The same is truae in the case of group defence. However, we are
more interested in the global behaviour of our model. We show that all
solutions of (10) initiating in the positive cone are eventually uniformly
bounded away from the coordinate axes and hence both populations persist
uniformly (at least deterministically). This enables us to conclude, though
‘with reservation’ that mutual interference is stabilizing,

We point out that (10) is not a dynamical system due to the sublinearity
with respect to y which leads to non-uniqueness of solutions along the
x-axis. However, if we restrict y>0 in (10), it is a dynamical system and
uniqueness of solutions does hold.
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¥ [a)

\
1
v] K x
Figure 5, Predator—prey dynamics for (10). predator isocline, — — —
— prey isocline. (a) Isoclines intersect at only one point, E. (b} Isoclines
intersect at three points, E;, E,, Ei. (¢) Isoclines intersect at two points, F, and
Es.
THEOREM 2. There exists €0 such that for all solutions of (10) with positive
initial conditions,

lim inf x(f)=¢ and lim inf y(x)=¢.
e L t—»w
Thus, (10) is uniformly persistent,

Proof. (Understanding of the proof will be assisted by referring to Fig. 6.
However, the proof does not depend on the particular configuration of the
isoclines depicted in Fig- 6.)

Let ¢, denote the predator isocline and ¢; the prey isocline. Since there is
at least one interior equilibrium, let E;=(x,,y;) denote the positive
equilibrium with the smallest x coordinate. Let

M= max [M ]?"1_ (12)

and select
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Figure 6. Predator-prey dynamics for (10). predator isocline, o;

— — —— prey isocline, ¢;. . ...... solution segment from F to Jé T.

Regions I-V] are defined in the proof of Theorem 2. All solutions with positive
imtial conditions enter Region I in finite time and then remain there.

Fmax{M, [q(M)/s]t“"_l‘fr}. (13)

(Recall that M was defined so that ¢'(x)>0 if x<<M and ¢'(x)<0 if x=>M.)
Let Pr=(K,yx) denote the point of intersection of ¢; with the vertical line
x=K. Note y=0.

Consider the solution of (10) with initial condition P=(x;/2, ¥). By the
definition of ¥ it follows that for the solution through this point both x<0
and y<<0. This solution must first cross ¢, vertically. Then x starts to increase
while y continues to decrease until the solution crosses ¢; horizontally. Call
this point of intersection P,=(x4,y4). If y =y, select any point p=(%,9)
on ¢; with £<x4 and §<yg. If y ,<yy let P=P,. Follow the solution through
P backward in time. By uniqueness of solutions it must cross the line y=y at
some point P=(%¥,¥) with ¥=x,/2. Call the solution curve from P to P, 1.

Define

Region I = {(x,y): §=y=y, x=<k and x lies to the right of I'}.

Region II = {(x,y): 0=y=y, x=K and x lies to the right of ¢,}.

Region III = {(x,y): y<y, x>0, y lics above ¢; and x lies to the left of I'}.
Region IV = {(x,y): 0<x=K, y>y}.

Region V. = {(x,y): x>K, y>0 and y lies below ¢,}.

Region VI = {(x,y): x=K and x lies above c;}.

It is easy to see that Region I is positively invariant and by the Poincare—
Bendixson Theorem all solutions with positive initial conditions eventually
enter Region I in finite time. The following directed graph shows all the
possible routes solutions can take before they enter Region |
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In Region ITI, once a solution is to the left of ¢, x>0 and so it is not possible
to converge to (0,0), but rather the solution must eventually cross ¢; into
Region II. In Region II y>0. Therefore the sublinearity with respect to y in
(10) is not a problem in our analysis and the proof is complete. |

Although we have shown that solutions are uniformly asymptotically
bounded away from the axes, we do not claim that before entering Region I
some solutions do not become dangerously close to one of the axes. A
stochastic effect could then drive a population to extinction. However, this
is also true before enrichment and/or when there is no mutual interference.

The following numerical example shows another reason why our con-
clusion that mutual interference is stabilizing is ‘with reservation’. We
consider the same example as in the previous section, after enrichment [i.e.
model (9) with K=7]. This time we also incorporate mutual interference in
the model. Consider

. X 9y"x
=21 =2) " 213 354135
(15)
11.3xy™

=—y+ X
Y 21335¢+135

We plot the predator and prey isoclines in Figs 7a— for m=0.95, 0.75 and
0.5, respectively. In each case, there is only one interior equilibrium, E, and
the density of the predator at E is dangerously small. Even though
deterministically all populations survive, again a stochastic effect could
conceivably result in the extinction of the predator since all solutions with
positive initial conditions converge either to E or to a periodic orbit
surrounding E, if one exists,

4. Discussion. In this paper we consider a predator-prey model in which
the prey exhibit group defence. Such a model may be applicable in the case
of animals such as musk ox that are better able to defend themselves against
predators when in groups or in the case of insects where individual
identification of the prey by the predator is a prerequisite to successful
predation.
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Figure 7. Predator—prey dynamics for (15). predator and prey isoclines.
W, A, O designate B, E', and E’,, respectively, for model (9). In (2) m=0.95,
(b) m=0.75 and (c} m=0.5, In all cases the predator density at the unique
interior equilibrium is very small and so0 the predator is in danger of extinction.
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In the case where there is no mutual interference among hunting
predators, our model predicts that group defence combined with sufficient
enrichment ¢an cause the predator population to become extinct. Thus we
provide more support that Rosensweig’s (1971) warning is valid, though for
a significantly different reason.

If the predator exhibits mutual interference in seeking out prey,
extinction due to group defence combined with enrichment may be averted.
However, this conclusion is based solely on deterministic evidence. If
stochastic effects were to be introduced, this conclusion would probably not
be robust.

Of course, our models suppose a closed environment, whereas in the field
extinction could be avoided by the predator seeking an alternative prey.
McAllister et al. (1972) also mention that prey refuges, aestivation, resting
stages, inhomogeneous distributions, fluctuating environmental conditions,
or even man’s harvesting might protect the predator population and
Rosenzweig and Schaffer (1978) show that coevolutionary response 1o
ecosystem enrichment enhances ecosystem stability.

We are grateful to John Holmes for supplying us with some of the
references and to Michael Rosenzweig for a stimulating discussion over
lunch.
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