
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS SERIES B
Volume 8, Number 4, November 2007 pp. 801–831

ANALYSIS OF A MODEL OF NUTRIENT DRIVEN

SELF-CYCLING FERMENTATION ALLOWING UNIMODAL

RESPONSE FUNCTIONS

Guihong Fan

Department of Mathematics and Statistics
McMaster University, Hamilton, Ontario L8S 4K1, CANADA

Gail S. K. Wolkowicz

Department of Mathematics and Statistics
McMaster University, Hamilton, Ontario L8S 4K1, CANADA

(Communicated by Linda Allen)

Abstract. A system of impulsive ordinary differential equations is used to
model the growth of microorganisms in a self-cycling fermentor. The mi-
croorganisms are being used to remove a non-reproducing contaminant that
is limiting to growth at both high and low concentrations. Hence it is the
concentration of the contaminant that triggers the emptying and refilling pro-
cess. This model predicts that either the process fails or the process cycles
indefinitely with one impulse per cycle. Success or failure can depend on the
choice of microorganisms, the initial concentration of the microorganisms and
contaminant, as well as the choice for the emptying/refilling fraction. Either
there is no choice of this fraction that works or there is an interval of possible
choices with an optimal choice within the interval. If more than one strain
is available, it does not seem to be the strains that have the highest specific
growth rate over the largest range of the concentrations of the contaminant,
but rather the ones that have the highest specific growth rate over very low
concentrations of the contaminant, just above the threshold that initiates re-
cycling that appear to be the most efficient, i.e., processing the highest volume
of medium over a specified time period.

1. Introduction. Self-cycling fermentation (SCF) is a technique used to culture
microorganisms. There are various potential applications, including water purifica-
tion, waste decomposition, and production of antibiotics [9, 10, 13, 19, 21, 23, 26, 29].

SCF has been extensively described in [20, 21, 23], and thus only a brief review
is needed here. The process is a computer-controlled semi-batch fermentation. A
well-stirred tank containing fresh medium is initially inoculated with microorgan-
isms. The microorganisms consume the nutrient until some criterion, sensed by the
computer is met, (in the case studied in this paper, a particular concentration of
the nutrient). The computer then initiates a rapid emptying and refilling process.
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A certain fraction of the contents of the tank is emptied and replaced by an equal
volume of fresh medium. The process is then repeated. The process is considered
successful if the fermentor cycles indefinitely, without human intervention, with
reasonable cycle times (time between each successive recycling of the tank).

A mathematical model for SCF was developed in Wincure, Cooper, and Rey
[27]. The response function describing the relationship between the limiting nu-
trient concentration and the growth rate of the microorganisms was modelled by
a function of Monod form. They assumed the emptying/refilling process occurs
instantaneously and used the dissolved oxygen concentration as the cycling crite-
rion. Simulations based on their model predicted that the contents of the fermentor
eventually oscillated in a stable periodic fashion, agreeing with their experimental
results.

Smith and Wolkowicz [23] generalized the class of response functions to include
any reasonable monotone increasing response function. They used a specified con-
centration of the contaminant as the triggering mechanism, and gave a mathe-
matically rigorous analysis of a model that was formulated in terms of impulsive
differential equations instead of Dirac Delta functions.

However, as has been pointed out by Powell [18], some reasonable response func-
tions are not monotonically increasing, but rather unimodal, since some nutrients
that limit growth at low concentrations are also inhibitory at high concentrations
(see [4, 8, 16]). This is particularly true for microorganisms used in the treatment
of biological or industrial waste or for water purification. In this paper, we gener-
alize the model in [23] to allow response functions that are unimodal and assume
throughout that the fermentor is being used to reduce some contaminant to a safe
level and so use a safe concentration of the contaminant as the cycling criterion.
Our analytic results are for general unimodal response functions. However, in the
numerical simulations, we use functions determined by Alagappan and Cowan [3]
to be the best fit for the particular strains and substrates involved (see Sections 3
and 4).

The analytic results predict that just as in the case of monotone response func-
tions, three outcomes are possible. Either the process is successful and cycles indefi-
nitely with a fixed cycle time (eventually), or it is unsuccessful and either terminates
after a finite number of cycles, or it cycles indefinitely, but the cycle time becomes
longer and longer, approaching infinity. Once an acceptable level of contaminant
is set, whether or not the process is successful, depends on the relative values of
certain species specific parameters and can be initial condition dependent. The
emptying/refilling fraction also has an important impact. The dynamics of the
model are not sensitively dependent on the form of the response function. This
would seem to indicate that the potential of the model for prediction is very ro-
bust. However, there are extra considerations required if the response functions are
unimodal rather than monotone increasing.

This paper is organized as follows. In Section 2, we formulate the model and
then provide criteria that predict whether or not the process will be successful
and if not how it will fail. Simulations illustrating successful operation in the case
of biodegradation of toluene by the strain Ralstonia picketti PKO1 are provided
in Section 3. In Section 4, we conclude that once a strain of microorganisms is
chosen and the threshold for initiating the emptying and refilling process is set,
there is an open interval of feasible choices for the emptying and refilling fraction.
However, this interval could be empty. Within the interval, if it is nonempty,
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there is an optimal choice that gives the optimal output over a given time period.
Using an explicit formula for the cycle time we discuss the selection of the optimal
emptying/refilling fraction and illustrate how to do this in the case of several strains
of microorganisms. We also compare the efficiency of several strains that degrade
the contaminant, toluene. In Section 5, we provide rigorous proofs of our main
results and we conclude in Section 6 with a discussion of the potential implications
for applications.

2. A nutrient driven model for the self-cycling fermentation process.

2.1. The model. In this section we generalize the model for the nutrient driven
self-cycling fermentation process studied by Smith and Wolkowicz [23] to allow for
substrates that are limiting at both low and high concentrations. Since the time
taken to empty and refill the tank is negligible compared to each cycle time, we
assume that the emptying and refilling process occurs instantaneously, and as in
[23] formulate the model as a system of impulsive differential equations.

Impulsive differential equations are described in Bainov and Simeonov [5, 6, 7]
and Lakshmikantham, Bainov, and Simeonov [15]. Using the standard notation for
impulsive differential equations (see [5, 6]), for a given function y(t), and time τ ,

∆y ≡ y+ − y−,

where

y+ ≡ y(τ+) ≡ lim
t→τ+

y(t) and y− ≡ y(τ−) ≡ lim
t→τ−

y(t).

The model of nutrient driven self-cycling fermentation takes the form of the
following system of impulsive differential equations:

dx
dt

= −d̄x + f(s)x, s 6= s̄,

ds
dt

= −
1
Y

f(s)x, s 6= s̄,

∆x = −rx−, s = s̄,
∆s = −rs̄ + rsi, s = s̄,

(1)

x(0) > 0, s(0) > s̄.

Here, t denotes time in minutes, s denotes the concentration (g/L) of the limiting
nutrient in the fermentor as a function of t, x the biomass concentration (g/L) of
the population of microorganisms that consume the nutrient (also as a function
of t), Y the cell yield constant (g biomass/g limiting substrate), d̄ the species-
specific death rate (per minute), si the concentration (g/L) of the fresh medium
added to the tank at the beginning of each new cycle, s̄ the threshold concentration
(g/L) of limiting nutrient that triggers the emptying and refilling process, and r the
emptying/refilling fraction. It is assumed that d̄ > 0, Y > 0, si > s̄ > 0, and
0 < r < 1.

The response function f is assumed to satisfy:

i. f : R+ → R+;
ii. f is continuously differentiable;
iii. f(0) = 0, f(s) > 0 for s > 0;
iv. There exists M > 0 such that f ′(s) > 0 for 0 < s < M,

and f ′(s) < 0 for s > M, where M = ∞ is possible.

(2)
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It is assumption (iv) that allows the response function to be inhibitory at high
concentrations of the nutrient. However, if the response function is monotone in-
creasing, then M = ∞, and the model is precisely the one considered in [23].

Let tk denote the time at which the concentration of the limiting nutrient in the
tank reaches the specified threshold, s̄, for the kth time, called the kth moment
of impulse or impulse time. Hence, s(t−k ) = s̄. From (1), it follows that ∆x(tk) =

x(t+k )−x(t−k ) = −rx(t−k ), and so x(t+k ) = (1−r)x(t−k ), and ∆s(tk) = s(t+k )−s(t−k ) =

−rs̄ + rsi, and so s(t+k ) = (1 − r)s̄ + rsi. For convenience, we define

s̄+ ≡ (1 − r)s̄ + rsi.

Since s(t) decreases during each cycle, if s(0) < s̄, the tolerance s̄ is never reached
and the process fails. It is assumed that s(0) 6= s̄, to avoid an immediate impulsive
effect. In the applications we have in mind, such as water purification or waste
decomposition, si would denote the concentration of some contaminant in the envi-
ronment, s(t) the concentration of the contaminant in the fermentation tank, and
s̄ the acceptable level of the contaminant in the environment, consistent with stan-
dards set by an environmental protection agency. For such applications, normally
s(0) = si.

Define parameters 0 6 λ 6 µ (possibly infinity) to be the break-even concentra-
tions of the nutrient, i.e., f(λ) = d̄, f(µ) = d̄, since x′(t) = 0 if s(t) is equal to
either one of these concentrations. The biomass concentration of the microorganism
population increases only if λ < s(t) < µ. If f is bounded below d̄, then we define
λ, µ = ∞ and there is no hope for the process to succeed. If f(s) > d̄ for all s > λ,
then µ = ∞.

If s̄+ < µ and s(0) < µ, the global analysis given in Smith and Wolkowicz [23]
applies and the dynamics are already completely understood. Here, we are therefore
especially interested in the case that s̄ < µ < s̄+.

2.2. The associated system of ordinary differential equations. Between im-
pulses the system is modelled by a system of ordinary differential equations. This
system will be called the associated system of ordinary differential equations and is
given by

dx
dt

= −d̄x + f(s)x,

ds
dt

= −
1
Y

f(s)x,
(3)

x(0) > 0, s(0) > 0.

For our analysis it is necessary to understand the dynamics of this associated
system for a slightly expanded set of initial conditions compared to system (1).
Figure 1 depicts typical phase portraits in x-s space, in the case a) that d̄ = 0
and b) that d̄ > 0. Using standard phase portrait analysis, it is easy to show that
solutions of (3) remain nonnegative and bounded.

If d̄ = 0, then λ = 0 and µ = ∞. In this case, all points of the form (0, s∗) with
s∗ > 0 and (x∗, 0) with x∗ > 0 are equilibrium points. See Figure 1 a). All orbits
lie along lines Y s + x = Y s(0)+ x(0) with x(t) increasing and s(t) decreasing. Any
orbit with initial conditions satisfying x(0) > 0, s(0) > 0, approaches (x∗, 0), where
x∗ = Y s(0)+x(0) > 0 and hence, all equilibrium points of this form are stable (but
not asymptotically stable). All equilibrium points of the form (0, s∗), with s∗ > 0
are unstable.
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Figure 1. Phase portraits for the associated ordinary differential equa-
tions (3). The bold lines on the axes consist of equilibrium points. (LEFT)

Phase portrait with d̄ = 0. All equilibrium points on the x-axis are stable
but not asymptotically stable. All equilibria on the s-axis are unstable
except the origin. (RIGHT) Phase portrait with d̄ > 0. The concentra-
tion of microorganisms increases for s ∈ (λ,µ) and decreases if s < λ or
s > µ. For all orbits of (3) starting in first quadrant, x(t) → 0 as t → ∞.
The equilibrium points on the s-axis are stable for s > µ and 0 6 s 6 λ

and unstable for λ < s 6 µ.

If d̄ > 0, then only points of the form (0, s∗), with s∗ > 0 are equilibrium points.
See Figure 1 b). If s∗ > µ or s∗ 6 λ, then (0, s∗) is stable, but not asymptotically
stable. If λ < s∗ 6 µ, then (0, s∗) is unstable. If x(0) > 0 and s(0) > 0, then s(t)
is decreasing for all time t and x(t) increases for λ < s(t) < µ, and decreases for
s(t) < λ or s(t) > µ. Thus (x(t), s(t)) converges to an equilibrium point of the form
(0, s∗) with s∗ > µ or s∗ < λ, depending on the initial conditions.

Provided x(0) > 0 and s(0) > 0, from (3),

dx

ds
= Y

(

d̄

f(s)
− 1

)

, (4)

a separable differential equation. It follows that

x(t) = x(0) + Y

∫ s(0)

s(t)

(

1 −
d̄

f(u)

)

du. (5)

It is useful to note that, the slope of trajectories of (4) depends only on s.
Therefore, if γ̃(t) and γ̂(t) are two orbits with initial conditions, (x̃(0), s̃(0)) and
(x̂(0), ŝ(0)), respectively, with s̃(0) = ŝ(0), but x̃(0) − x̂(0) = η > 0, then for any
times t̃ > 0 and t̂ > 0, where s̃(t̃) = ŝ(t̂), it follows that x̃(t̃) − x̂(t̂) = η. Hence,
once one orbit is known, then all others are just translations. It can also be shown
that t̃ < t̂, and so although the orbits are translations, orbits starting with higher
concentrations of the microorganism, i.e., further to the right, take less time to
reduce the level of the contaminant.
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Figure 2. This graph, in phase space, shows the critical curve and a
typical orbit of the associated ordinary differential equation that cor-
responds to a single cycle of the impulsive system (solid curve). The
critical curve (dashed curve) consists of three orbits: the stable mani-
fold of the equilibrium point (0, µ); the equilibrium point (0, µ); and the
unstable manifold of the equilibrium point orbit (0, µ). Dµ is the dis-
tance from where the critical curve intersects the horizontal line s = s̄+

and the s axis. If s̄+
6 µ, then Dµ = 0. If s(0) = s̄+ and s(t) = s̄, then

Ds̄ = x(t) − x(0). Whenever, impulse times tk and tk−1 are defined,
Ds̄ = x(t−k ) − x(t+k−1).

2.3. Dynamics of model (1). We begin by defining,

Ds̄ ≡ Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds, (6)

Dµ ≡

{

0, s̄+ 6 µ,

Y
∫ µ

s̄+

(

1 − d̄
f(s)

)

ds, s̄+ > µ.

Since f(s) < d̄ for s > µ, we have Dµ > 0 for s̄+ > µ. So Dµ > 0 in both cases.
The relative values of Ds̄ and Dµ will play an important role in our results.

If s(0) = s̄+ and s(t) = s̄ in (5), it follows that x(t) − x(0) = Ds̄. Therefore,
whenever impulse times tk−1 and tk are defined,

x(t−k ) − x(t+k−1) = Ds̄ (7)

is constant (see Figure 2).
We define a “critical curve” to be the curve consisting of three orbits: the stable

manifold of the equilibrium point (0, µ); the equilibrium point (0, µ); and the un-
stable manifold of the equilibrium point (0, µ). In Figure 2 the unstable manifold
of the equilibrium point (0, µ) intersects the horizontal line s = s̄ at x = Dµ + Ds̄.
This is always the case if Ds̄ + Dµ > 0. However, if Ds̄ + Dµ < 0, it does not reach
the horizontal line s = s̄, but rather converges to an equilibrium of the form (0, s∗)
where s̄ < s∗ < λ.



NUTRIENT DRIVEN SELF-CYCLING FERMENTATION 807

Dµ is the distance from where the critical curve intersects the horizontal line
s = s̄+ and the s axis. The significance of the critical curve will become more
apparent subsequently.

In the remainder of this section we present three theorems that predict the dy-
namics of model (1) in the cases not already considered in [23]. Unless otherwise
stated, we assume that d̄ > 0. The proofs are given in Section 5. First we charac-
terize when a periodic orbit exists and describe the periodic orbit.

Definition 2.1. A periodic orbit γ(t) has the property of asymptotic phase if for
each point y in the basin of attraction of the periodic orbit, there exists a unique
θ(y) such that limt→∞ |y(t) − γ(t + θ(y))| = 0, where y(t) is the solution through
the point y.

Theorem 2.2. Consider model (1) with s̄ < µ < s̄+. There exists a nontrivial
positive periodic orbit if and only if 1−r

r
Ds̄ > Dµ. The periodic orbit is unique and

has exactly one impulse per period, is asymptotically stable, and has the property of
asymptotic phase.

At the impulse times {tn}
∞

n=1, the periodic orbit satisfies

x(t−n ) = 1
r
Ds̄, x(t+n ) = 1−r

r
Ds̄,

s(t−n ) = s̄, s(t+n ) = s̄+.

The period of the periodic orbit is given by:

T =

∫ s̄+

s̄

Y

f(s)





1
(1−r)

r
Ds̄ + Y

∫ s̄+

s

(

1 − d̄
f(u)

)

du



 ds.

From Theorem 2.2 it follows immediately that if Ds̄ 6 0 then no periodic orbit
exists and the process fails. However, if Ds̄ > 0, then it may be possible to find a
range of values of the emptying and refilling fraction r ∈ (0, 1) for which 1−r

r
Ds̄ >

Dµ. In this case a locally asymptotically stable periodic orbit exists (see the solid
orbit in Figure 3 (TOP)). As will be shown in Theorem 2.3, at least in theory, the
process is successful, provided the initial conditions are chosen appropriately.

In order to understand how the initial conditions affect the predicted outcome,
first notice that if 1−r

r
Ds̄ = Dµ, it follows that

Ds̄

r
= Dµ + Ds̄ = Dµ +

r

1 − r
Dµ =

Dµ

1 − r
.

A similar result holds if one replaces “=” everywhere by “>” or by “<”. Therefore,
one and only one of the following holds: either

i) 1−r
r

Ds̄ > Dµ ⇐⇒ Ds̄

r
> Dµ + Ds̄ > Dµ

1−r
(see Figure 3 (TOP)), or

ii) 1−r
r

Ds̄ = Dµ ⇐⇒ Ds̄

r
= Dµ + Ds̄ = Dµ

1−r
(Figure 3 (MIDDLE)), or

iii) 1−r
r

Ds̄ < Dµ ⇐⇒ Ds̄

r
< Dµ + Ds̄ < Dµ

1−r
(Figure 3 (BOTTOM)).

The following three conditions will prove useful to describe how the initial con-
ditions affect the outcome in model (1).

(A1) x(0) + Y
∫ s(0)

s̄

(

1 − d̄
f(s)

)

ds > 0,

(A2) x(0) + Y
∫ s(0)

µ

(

1 − d̄
f(s)

)

ds > 0,

(A3) (1 − r)
(

x(0) + Y
∫ s(0)

s̄

(

1 − d̄
f(s)

)

ds
)

> Dµ.
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Figure 3. The relative positions (in phase space) of the periodic
orbit and the critical curve when: (TOP)

1
1−r

Dµ < Dµ +Ds̄ < 1
r
Ds̄.

There is a unique attracting periodic orbit; (MIDDLE)
1

1−r
Dµ = Dµ+

Ds̄ = 1
r
Ds̄. No periodic orbit exists. The dashed, dotted, and

solid curves above coalesce forming the critical curve; (BOTTOM)

1
r
Ds̄ < Dµ + Ds̄ < 1

1−r
Dµ. Again no periodic orbit exists. The

dotted curve in the top graph now sits to the right side of the
critical curve and the solid curve sits to the left (possibly totally
disappearing if made up completely of negative values). In all three
cases: if λ < s̄, then the dash-dotted curve no longer exists; if
s̄+ 6 µ, then Dµ = 0 and the dotted curve disappears.
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Note that, since Dµ > 0, (A3) implies (A1).
Orbits that have initial conditions satisfying

x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds = 0

lie on the stable manifold of the equilibrium point (0, s̄) (see the dash-dotted curve
at the bottom left of each graph in Figure 3.) Any orbit that starts inside the
region bounded by this stable manifold and the s-axis never reaches s̄, but rather
converges to an equilibrium of the form (0, s∗) where s̄ < s∗, and so there are no
impulses. If (A1) holds, the orbit starts outside this region. If λ < s̄ < µ, then the
equilibrium point (0, s̄) is unstable and this region is empty.

Orbits that have initial conditions satisfying

s(0) > µ and x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds = 0

lie on the stable manifold of the equilibrium point (0, µ) (see the dashed curve
above the horizontal line s = µ in each graph in Figure 3). For any orbit that
initiates inside the region bounded by this curve and the s-axis, s(t) never reaches
µ, but rather converges to an equilibrium of the form (0, s∗) with s∗ > µ. If (A2)
is satisfied, then the orbit starts in the region to the right of this portion of the
dashed curve.

Orbits that have initial conditions satisfying

(1 − r)

(

x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds

)

= Dµ

are depicted in Figure 3 by the dotted curves. In Figure 3 (MIDDLE) this curve
coalesces with the critical curve and the periodic orbit. (This is the motivation
for the nomenclature.) For orbits with initial conditions on this curve, there is
a time t1 satisfying s(t−1 ) = s̄. The corresponding value, x(t−1 ) = 1

1−r
Dµ and so

x(t+1 ) = Dµ. Hence at the time of impulse the orbit is transported onto the critical
orbit at (Dµ, s̄+). Thus, there are no more impulses and the orbit converges to the
equilibrium point (0, µ). If the orbit starts in the region to the left and below this
dotted curve, but to the right of the dash-dotted curve, then s̄ is reached, and at
the time of impulse the orbit is transported to the region to the left of the stable
manifold of the equilibrium point (0, µ) above the line s = µ and converges to an
equilibrium of the form (0, s∗) with s∗ > µ, and so there are no more impulses. If
(A3) is satisfied the orbit starts in the region to the right or above this dotted curve.

If we are in the case i) depicted in Figure 3 (TOP), and start with initial conditions
in the region to the right of the stable manifold of (0, µ) and above and to the right
the dotted curve, then it can be shown that the process cycles indefinitely. All
possible outcomes are summarized in the following Theorem.

Theorem 2.3. Consider model (1) with s̄ < µ < s̄+.

1. Assume that 1−r
r

Ds̄ > Dµ. Then there exists a unique asymptotically stable
periodic orbit with finite period T > 0. (See Figure 3 (TOP).)
i) An orbit with initial conditions satisfying (A3) when s(0) 6 µ, or (A2)

when s(0) > µ, has an infinite sequence of impulse times {tn}
∞

n=1 and the
orbit converges to the asymptotically stable periodic orbit.
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ii) For an orbit with initial conditions violating (A3) when s(0) 6 µ, but
satisfying (A1), there exists a single t1 such that s(t−1 ) = s̄, and then
s(t) > µ for all finite t > t1, with s(t) → s∗ > µ as t → ∞ and x(t) → 0
as t → ∞.

iii) If s(0) 6 µ and (A1) is violated, then s(t) > s̄ for all finite t > 0 and
s(t) → s∗, where s̄ 6 s∗ < λ, as t → ∞ and x(t) → 0 as t → ∞. If
s(0) > µ and (A2) is violated, then s(t) > µ for all finite t > 0 with
s(t) → s∗ > µ as t → ∞ and x(t) → 0 as t → ∞.

In case i), the fermentor cycles indefinitely, and so there exists an infi-
nite sequence of impulse times {tn}

∞

n=1. As n → ∞, tn → ∞, tn − tn−1 →
T, x(t−n ) → 1

r
Ds̄ and x(t+n ) → 1−r

r
Ds̄. For all positive integers n, solutions

satisfy s(t+n ) = s̄+ and s(t−n ) = s̄, and either,
a) x(t−n ) = 1

r
Ds̄, x(t+n ) = 1−r

r
Ds̄, and tn+1 − tn = T , hold for all n,

b) x(t−n ) < 1
r
Ds̄, x(t+n ) < 1−r

r
Ds̄, x(t−n ) < x(t−n+1), x(t+n ) < x(t+n+1), and

tn − tn−1 > tn+1 − tn > T, hold for all n, or
c) x(t−n ) > 1

r
Ds̄ x(t+n ) > 1−r

r
Ds̄, x(t−n ) > x(t−n+1), x(t+n ) > x(t+n+1), and

tn − tn−1 < tn+1 − tn < T, hold for all n.
2. Assume that 1−r

r
Ds̄ = Dµ. There are no periodic orbits and for all orbits,

lim inft→∞ x(t) = 0. (See Figure 3 (MIDDLE).)
i) An orbit with initial conditions satisfying (A3) when s(0) 6 µ, or (A2)

when s(0) > µ, converges to the critical curve. There are an infinite
number of impulses, but the time between impulses increases monotoni-
cally and approaches infinity.

ii) For an orbit with initial conditions violating (A3) when s(0) 6 µ, but
satisfying (A1), there exists a single t1 such that s(t−1 ) = s̄, and then
s(t) > µ for all finite t > t1, with s(t) → s∗ > µ as t → ∞ and x(t) → 0
as t → ∞.

iii) If s(0) 6 µ and (A1) is violated, then s(t) > s̄ for all finite t > 0 and
s(t) → s∗, where s̄ 6 s∗ < λ, as t → ∞ and x(t) → 0 as t → ∞. If
s(0) > µ and (A2) is violated, then s(t) > µ for all finite t > 0 with
s(t) → s∗ > µ as t → ∞ and x(t) → 0 as t → ∞.

3. Assume that 1−r
r

Ds̄ < Dµ. There are at most a finite number of impulses.
The time between impulses increases. Also s(t) > s̄ for t sufficiently large,
with s(t) → s∗ > s̄ and x(t) → 0 as t → ∞. (See Figure 3 (BOTTOM).)

In all cases except case 1. i), Theorem 2.3 predicts that the process fails. In case
1, success depends on the choice of initial conditions. If the process undergoes two
impulses, then it will cycle indefinitely with a bounded time between impulses. In
case 2, 1−r

r
Ds̄ = Dµ, solutions that undergo two impulses, also undergo an infinite

number of impulses, but the time between impulses increases without bound and
the population of microorganisms essentially washes out. In case 3, 0 < 1−r

r
Ds̄ <

Dµ, solutions undergo at most a finite number of impulses, and eventually the
microorganisms wash out.

Theorem 2.4. Consider model (1) with µ 6 s̄ < s̄+. In this case, 1−r
r

Ds̄ < Dµ.
System (1) admits no periodic orbit. If initial conditions satisfy (A1), then there
are at most a finite number of impulses. If initial conditions violate (A1), then there
are no impulses. In both cases, s(t) → s∗ > s̄ and x(t) → 0 as t → ∞.

The cases s̄ < µ < s̄+ and µ 6 s̄ < s̄+ were considered in Theorems 2.3 and
2.4, respectively. It remains to consider the case, s̄ < s̄+ 6 µ. If s(0) 6 µ, this
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was resolved in [23]. The outcome depends on the sign of Ds̄ (called sint in [23]).
If Ds̄ > 0, the process is successful for appropriate initial conditions, otherwise it
fails. If s(0) > µ, and (A2) holds, after the first impulse, s(t+1 ) 6 µ and we are
back in the case just discussed. However, if s(0) > µ and (A2) is violated, then the
process fails. There are no impulses and x(t) → 0 and s(t) → s∗ > µ as t → ∞.

3. Simulations. In 1930, Haldane [14] derived the following form to model the
activity of a substrate-inhibited enzyme,

f(s) =
ms

(ks + s)(1 + s
ki

)
. (8)

Here s denotes the concentration of the substrate; m the maximum specific growth
rate; ks the half-saturation coefficient; and ki the inhibition coefficient.

Andrews [4], popularized the mathematically similar form,

f(s) =
ms

ks + s + s2

ki

. (9)

to model the specific growth rate of microorganisms inhibited at high as well as low
concentrations of substrate.

Many different forms for the response function have been proposed and tested.
See for example Aiba et. al [1], Alagappan and Cowan [2, 3], Boon and Landelout
[8], Edwards [12], Luong [16], and Wayman and Tseng [25].

In particular, Wayman and Tseng [25] modified the Monod form

WT (s) =

{

ms
ks+s

if s < s0,
ms

ks+s
+ i(s − s0) if s ≥ s0,

(10)

where the parameters m and ks have the same interpretation as before, i is an
inhibition coefficient, and s0 is the threshold of the substrate concentration below
which there is no apparent inhibition.

Recently, Alagappan and Cowan [2] proposed the following modification of the
Wayman and Tseng form,

mWT (s) =







ms

ks+s+ s2

ki

if s < s0,

ms

ks+s+ s2

ki

+ i(s − s0) if s ≥ s0,
(11)

and in [3] tested this form against the forms of Andrews, Luong, Wayman and
Tseng, and Aiba et. al. for the growth of several different microorganisms on
benzene or toluene. They found that in the case of biodegradation of toluene, for
Pseudomonas Putipda F1 and mt2, the Wayman-Tseng model (10) provided the
best fit to their data, whereas for Ralstonia picketti PKO1 the modified Wayman-
Tseng model (11) provided the best fit. See Table 1 for the response functions and
species specific parameters that they found best fitted their data and Figure 4 for
the corresponding graphs of these response functions of best fit.

By means of numerical simulations using MATLAB we show an example for
which the model predicts successful implementation of the self-cycling fermentation
process in the case of biodegradation of toluene by Ralstonia picketti PKO1.

This example illustrates Theorem 2.3.1. i). Here, s̄ < λ < µ < s̄+ and
(1 − r)Ds̄ > rDµ. In most applications, s(0) = si > s̄+ > µ, and so, in this case,
as long as (A2) is satisfied, i.e. the process starts with enough microorganisms in
the tank, the model predicts that the fermentor will cycle indefinitely, approaching
the state described by the unique orbitally asymptotically stable periodic orbit
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Table 1. Response functions and corresponding parameters of
best fit from [3] for biodegradation of toluene.

Strain 1 2 3 4

Name Ralstonia Pseudomonas Pseudomonas Hypothetical
pickettii PKO1 putida mt2 putida F1 species

f(s) mWT (s) WT (s) WT (s) mWT (s)

Species Specific Parameters

m ks ki s0 i Smax

(h−1) (mg/L) (mg/L) (mg/L) (L mg h) (mg/L)
1 0.48 3.20 352 220 0.002 341
2 0.36 0.97 – 206 0.0019 395
3 0.35 0.58 – 278 0.0028 402
4 0.37 0.24 339 163 0.00085 370

d̄ λ µ Y
(h−1) (mg/L) (mg/L) (mg/L)

1 0.11 0.95 294 1.05
2 0.065 0.21 360 1.25
3 0.06 0.12 381 1.34
4 0.041 0.02 333 1.43

with a bounded cycle time (see the two orbits in phase space in Figure 5 and the
corresponding time series in Figure 6). From the time series, one can see that the
cycle time of the orbit approaching from the left increases and the cycle time of
the orbit approaching from the right decreases to the cycle time of the attracting
periodic orbit, as predicted by Theorem 2.3.1. i) b) - c).
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Figure 4. The response functions for Pseudomonas putida mt2 and
F1 are modelled using the Wayman-Tseng form (10) and for Ralstonia
pickettii PKO1 and the “Hypothetical strain” by the modified Wayman-
Tseng form (11). See Table 1 for the parameter values.
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Figure 5. Graph of two orbits in phase space that cycle indefinitely
and show successful operation of the fermentor in the case of biodegra-
dation of toluene by Strain 1, Ralstonia picketti PKO1. See Table 1
for the response function and species specific parameters used. Other
operating parameters were chosen to be: si = 340 mg/L, s̄ = 0.024
mg/L, r = 0.9, and so s̄+ = 306 mg/L, λ = 0.95 mg/L, µ = 294
mg/L, Ds̄ = 184.9, and Dµ = 1.70. Therefore, s̄ < λ < µ < s̄+ and
(1 − r)Ds̄(r) = 18.49 > 1.53 = rDµ(r). The two orbits, one (dashed)
approaches the orbitally asymptotically stable periodic orbit, from the
right, and the other (solid) approaches it from the left. At each impulse,
there is a discontinuity. The dashed orbit moves further to the left and
the solid orbit moves further to the right. Both orbits become almost
indistinguishable from the periodic orbit in approximately 3 − 4 cycles.
Initial conditions of the solid orbit are x(0) = 130, s(0) = si and of the
dashed orbit are x(0) = 185, s(0) = si.

4. The emptying and refilling fraction. In their experiments, Wincure, Cooper,
and Rey [27] chose the emptying and refilling fraction to be r = 1

2 . However, in

[23] it was shown that the fraction that maximizes the efficiency need not be 1
2 and

described how to find the best r.
Before considering how to find the best r, we consider whether values of the

emptying and refilling fraction can be found for which the process can be success-
ful, if appropriate initial conditions are chosen (see Theorem 2.3.1. i)), once all
parameters except r are determined.

In the following Theorem we indicate that if the fermentor can be operated
successfully for one choice of r ∈ (0, 1), then there is an open interval, (r0, r

0) ⊂
[0, 1], containing all possible choices of r that will result in successful operation. By
Theorem 2.4, if s̄ > µ, the process cannot succeed. Hence, we assume that s̄ < µ,
throughout this section. We think of Ds̄ and Dµ as functions of r, and denote them
by Ds̄(r) and Dµ(r).

We are particularly interested in where the functions (1 − r)Ds̄(r) and rDµ(r)
intersect. See Figure 7 for an example of biodegradation of toluene by Ralstonia
pickettii PKO1, based on the response function form and parameters shown to be
the best fit in [3] (see Tables 1 and 2).
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Figure 6. The corresponding time series, of the orbits depicted in
Figure 5. The cycle time of the solid orbit (the one that approaches
from the left in the phase portrait) decreases and the cycle time of the
dashed orbit (the one approaching from the right) increases approaching
the period of the attracting periodic orbit, approximately 29 hours.

Theorem 4.1. Fix all parameters except r. Assume that s̄ < µ. Define r∗ =
min(1, µ−s̄

si−s̄
).

1. If (1−r∗)Ds̄(r
∗) > r∗Dµ(r∗), then there exists a nonempty interval (r0, r

0) ⊂
[0, 1] such that (1 − r)Ds̄(r) > rDµ(r) for all r ∈ (r0, r

0), and for any r in
this interval, initial conditions exist for which the process cycles indefinitely
with finite cycle time, and hence is successful. If r /∈ (r0, r

0), the process fails.
(a) If s̄ < λ, then r0 > 0. If s̄ > λ, then r0 = 0.
(b) If µ < si, then r0 < 1. If µ > si, then r0 = 1.
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Figure 7. The graphs of (1 − r)Ds̄(r) and rDµ(r) as r varies, for
Ralstonia pickettii limited by toluene with si = 340 and s̄ = .024. See
Table 1 for the response function and parameter values used. In this
case, λ = 0.95 mg/L and µ = 294 mg/L and so s̄ < λ < µ < si, and so
r0 = 0.015 > 0 and r0 = 0.93 < 1.

2. If (1 − r∗)Ds̄(r
∗) 6 r∗Dµ(r∗), then (1 − r)Ds̄(r) 6 rDµ(r) for all r ∈ (0, 1),

and the process fails for any choice of r.

From Theorem 4.1 it follows immediately that if a population of microorganisms
can be chosen so that λ < s̄ 6 si 6 µ, then any choice of r ∈ (0, 1) would theo-
retically result in success for some choice of initial conditions. See Table 2 for the
values of r0, r

0 and r∗, for the strains considered in Table 1.
Now we consider how to choose r in order to maximize the yield, and hence the

efficiency, of the self-cycling fermentation process. By the yield, we mean the total
volume of medium processed over some fixed time period, T , where T is relatively
long compared to the time between impulses.

For successful operation, besides requiring that (1−r)
r

Ds̄(r) > Dµ(r), initial con-
ditions must be selected appropriately. If so, after a finite number of impulses,
orbits are almost indistinguishable from the attracting cycle. Thus, for the purpose
of comparing yields, for different values of r, just as in [23], since we are assuming
T is large compared to the cycle time, we choose initial conditions on the periodic
orbit, that is, x(0) = 1−r

r
Ds̄ and s(0) = s̄+.

We represent the yield by

Ω(r) =
rV

T (r) + (α(V )r + ǫ)
T . (12)

where r is the emptying/refilling fraction, assumed to be strictly between r0 and
r0, V is the volume of medium in the tank, which is assumed to be constant except
during the emptying and refilling time, T (r) is the period of the periodic orbit and
hence the time between impulses, α(V )r + ǫ is the time taken to empty and refill
the tank, and T ≫ T (r) is the fixed period of time over which the total yield is
calculated. Our goal is to

find r̄ ∈ (r0, r
0), such that Ω(r̄) = max

r∈(r0,r0)
Ω(r).

The expression for the yield given in (12) is more realistic than the expression given
in [23], where the term in brackets was instead approximated by a constant, and so
was independent of r. Here we take into consideration that the larger the fraction
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Table 2. Comparing effectivenesss of strains for different levels of
the pollutant, toluene.

Simulation s̄ (mg/L) α(V ) (hour) ǫ (hour) T (hour)

Parameters 0.024 1/60 4.5/60 100000

Initial level of pollutant toluene, si=100 mg/L

Strains r0 r0 r∗ r̄ s̄+
r̄ T (r̄) Ω(r̄)

(mg/L) (hour) (litres)
1 0.05 1 1 0.47 47.40 3.46 13350
2 0.007 1 1 0.33 33.03 1.76 17854
3 0.003 1 1 0.28 28.14 1.36 19459
4 0.0001 1 1 0.20 20.67 0.79 23607

Initial level of pollutant toluene, si=250 mg/L

Strains r0 r0 r∗ r̄ s̄+
r̄ T (r̄) Ω(r̄)

(mg/L) (hour) (litres)
1 0.02 1 1 0.30 76.54 1.90 15430
2 0.0029 1 1 0.26 65.11 1.24 19663
3 0.0012 1 1 0.23 57.85 1.03 20833
4 0.00005 1 1 0.16 40.46 0.60 23539

Initial level of pollutant toluene, si=340 mg/L

Strains r0 r0 r∗ r̄ s̄+
r̄ T (r̄) Ω(r̄)

(mg/L) (hour) (litres)
1 0.015 0.93 0.865 0.25 87.64 1.55 15810
2 0.0021 1 1 0.24 82.97 1.13 20083
3 0.00093 1 1 0.22 74.90 0.96 21135
4 0.000037 0.99 0.979 0.14 50.22 0.55 23274

of the tank emptied, the longer it takes. See Table 2 for the values of s̄, α(V ), ǫ and
T used in all of the simulations in this section. For the purpose of comparison, the
volume V was assumed to be one liter. Selection of a more appropriate tank size
would likely be more efficient in practice.

The following explicit formula for T (r) was derived in [23],

T (r) =

∫ s̄+

s̄

Y

f(s)





1
(1−r)

r
Ds̄ + Y

∫ s̄+

s

(

1 − d̄
f(u)

)

du



 ds. (13)

We compare the cycle time and the yield for a hypothetical strain and three
of the five pure cultures of toluene degrading strains, Ralstonia pickettii PKO1,
Pseudomonas putida F1, and Pseudomonas putida mt2, considered in Table V of
[3], where they provide the best functional form to model the specific growth rates
along with the parameters giving the best fit. This information is summarized in
Table 1 and Figure 8. We did not consider two of the strains considered in [3], since
the specific growth rates of those strains were lower than that of Pseudomonas
putida mt2 for all concentrations of toluene considered, and so clearly they would
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not be as efficient. The hypothetical strain was found by accident, i.e. parameters
for one of the omitted strains was entered incorrectly. However, we include the
results for this strain, since the parameters are reasonable and we found the result
surprising and informative with respect to how to choose the most effective strain.

The hypothetical strain was the most effective over a large range of the input
contaminant levels si, even though its specific growth rate is lower than that of the
other populations over a wide range of concentrations of the contaminant. It seems
that, having a high specific growth rate at very low levels of the contaminant is more
important than having a high specific growth rate at moderate to high levels. This
observation is also consistent with the second most effective strain, Pseudomonas
putida F1. Compare the specific growth rates in Figure 4 and the yields in Figure 8
for input pollutant levels si = 100 and 250 mg/L.

Note also that the theoretical optimal yield may require r̄ to be too close to zero
or too close to 1 to be implementable. Figure 8 shows that although one strain might
have the optimal yield for a particular value of r, it need not be the most effective
for all values of r. Thus, if the optimal value r̄ is not implementable, further investi-
gation is necessary. See in particular Figure 8 in the case that si = 340 mg/L, where
the optimal value of r is quite small for the most effective strain, the hypothetical
strain. If for example it is not practical to choose r < 0.4, it might be advantageous
to operate the fermentor with a different strain, the Pseudomonas putida F1, in this
case. In any case, understanding how to choose the best emptying/refilling fraction
for the particular situation can help to improve the effectiveness of the process.

5. Proofs. Throughout this section we assume that d̄ > 0 unless otherwise speci-
fied. Before proving the Theorems we give a number of Lemmas.

Lemma 5.1. Let γ̃(t) and γ̂(t) be two orbits of (3), with the initial conditions,
(x̃(0), s̃(0)) and (x̂(0), ŝ(0)), respectively, satisfying s̃(0) = ŝ(0), but x̃(0) − x̂(0) =
η > 0. For any times t̃ > 0 and t̂ > 0, where s̃(t̃) = ŝ(t̂), it follows that x̃(t̃)−x̂(t̂) = η
and t̃ < t̂.

Proof. See Lemma 1 of [23].

Lemma 5.2. Let γ(t) = (x(t), s(t)) be an orbit of (3) with x(0) > 0, s(0) > s̄. If
either

i) s(0) > s̄ > µ and (A1) holds,
ii) µ > s(0) > s̄ and (A1) holds, or
iii) s(0) > µ > s̄ and (A1) and (A2) hold,

then there exists t1 > 0, finite, such that x(t1) > 0 and s(t1) = s̄.

Proof. It is clear that the vector field for system (3) is C1. From the phase portrait
(see Figure 1 (RIGHT)), all orbits are bounded, there are no equilibria with both
components positive, and s(t) is strictly decreasing. The s-axis consists entirely
of equilibria and for all orbits with x(0) > 0 initiating on the x-axis, s(t) ≡ 0
and x(t) → 0 as t → ∞. Therefore, for all orbits with positive initial conditions,
x(t) → 0 and s(t) → s∗ > 0 as t → ∞.

First, assume that case iii) holds. We begin by proving that there exists a t̂ > 0,
finite, so that s(t̂) = µ and x(t̂) > 0. Suppose not, i.e., assume that s(t) → s∗ > µ
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Figure 8. (LEFT) Cycle time (period of the attracting periodic orbit)
and (RIGHT) yield as r varies, for the biodegradation of toluene by sev-
eral strains for different levels of contamination by toluene. Tables 1
and 2 give the response functions, parameter values, and results of the
simulations, including the optimal emptying/refilling fraction and corre-
sponding cycle time and yield. For all three levels of the contaminant, the
optimal yield was obtained by the hypothetical strain, followed by Pseu-
domonas putida F1, Pseudomonas putida mt2, and Ralstonia pickettii
PKO1. However, for larger (nonoptimal) values of the emptying/refilling
fraction, Pseudomonas putida F1 was most effective. It is not the strain
that has the highest specific growth rate over the largest range of toluene
concentration (see Figure 4), but rather the one that has the highest spe-
cific growth rate over very low concentrations of toluene, just above the
threshold s̄, that appears to be most efficient.
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as t → ∞. Then, since x(t) → 0 as t → ∞, by (5)

0 = lim
t→∞

x(t) = x(0) + Y

∫ s(0)

s∗

(

1 −
d̄

f(s)

)

ds

> x(0) + Y

∫ s(0)

s∗

(

1 −
d̄

f(s)

)

ds + Y

∫ s∗

µ

(

1 −
d̄

f(s)

)

ds

= x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds

> 0, by (A2).

From this contradiction we conclude that s∗ < µ. It follows immediately from the
vector field (see Figure 1 (RIGHT)), that s∗ < λ. Suppose s∗ > s̄. Since

0 = lim
t→∞

x(t) = x(0) + Y

∫ s(0)

s∗

(

1 −
d̄

f(s)

)

ds

> x(0) + Y

∫ s(0)

s∗

(

1 −
d̄

f(s)

)

ds + Y

∫ s∗

s̄

(

1 −
d̄

f(s)

)

ds

= x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds

> 0, by (A1),

a contradiction. Therefore, s∗ < s̄ and so there exists a finite t1 > 0 such that
s(t1) = s̄. The proofs of cases (i) and (ii) are similar.

Lemma 5.3. Let γ(t) = (x(t), s(t)) be an orbit of (3) with x(0) > 0, s(0) > s̄. If
(A1) is not satisfied, then s(t) > s̄ and for all finite t, s(t) → s∗ > s̄ and x(t) → 0
as t → ∞.

Proof. Assume that (A1) is not satisfied. We proceed using proof by contradiction.
Suppose there exists at least one finite t̃ such that s(t̃) = s̄. By (5),

x(t̃) = x(0) + Y

∫ s(0)

s(t̃)

(

1 −
d̄

f(s)

)

ds = x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds 6 0,

since (A1) is not satisfied. This is impossible, since the s-axis is made up of equilibria
that can not be reached or crossed in finite time. Therefore, s(t) > s̄ for all finite t.
The result follows immediately (see Figure 1 (RIGHT))

Lemma 5.4. Let γ(t) = (x(t), s(t)) be an orbit of (3) with x(0) > 0, s(0) > s̄.
Assume s̄ < µ < s(0).

i) If (A2) is not satisfied, then s(t) > µ for all finite t, and s(t) → s∗ > µ as
t → ∞.

ii) If (A2) is satisfied, but (A1) is not satisfied, then s(t) > s̄ for all finite t and
s(t) → s∗ > s̄ as t → ∞, where s̄ 6 s∗ < λ.

Proof. Suppose that s̄ < µ < s(0). i) First, assume that (A2) is not satisfied. If
there exists a finite t̃ such that s(t̃) = µ, by (5),

x(t̃) = x(0) + Y

∫ s(0)

s(t̃)

(

1 −
d̄

f(s)

)

ds = x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds 6 0,

since (A2) is not satisfied. This is impossible, since the s-axis is made up of equi-
libria that cannot be reached within finite time. Therefore, s(t) > µ for all finite
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t. The result now follows directly from the properties of the vector field (see Fig-
ure 1 (RIGHT)).

ii) Assume (A2) is satisfied, but not (A1). As in the proof of Lemma 5.2, there
exists a t̂ > 0, finite, such that s(t̂) = µ and x(t̂) > 0. Recall that s(t) is strictly
decreasing. From the phase portrait it now follows that s(t) > µ for t < t̂ and
s(t) < µ for t > t̂. Since (A1) is not satisfied, the result follows immediately from
Lemma 5.3.

The following two Lemmas concern system (1).

Lemma 5.5. Let γ(t) = (x(t), s(t)) be an orbit of (1). Assume that s̄+ > µ,
1−r

r
Ds̄ > Dµ, and there exists a finite t1 such that s(t−1 ) = s̄. Then if (A3)

holds, there is an increasing sequence of distinct times {tn}
∞

n=1, such that s(t−n ) =
s̄, s(t+n ) = s̄+, and x(t+n ) > Dµ; if (A3) is violated, the only impulse occurs at t = t1
and s(t) > µ for all finite t > t1, s(t) → s∗ > µ, x(t) → 0 as t → ∞.

Proof. Since s(t−1 ) = s̄ for t1 finite, it follows that x(t−1 ) > 0. The s-axis is composed
of equilibria and so x(t) cannot reach 0 within finite time. By (5),

x(t−1 ) = x(0) + Y

∫ s(0)

s(t−
1

)

(

1 −
d̄

f(s)

)

ds = x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds.

First, suppose (A3) holds. From the impulse condition of (1),

s(t+1 ) = s(t−1 ) − rs̄ + rsi = (1 − r)s̄ + rsi = s̄+,

x(t+1 ) = x(t−1 ) − rx(t−1 )

= (1 − r)x(t−1 )

= (1 − r)

(

x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds

)

> Dµ, by (A3). (14)

At time t1, (x, s) instantly jumps from point (x(t−1 ), s̄) to (x(t+1 ), s̄+) and continues
to move along the curve (x(t), s(t)) described by the solution of system (3) with
the new initial condition (x(t+1 ), s(t+1 )), where s(t+1 ) = s̄+. Since s̄+ > µ, it follows
that s(t+1 ) = s̄+ > µ. Since f(s) < d̄ for µ < s < s̄+,

Dµ ≡ Y

∫ s̄+

µ

(

d̄

f(s)
− 1

)

ds > 0.

Since 1−r
r

Ds̄ > Dµ and Dµ > 0, we obtain Ds̄ > 0. By (14),

x(t+1 ) > Dµ = Y

∫ s̄+

µ

(

d̄

f(s)
− 1

)

ds,

and so

x(t+1 ) + Y

∫ s̄+

µ

(

1 −
d̄

f(s)

)

ds > 0.

In addition,

x(t+1 ) + Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds = x(t+1 ) + Ds̄ > 0.
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Therefore, the new initial condition (x(0), s(0)) = (x(t+1 ), s(t+1 )) in system (3) sat-
isfies (A2) and (A1). The hypotheses of case iii) in Lemma 5.2 are satisfied. There-
fore, there exists t2 > t1 such that s(t−2 ) = s̄. Again from (5), we obtain

x(t−2 ) = x(t+1 ) + Y

∫ s(t+
1

)

s(t−
2

)

(

1 −
d̄

f(s)

)

ds

= x(t+1 ) + Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds

= x(t+1 ) + Ds̄.

By the impulse condition of (1),

s(t+2 ) = s(t−2 ) − rs̄ + rsi = (1 − r)s̄ + rsi = s̄+

x(t+2 ) = (1 − r)x(t−2 )

= (1 − r)
(

x(t+1 ) + Ds̄

)

> (1 − r)Dµ + (1 − r)Ds̄

> (1 − r)Dµ + rDµ

= Dµ.

Just as for t+1 , we can show that (A1) and (A2) are satisfied for (x(t+2 ), s(t+2 )).
Again, case iii) in Lemma 5.2 holds. It follows that there is a time t3 > t2 such
that s(t−3 ) = s̄, s(t+3 ) = s̄+ and x(t+3 ) > Dµ. This process can be repeated without
end. Hence, there is an increasing sequence of distinct impulse times {tn}

∞

n=1 such
that s(t−n ) = s̄, s(t+n ) = s̄+, and x(t+n ) > Dµ.

If (A3) is violated, then

x(t+1 ) 6 Dµ and s(t+1 ) = s̄+.

At time t1, (x, s) instantly jumps from point (x(t−1 ), s̄) to (x(t+1 ), s̄+) and continues
to move along the curve (x(t), s(t)) described by the solution of system (3) with
new initial condition (x(t+1 ), s(t+1 )). By Lemma (5.4)i) with initial condition equal
to (x(t+1 ), s(t+1 )), s(t) > µ for all finite t > t1, s(t) → s∗ > µ, and x(t) → 0, as
t → ∞.

Lemma 5.6. Consider an orbit (x(t), s(t)) of (1). If there exists an increasing
sequence of distinct times {tn}

∞

n=1 such that s(t−n ) = s̄, then

x(t−n ) =
1

r
Ds̄ + (1 − r)n−1

(

x(t−1 ) −
1

r
Ds̄

)

,

x(t+n ) =
1 − r

r
Ds̄ + (1 − r)n

(

x(t−1 ) −
1

r
Ds̄

)

,

and so x(t−n ) → 1
r
Ds̄, x(t+n ) → 1−r

r
Ds̄ as n → ∞.

If x(t−1 ) > 1
r
Ds̄, {x(t−n )} and {x(t+n )} are decreasing sequences, and if x(t−1 ) <

1
r
Ds̄, {x(t−n )} and {x(t+n )} are increasing sequences. If x(t−1 ) = 1

r
Ds̄, then x(t+n ) =

1
r
Ds̄, x(t−n ) = 1−r

r
Ds̄ for all positive integers n.

Proof. From (5),

x(t−n ) = x(t+n−1) + Ds̄ = (1 − r)x(t−n−1) + Ds̄, n = 2, 3, 4, · · · .
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Solving these, we obtain

x(t−n ) = (1 − r)(n−1)x(t−1 ) + Ds̄

(

1 + (1 − r) + · · · + (1 − r)(n−2)
)

= (1 − r)(n−1)x(t−1 ) + Ds̄

(

1 − (1 − r)(n−1)

r

)

=
1

r
Ds̄ + (1 − r)n−1

(

x(t−1 ) −
1

r
Ds̄

)

, n = 2, 3, 4, · · · .

Therefore,

x(t+n ) = (1 − r)x(t−n ) =
1 − r

r
Ds̄ + (1 − r)n

(

x(t−1 ) −
1

r
Ds̄

)

, n = 2, 3, 4, · · · ,

and the limiting and monotonicity properties follow immediately.

Lemma 5.7. Consider system (1) with 1−r
r

Ds̄ > Dµ. If s(0) > µ and (A2) holds,
then (A3) holds.

Proof. From 1−r
r

Ds̄ > Dµ, we obtain

Dµ + Ds̄ > Dµ +
r

1 − r
Dµ

>
(1 − r)Dµ + rDµ

1 − r
>

Dµ

1 − r
.

If s(0) > µ and (A2) is satisfied, as in the proof of Lemma 2, there exists t̂ > 0 such
that x(t̂) > 0 and s(t̂) = µ. We proceed by showing that there is a finite t1 (> t̂)
such that s(t1) = s̄. Suppose not, i.e. assume that s(t) → s∗ > s̄. Then there are
no impulses. So the orbit behaves precisely the same as the orbit of the associated
system (3) with initial conditions (x(0), s(0)). From the phase portrait of (3), it
follows immediately that s̄ < s∗ < λ. Since x(t) → 0 as t → ∞, by (5),

0 = lim
t→∞

x(t) = x(0) + Y

∫ s(0)

s∗

(

1 −
d̄

f(s)

)

ds

= x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds + Y

∫ µ

s∗

(

1 −
d̄

f(s)

)

ds

= x(t̂) + Y

∫ µ

s∗

(

1 −
d̄

f(s)

)

ds

> x(t̂) + Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds

= x(t̂) + Ds̄

> 0, since x(t̂) > 0 and Ds̄ > 0,

a contradiction. Hence there is a finite t1 such that s(t1) = s̄. By (5),
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x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds

=x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds + Y

∫ µ

s̄

(

1 −
d̄

f(s)

)

ds

=x(t̂) + Y

∫ µ

s̄

(

1 −
d̄

f(s)

)

ds

>Y

∫ µ

s̄

(

1 −
d̄

f(s)

)

ds

=Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds − Y

∫ s̄+

µ

(

1 −
d̄

f(s)

)

ds

=Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds + Y

∫ s̄+

µ

(

d̄

f(s)
− 1

)

ds

=Ds̄ + Dµ
>

Dµ

1 − r
.

Hence (A3) holds.

Proof of Theorem 2.2.

Proof. Since the associated system (3) does not admit periodic orbits, any periodic
orbit of (1) must have at least one impulse, i.e. it must reach s̄ at least once in each
cycle.

Suppose that (x(t), s(t)) is a T -period orbit of (1) with k > 1 impulses per
period. Without loss of generality, assume that s(0) = s̄+. Then tk = T , and
at the impulse times t1, t2, · · · , tk, x(t−1 ) 6= x(t−2 ) 6= x(t−3 ) 6= · · · 6= x(t−k ), but

x(t−k+1) = x(t−1 ). By Lemma 5.6,

x(t−k+1) =
1

r
Ds̄ + (1 − r)k

(

x(t−1 ) −
1

r
Ds̄

)

.

Setting x(t−k+1) = x(t−1 ), and simplifying it follows that x(t−1 ) = 1
r
Ds̄, and for

i = 2, 3, · · · , k

x(t−i ) =
1

r
Ds̄ + (1 − r)i−1

(

x(t−1 ) −
1

r
Ds̄

)

=
1

r
Ds̄.

contradicting the assumption that x(t−1 ) 6= x(t−2 ) 6= · · · 6= x(t−k ). Therefore, any
periodic orbit (x(t), s(t)) of (1) must have exactly one impulse each period.

Next, assume 1−r
r

Ds̄ 6 Dµ. Let (x(t), s(t)) be a T -periodic solution of (1).
Since any periodic orbit must have exactly one impulse per period, without loss
of generality, assume that s(0) = s̄+ and so t1 = T , where s(T−) = s̄. From
the impulsive conditions in (1), s(T +) = s̄+ and x(T +) = (1 − r)x(T−). Since
the solution is T -periodic, s(0+) = s(T +) = s̄+ and x(0+) = x(T +). Therefore,
x(T−) = 1

1−r
x(0+). From (5),

1

1 − r
x(0+) = x(T−) = x(0+) + Y

∫ s(0+)

s(T−)

(

1 −
d̄

f(s)

)

ds = x(0+) + Ds̄.
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Therefore,

x(0+) =
1 − r

r
Ds̄.

x(T +) = (1 − r)x(T−) = (1 − r)
(

x(0+) + Ds̄

)

= (1 − r)

(

1 − r

r
Ds̄ + Ds̄

)

=
1 − r

r
Ds̄ 6 Dµ.

Using initial condition (x(T +), s(T +)), (A2) is not satisfied, and so by case i) in
Lemma 5.4, it follows that s(t) > µ for all finite t > T , which contradicts the
assumption that (x(t), s(t)) is a periodic orbit of (1). Thus, if a periodic orbit
exists, 1−r

r
Ds̄ > Dµ.

Suppose 1−r
r

Ds̄ > Dµ. We show that a nontrivial periodic orbit exists. Consider

the orbit (x(t), s(t)) of (3) with s(0) = s̄+ and x(0) = 1−r
r

Ds̄ > Dµ.

x(0) + Y

∫ s(0)

µ

(

1 −
d̄

f(s)

)

ds

=
1 − r

r
Ds̄ − Y

∫ s̄+

µ

(

d̄

f(s)
− 1

)

ds

=
1 − r

r
Ds̄ − Dµ > Dµ − Dµ = 0.

Hence (A2) is satisfied. Since f(s) < d̄ for s̄+ > µ, Dµ > 0. Also, 1−r
r

Ds̄ > Dµ

implies that Ds̄ > 0. Then

x(0) + Y

∫ s(0)

s̄

(

1 −
d̄

f(s)

)

ds

=x(0) + Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds

=
1 − r

r
Ds̄ + Ds̄ =

1

r
Ds̄ > 0.

Therefore, (A1) is satisfied. By Lemma 5.2iii), there exists an impulse time t1 > 0,
finite, such that s(t−1 ) = s̄ and x(t−1 ) > 0. Thus we have shown that if 1−r

r
Ds̄ > Dµ,

this orbit has at least one impulse at time t1.
Next, we show that this orbit is periodic of period t1. By (5),

x(t−1 ) = x(0) + Y

∫ s(0)

s(t−
1

)

(

1 −
d̄

f(s)

)

ds

= x(0) + Y

∫ s̄+

s̄

(

1 −
d̄

f(s)

)

ds

=
1 − r

r
Ds̄ + Ds̄ =

1

r
Ds̄ > 0.

By the impulse conditions (1),

x(t+1 ) = x(t−1 ) − rx(t−1 ) = (1 − r)x(t−1 ) =
1 − r

r
Ds̄ = x(0)

s(t+1 ) = s(t−1 ) − rs̄ + rsi = (1 − r)s̄ + rsi = s̄+ = s(0).

Therefore, there is a periodic orbit of (1) if and only if 1−r
r

Ds̄ > Dµ.
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To show the uniqueness of the periodic orbit (up to translation in time), without
loss of generality, let s(0+) = s̄+ so that s(T−) = s̄ and s(T +) = s̄+. By (5),
x(T−) = x(0+) + Ds̄. But, on a periodic orbit with one impulse per cycle, x(0+) =
x(T +) = (1 − r)x(T−), and so x(T−) = 1

r
Ds̄.

Hence, there is a unique periodic orbit. Clearly, at the impulse points, the
periodic orbit satisfies s(t−n ) = s(T−) = s̄, s(t+n ) = s(0+) = s̄+, x(t−n ) = x(T−) =
1
r
Ds̄, and x(t+n ) = x(0+) = 1−r

r
Ds̄.

As in [23] we can apply impulsive Floquet theory to system (1) to establish orbital
asymptotic stability of the periodic orbit and asymptotic phase. The calculation
is identical to that given in [23] where it is shown that the nontrivial multiplier
is equal to 1 − r and so lies inside the unit circle. The expression for T was also
derived in [23].

Proof of Theorem 2.3.

Proof. 1. Since 1−r
r

Ds̄ > Dµ, by Theorem 2.2, there exists a unique asymptotically
stable periodic orbit with positive period T > 0. See Figure 3 (TOP).

1. i) First, assume that (A3) is satisfied and s(0) 6 µ. Since (A3) holds, (A1)
holds and so by Lemma 5.2ii), there exists a t1 > 0, finite, such that s(t1) = s̄
and x(t−1 ) > 0. By Lemma 5.5, there exists an infinite sequence of impulse times
{tn}

∞

n=1 such that s(t−n ) = s̄, s(t+n ) = s̄+ (and x(t+n ) > Dµ). By Lemma 5.6,
x(t−n ) → 1

r
Ds̄ and x(t+n ) → 1−r

r
Ds̄ as n → ∞. Therefore, this orbit converges to

the periodic orbit.
Next, assume that (A2) holds and s(0) > µ. By Lemma 5.7, (A3) also holds, and

hence (A1) holds (since Dµ > 0 and r ∈ (0, 1)). By Lemma 5.2iii), there exists a
t1 > 0, finite, such that s(t1) = s̄ and x(t−1 ) > 0. The proof that the orbit converges
to the periodic orbit now follows as in the previous paragraph using Lemmas 5.5
and 5.6.

1. ii) Since s(0) 6 µ and (A1) is satisfied, by Lemma 5.2ii), there exists a t1 > 0,
finite, such that s(t1) = s̄ and x(t−1 ) > 0. Since (A3) is violated, by Lemma 5.5,
s(t) > µ for all finite t > t1, and s(t) → s∗ > µ, x(t) → 0 as t → ∞.

1. iii) First assume that s(0) 6 µ and (A1) is not satisfied. It follows that s̄ < λ.
By Lemma 5.3, s(t) > s̄ for all finite t and s(t) → s∗ > s̄ as t → ∞. From the
vector field it is clear that s∗ < λ.. Next assume that s(0) > µ and (A2) is not
satisfied. The result follows by Lemma 5.4i).

1. i) a) If x(t−1 ) = 1
r
Ds̄, then by the impulse condition for system (1), x(t+n ) =

1−r
r

Ds̄ and we are on the periodic orbit.

1. i) b) If x(t−1 ) < 1
r
Ds̄, by Lemma 5.6,

x(t−n ) < x(t−n+1) <
Ds̄

r
, for n = 1, 2, 3, · · · ,

x(t+n ) < x(t+n+1) <
(1 − r)

r
Ds̄, for n = 1, 2, 3, · · · .

By Lemma 5.1, tn − tn−1 > tn+1 − tn > T.

1.i) c) If x(t−1 ) > 1
r
Ds̄, the proof follows by reversing the inequalities in the previous

case.
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2. Assume that 1−r
r

Ds̄ = Dµ. By Theorem 2.2, no periodic orbit exists. We show
that instead, the critical curve plays the role of the periodic orbit in case 1, but
with infinite period. see Figure 3 (MIDDLE).
2. i) Assume that the initial conditions satisfy s(0) 6 µ and (A3), or s(0) > µ and
(A2). As in the proof of 1.i), by Lemma 5.2 and Lemma 5.5, there are an infinite
number of impulses {tn}

∞

n=1 such that s(t−n ) = s̄, s(t+n ) = s̄+ and x(t+n ) > Dµ. By
Lemma 5.6, x(t−n ) → 1

r
Ds̄ and x(t−n ) → 1−r

r
Ds̄ as n → ∞, with sequences {x(t+n )}

and {x(t+n )} each decreasing monotonically. The sequence {ηn} = {x(t+n )−Dµ} → 0
as n → ∞ and so by Lemma 5.1 the orbit undergoes an infinite number of impulses
and converges to the critical curve. Thus, there is a sequence of times {τn} → ∞
as n → ∞ with (x(τn), s(τn)) → (0, µ). Therefore, lim inft→∞ x(t) = 0. Also,
the period of the orbits increases and approaches the period of the critical curve.
However, the critical curve is not actually an orbit, but rather is made up of the
equilibrium point (0, µ) and its stable and unstable manifolds. Any orbit starting
at (Dµ, s̄+) (on the critical curve), takes an infinite amount of time to reach the
equilibrium point (0, µ), and hence the closer the orbit gets to the critical curve,
after each impulse the longer it takes to reach s̄, with the time between impulses
approaching infinity.

2. ii) The proof is the same as in case 1. ii)

2. iii) The proof is the same as in case 1. iii).

3. Assume that 1−r
r

Ds̄ < Dµ. By Theorem 2.2, system (1) admits no periodic
orbit. See Figure 3 (BOTTOM).

To show there are at most a finite number of impulses, we use proof by contra-
diction. Suppose there exists an infinite sequence of distinct impulse times {tn}

∞

n=1

such that s(t−n ) = s̄, s(t+n ) = s̄+ and x(t+n ) > 0. If x(t+1 ) 6
1−r

r
Ds̄, then x(t+1 ) < Dµ

and so (A2) is not satisfied. By Lemma 5.4i) s(t) > µ for all finite t > t1. This
contradicts s(t+n ) = s̄+ < µ for n > 1.

If x(t+1 ) > 1−r
r

Ds̄, by Lemma 5.6, x(t+n ) > 1−r
r

Ds̄ for all positive integers n and

x(t+n ) → 1−r
r

Ds̄ as n → ∞. Hence, for some sufficiently large k, x(t+k ) < Dµ and
(A2) is violated. The result follows by Lemma 5.4.

Proof of Theorem 2.4.

Proof. Since µ 6 s̄ < s̄+ and f(s) < d̄ for s > µ, it follows that Dµ > 0 and Ds̄ < 0.
Therefore, 1−r

r
Ds̄ < Dµ. If (A1) is not satisfied, the result follow by Lemma 5.3.

If (A1) is satisfied, then by Lemma 5.2i), there exists a t1 > 0, finite, such that
s(t−1 ) = s̄ and x(t−1 ) > 0. Suppose there exists an infinite number of impulse times
{tn}

∞

n=1 such that s(t−n ) = s̄. By Lemma 5.6, x(t−n ) → 1
r
Ds̄ < 0 as n → ∞. So

there exists an integer k such that x(t−k ) < 0. Since this is impossible, there are at
most a finite number of impulses.

Proof of Theorem 4.1.

Proof. So that the fermentor cycles indefinitely without the time between impulses
becoming unbounded, by Theorem 2.3, in order for r ∈ (r0, r

0), it is necessary to

ensure that (1−r)
r

Ds̄(r) > Dµ(r), and hence that Ds̄(r) > 0.

d

dr
Ds̄(r) = Y (si − s̄)

(

1 −
d̄

f(s̄+)

)

. (15)
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d

dr
Dµ(r) =

{

0, s̄+ 6 µ,

Y (si − s̄)
(

d̄
f(s̄+) − 1

)

> 0, s̄+ > µ.

Therefore, if s̄+ ∈ (λ, µ), then d
dr

Ds̄(r) > 0, but if s̄+ ∈ [0, λ]∪[µ,∞], d
dr

Ds̄(r) <
0. Thus,

d
dr

Ds̄(r) < 0, for r < λ−s̄
si−s̄

,
d
dr

Ds̄(r) > 0, for λ−s̄
si−s̄

< r < µ−s̄
si−s̄

,
d
dr

Ds̄(r) < 0, for µ−s̄
si−s̄

< r.

Since Ds̄(0) = 0, either Ds̄(r) < 0 for all r ∈ (0, 1), and there is no choice of r
that would result in successful operation, or there exists an interval (r0, r1) ⊆ [0, 1]
such that Ds̄(r0) = 0, (1 − r1)Ds̄(r1) = 0, and Ds̄(r) > 0 when r ∈ (r0, r1), where
max{ λ−s̄

si−s̄
, 0} 6 r0 < µ−s̄

si−s̄
and r0 < r1 ≤ 1.

If r = 0, then s̄ = s̄+. Since, we are assuming that s̄ < µ, for r positive and
sufficiently close to 0, Dµ(r) = 0. If s̄ < λ, then d

dr
, Ds̄(0) < 0, and since Ds̄(0) = 0,

if r0 exists, r0 > 0. However, if λ < s̄ < µ, then d
dr

Ds̄(0) > 0, and r0 = 0.

If r0 ∈ [0, 1) exists, for r ∈
(

r0,
µ−s̄
si−s̄

]

, s̄+ 6 µ, and so Ds̄(r) > 0 and by

definition Dµ(r) = 0, and hence 1−r
r

Ds̄(r) > Dµ(r).

If µ−s̄
si−s̄

> 1, i.e., µ > si, then r0 = 1. This would be the case, for example, if the
response functions are monotone increasing.

If, on the other hand, µ < si, then r1 > µ−s̄
si−s̄

. It follows that for r ∈
(

µ−s̄
si−s̄

, r1

)

,

s̄+ > µ, and so d
dr

Dµ(r) > 0, and d
dr

Ds̄(r) < 0. Therefore,

d

dr
((1 − r)Ds̄(r) − rDµ(r)) < 0 for r ∈

[

µ − s̄

si − s̄
, r1

]

.

Since,

(1 − r)Ds̄(r) − rDµ(r) > 0, if r =
µ − s̄

si − s̄
and (1 − r1)Ds̄(r1) − r1D

µ(r1) < 0,

there must exist r0 ∈
[

µ−s̄
si−s̄

, r1

]

, with r0 < 1, such that (1−r0)Ds̄(r
0)−r0Dµ(r0) =

0, and

(1 − r)Ds̄(r) − rDµ(r) > 0 for r ∈

[

µ − s̄

si − s̄
, r0

)

.

Therefore, once all parameters except r are fixed, if there exists some r ∈ (0, 1)

such that (1−r)
r

Ds̄(r) > Dµ(r), then there exists an interval [r0, r
0] ⊂ [0, 1] such

that (1−r)
r

Ds̄(r) − Dµ(r) > 0 for all r ∈ (r0, r
0) and (1 − r0)Ds̄(r

0) − r0Dµ(r0) =

0 = (1 − r0)Ds̄(r0) − r0Dµ(r0) = 0. The result follows by Theorem 2.3.

6. Discussion. SCF has many potential applications including water purification,
biological waste decomposition, and toxic waste clean up. Keeping these applica-
tions in mind, and thinking of the nutrient as a contaminant, we used the acceptable
concentration of the contaminant, s̄, as the triggering mechanism and studied nu-
trient driven SCF. A safe level for s̄ is often set by an environmental protection
agency and so s̄ must be chosen at or below this acceptable concentration. For
example, in the water purification process, s̄ must be set so that the water meets
the appropriate standard to ensure that it is safe for drinking.

Some contaminants (such as phenols, thiocyanate, nitrites, etc.) in industrial
or toxic waste are inhibitory to many of the microorganisms metabolizing them
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at higher concentrations. In our model, we consider response functions that are
unimodal to model this inhibitory effect at high concentrations, thus generalizing
the model considered in [23] where only monotone increasing response functions
were considered.

Our model predicts that if 1−r
r

Ds̄ > Dµ, then there are appropriate initial condi-
tions for which the fermentor cycles indefinitely with bounded cycle time, but that
the process fails otherwise. (In the case of monotone response functions, (see [23])
success depends upon whether Ds̄ > 0.) When the process fails, either there are
at most a finite number of cycles and then the threshold level of contaminant s̄ is
never again met, or the tank cycles indefinitely, but the time between cycles be-
comes unbounded. Even in this latter case, during each cycle, there are times when
the concentration of microorganisms becomes so small, that in actual experiments,
it is more likely that the cycling eventually stops.

For a particular choice of microorganisms, the response function f(s) and the
death rate d̄, and hence the break-even parameters λ and µ are no longer under the
control of the experimenter. As well, the concentration of the contaminant in the
medium used to refill the tank is also usually fixed, as is the maximum safe level
of this contaminant, s̄. However, r the emptying/refilling fraction remains under
the control of the experimenter and Ds̄ and Dµ depend on r. Dµ is an increasing
function of r. See (15) for the dependence of Ds̄ on r. Ds̄ attains its maximum
value at r = min( µ−s̄

si−s̄
, 1). If this maximum value is negative, then no choice for r

would result in successful operation of the fermentor and a different population of
microorganisms would have to be used. However, if it is positive, then there exists
an interval (r0, r

0) ⊂ [0, 1] where 1−r
r

Ds̄(r) > Dµ(r), and, at least in theory, the
process can succeed provided appropriate initial conditions are chosen. If µ > s̄ > λ,
then r0 = 0, otherwise r0 > 0. If µ > si, then r0 = 1, otherwise r0 < µ−s̄

si−s̄
< r0.

It is often important in applications to optimize the yield, i.e., the total volume
of medium processed over some fixed time. It was shown that this yield depends
continuously on the emptying/refilling fraction. If the emptying/refilling fraction
r falls outside (r0, r

0), the process terminates after at most a finite number of cy-
cles. (In the case of monotone response functions, r0 = 1.) If the emptying/refilling
fraction r falls in this interval, but too close to r0 or r0, the process could still fail
in practice, because the microorganisms fail to reduce the contaminant to an ac-
ceptable concentration in a reasonable amount of time between cycles. Simulations
of the model predict that over all successful choices of emptying/refilling fractions,
there exists an optimal emptying/refilling fraction r ∈ (r0, r

0), at which the yield
over a fixed time is maximized. Based on an explicit formula for the eventual cycle
time, we showed how to choose the optimal emptying/refilling fraction and how
to calculate the maximum yield, once all parameters except the emptying/refilling
fraction are fixed.

Although the maximum value for s̄ cannot be violated in such applications as
water purification, using a smaller value for s̄ would only result in cleaner water.
However, one would expect that the larger the choice for s̄, the more water could be
processed and hence the more economical. A surprising implication of our results
is that, if for a particular population of microorganisms, the acceptable level of the
contaminant s̄ is greater than µ, the process always fails, no matter the choice of
r. However, it is possible to make the process succeed, by actually reducing s̄. For
example, by setting s̄ = λ one can choose r ∈ (0, 1) so that s̄+ = µ. Then, Ds̄ > 0
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and there are initial conditions for which the process is successful. One could then
try to find better choices for s̄ ∈ [λ, µ) and r that optimize the yield.

Once an appropriate value of r is selected for which 1−r
r

Ds̄ > Dµ, so that the
process has a chance to succeed, it is still necessary to choose appropriate initial
concentrations of the contaminant and the microorganisms (see Figure 3 (TOP)). If
s̄+ 6 µ then one only needs to ensure that the initial conditions satisfy (A1), i.e.,
the region bounded by the dash-dotted curve is avoided. If s̄+ > µ then one needs
to ensure that (A2) and (A3) are satisfied, i.e., that when s(0) > µ, the orbit starts
in the region to the right of the dashed curve, and when s(0) < µ, the orbit starts
in the region above and to the right of the dotted curve.

Usually, one would expect s(0) = si. If s̄+ > µ, failure of the system can be
prevented by diluting the medium before the first cycle. This is particularly useful
if the microorganisms are scarce or expensive. For example, if 1−r

r
Ds̄ > Dµ as in

Figure 3 (TOP), but s(0) > s̄+ > µ and the orbit starts in the region to the left of the
dashed curve, the process terminates without a single impulse. However, diluting
the medium (i.e., decreasing s(0)) so that the orbit starts in the region to the right
of the dashed curve, or even between the dotted and the dashed curves, results in
success. But, diluting too much, so that the orbit starts in the region below and to
the left of the dotted curve again results in failure.

Although diluting the contaminated medium before the first cycle can be ef-
fective, it would not be effective to dilute the medium before each cycle, since it
would be more efficient to reduce r. Reducing r results in a shorter cycle time
than diluting, since it leaves more processed medium with a higher concentration
of microorganisms in the tank to process the medium, and it cuts down on the
time taken for emptying and refilling. Therefore, dilution before every cycle cannot
improve upon the result obtained using the optimal value of r.

When the process is successful in the sense that it cycles indefinitely with rea-
sonable cycle time, the level of microorganisms released is eventually very close to
1
r
Ds̄. The population of microorganisms must be chosen so that this level is safe. If

the microorganisms are inexpensive and not toxic at even higher levels, the higher
the concentration of microorganisms used to initiate the process, the better. Our
analysis predicts that the larger the initial concentration of microorganisms, the
faster the acceptable level of contaminant, s̄ is reached during the initial cycles (be-
fore the periodic cycle is reached). Actually to speed up the process, it is helpful
to add microorganisms whenever possible, say, at the start of every cycle, provided
the concentration of the microorganisms at each impulse time is safe.

If one has several potential strains to choose from, it does not seem to be the
strains that have the highest specific growth rate over the largest range of con-
centration of the contaminant, but rather the ones that have the highest specific
growth rate over very low concentrations of the contaminant, close to the threshold
s̄, that appear to be the most efficient. (See Figures 4 and 8).

A discussion of the advantages of SCF over the chemostat for such applications as
water purification and toxic waste clean up was given in [23]. In particular, based on
the analysis in [11, 28], it was explained that certain strains of microorganisms could
be used successfully for SCF that would fail if used in the chemostat. In particular,
for all four strains considered in this paper, the chemostat could not be used since
f(s̄) < d̄, and so no dilution rate could be chosen for which the chemostat could
reduce the level of the contaminant to the acceptable level s̄. If a strain was found
for which f(s̄) > d̄, then both processes have the potential to succeed and it would
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be interesting to determine which process would be more efficient. However, SCF
still has the advantage that if the strain of microorganisms undergoes mutation, the
level of the contaminant released would never become unsafe, whereas this might
not be the case for the chemostat.
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thesis at McMaster University.
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