tion damps out and the pendulum comes to rest at its stable equilibrium.

This example shows how far we can go with pictures—without invoking any
difficult formulas, we were able to extract all the important features of the pendu-
lum’s dynamics. It would be much more difficult to obtain these results analyti-
cally, and much more confusing to interpret the formulas, even if we could find
them.

6.8 Index Theory

In Section 6.3 we learned how to linearize a system about a fixed point. Lin-
earization is a prime example of a local method: it gives us a detailed micro-
scopic view of the trajectories near a fixed point, but it can’t tell us what happens
to the trajectories after they leave that tiny neighborhood. Furthermore, if the
vector field starts with quadratic or higher-order terms, the linearization tells us
nothing.

In this section we discuss index theory, a method that provides global informa-
tion about the phase portrait. It enables us to answer such questions as: Must a
closed trajectory always encircle a fixed point? If so, what types of fixed points are
permitted? What types of fixed points can coalesce in bifurcations? The method
also yields information about the trajectories near higher-order fixed points. Fi-
nally, we can sometimes use index arguments to rule out the possibility of closed
orbits in certain parts of the phase plane.

The Index of a Closed Curve

The index of a closed curve C is an integer that measures the winding of the
vector field on C. The index also provides information about any fixed points that
might happen to lie inside the curve, as we’ll see.

This idea may remind you of a concept in electrostatics. In that subject, one
often introduces a hypothetical closed surface (a “Gaussian surface”) to probe a
configuration of electric charges. By studying the behavior of the electric field

on the surface, one can determine the total amount

of charge inside the surface. Amazingly, the behav-

_ lor on the surface tells us what’s happening far away

inside the surface! In the present context, the electric

field is analogous to our vector field, the Gaussian

surface is analogous to the curve C, and the total
charge is analogous to the index.

Now let’s make these notions precise. Suppose

Figure 6.8.1 that x =f(x) is a smooth vector field on the phase

plane. Consider a closed curve C (Figure 6.8.1). This

curve is not necessarily a trajectory—it’s simply a loop that we’re putting in the

phase plane to probe the behavior of the vector field. We also assume that C is a
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“simple closed curve” (i.e., it doesn’t intersect itself) and that it doesn’t pass
through any fixed points of the system. Then at each point X on C, the vector field
X = (x, y) makes a well-defined angle

¢ = tan™ (/%)
with the positive x-axis (Figure 6.8.1).
As x moves counterclockwise around C, the angle ¢ changes continuously
since the vector field is smooth. Also, when X returns to its starting place, ¢ re-

turns to its original direction. Hence, over one circuit, ¢ has changed by an integer

multiple of 27z. Let [¢].. be the net change in ¢ over one circuit. Then the index of
the closed curve C with respect to the vector field f is defined as

I :#[‘p]c

Thus, /. is the net number of counterclockwise revolutions made by the vector
field as x moves once counterclockwise around C.

To compute the index, we do not need to know the vector field everywhere; we
only need to know it along C. The first two examples illustrate this point.

EXAMPLE 6.8.1:

Given that the vector field varies along C as shown in Figure 6.8.2, find /...

Figure 6.8.2

Solution: As we traverse C once counterclockwise, the vectors rotate through
one full turn in the same sense. Hence [. =+1.

If you have trouble visualizing this, here’s a foolproof method. Number the vec-
tors in counterclockwise order, starting anywhere on C (Figure 6.8.3a). Then
transport these vectors (without rotation!) such that their tails lie at a common ori-
gin (Figure 6.8.3b). The index equals the net number of counterclockwise revolu-
tions made by the numbered vectors.

6.8 INDEX THEORY 175



@ ®

Figure 6.8.3

As Figure 6.8.3b shows, the vectors rotate once counterclockwise as we go in in-
creasing order from vector #1 to vector #8. Hence I. =+1.m

EXAMPLE 6.8.2:

Given the vector field on the closed curve shown in Figure 6.8.4a, compute /..

3
4 2
7
c 6 8
5
1 5 1
4
2
6 3 3
7
(@) ®)
Figure 6.8.4

Solution: We use the same construction as in Example 6.8.1. As we make one
circuit around C, the vectors rotate through one full turn, but now in the opposite
sense. In other words, the vectors on C rotate clockwise as we go around C coun-
terclockwise. This is clear from Figure 6.8.4b; the vectors rotate clockwise as we
go in increasing order from vector #1 to vector #8. Therefore I. =-1.m

In many cases, we are given equations for the vector field, rather than a picture
of it. Then we have to draw the picture ourselves, and repeat the steps above.
Sometimes this can be confusing, as in the next example.

EXAMPLE 6.8.3:

Given the vector field x = x’y, y = x> —y?, find I, where C is the unit circle
2 2
x“+y =1.
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Solution: To get a clear picture of the vector field, it is sufficient to consider a few

conveniently chosen points on C. For instance, at (x,y) = (1,0), the vector is (x,y) =

(x*y, x* =y*)=(0,1). This vector is labeled #1 in Figure 6.8.5a. Now we move

L5,9

6,8 2,4

3,7

(a) (b)

Figure 6.8.5

counterclockwise around C,
computing vectors as we go.
At (x,y)=%(l,1)g we have
£9)= (1,y)=5751,0), la-
beled #2. The remaining vec-
tors are found similarly.
Notice that different points on
the circle may be associated
with the same vector; for ex-
ample, vector #3 and #7 are

both (0,-1). e

o

Now we translate the vectors over to Figure 6.8.5b. As we move from #I'/t/o #9
in order, the vectors rotate 180° clockwise between #1 and #3, then swing back
360° counterclockwise between #3 and #7, and finally rotate 180° clockwise again
between #7 and #9 as we complete the circuit of C. Thus [¢]. =~-7+27-7=0

and therefore 1, =0 . m

" We plotted nine vectors in this example, but you may want to plot more to see

the variation of the vector field in finer detail.

Properties of the Index

Now we list some of the most important properties of the index.

1. Suppose that C can be continuously deformed into C” without passing

through a fixed point. Then I, =1, .

This property has an elegant proof: Our assumptions imply that as
we deform Cinto C’, the index I varies continuously. But I is an in-
teger—hence it can’t change without jumping! (To put it more for-
mally, if an integer-valued function is continuous, it must be constanz.)

As you think about this argument, try to see where we used the as-
sumption that the intermediate curves don’t pass through any fixed

points.

2.If C doesn’t enclose any fixed points, then /.= 0.
Proof: By property (1), we can shrink C to a tiny circle without
changing the index. But ¢ is essentially constant on such a circle, be-
cause all the vectors point in nearly the same direction, thanks to the as-
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sumed smoothness of the vector field (Figure 6.8.6). Hence [¢]C =0

and therefore 1. = 0.

Figure 6.8.6

3. If we reverse all the arrows in the vector field by changing r — —, the
index is unchanged.
Proof: All angles change from ¢ to ¢ + 7. Hence [¢].. stays the same.
4. Suppose that the closed curve C is actually a trajectory for the system,
1.e., C is aclosed orbit. Then /. = +1.
We won’t prove this, but it should be clear from geometric intuition
(Figure 6.8.7).

Figure 6.8.7

Notice that the vector field is everywhere tangent to C, because C is a trajectory.
Hence, as x winds around C once, the tangent vector also rotates once in the same
sense.

Index of a Point

The properties above are useful in several ways. Perhaps most importantly, they
allow us to define the index of a fixed point, as follows.

Suppose x* is an isolated fixed point. Then the index I of x* is defined as /-,
where C is any closed curve that encloses x * and no other fixed points. By property
(1) above, I is independent of C and is therefore a property of x * alone. Therefore
we may drop the subscript C and use the notation / for the index ofa point.

EXAMPLE 6.8.4:

Find the index of a stable node, an unstable node, and a saddle point.

Solution: The vector field near a stable node looks like the vector field of Ex-
ample 6.8.1. Hence [ = +1. The index is also +1 for an unstable node, because the
only difference is that all the arrows are reversed; by property (3), this doesn’t
change the index! (This observation shows that the index is not related ro stability,
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per se.) Finally, / =—1 for a saddle point, because the vector field resembles that
discussed in Example 6.8.2. m

In Exercise 6.8.1, you are asked to show that spirals, centers, degenerate nodes
and stars all have I =+1. Thus, a saddle point is truly a different animal from all
the other familiar types of isolated fixed points.

The index of a curve is related in a beautifully simple way to the indices of the
fixed points inside it. This is the content of the following theorem.

Theorem 6.8.1: If a closed curve C surrounds n isolated fixed points
X%, ..., X, % then

1m0

Io=1+L+...+1

n

where /, is the index of X, *, fork=1,...,n.

Ideas behind the proof: The argument is a familiar one, and comes up
in multivariable calculus, complex variables, electrostatics, and various other
subjects. We think of C as a balloon and suck most of the air out it, being careful
not to hit any of the fixed points. The result of this deformation is a new closed
curve I', consisting of n small circles y,, ..., 7, about the fixed points, and two-
way bridges connecting these circles (Figure 6.8.8). Note that I = /., by prop-

erty (1), since we didn’t cross

C any fixed points during the
deformation. Now let’s com-

o pute I by considering [¢] .

~3 4:. There are contributions to

[(])]r from the small circles
and from the two-way bridges.
The key point is that the con-
Figure 6.8.8 tributions from the bridges

cancel out: as we move
around I, each bridge is traversed once in one direction, and later in the opposite
direction. Thus we only need to consider the contributions from the small circles.

On 7, ., the angle ¢ changes by [(])]yA =2m I, by definition of I,. Hence

and since /. = [, we’re done. m
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This theorem is reminiscent of Gauss’s law in electrostatics, namely that the
electric flux through a surface is proportional to the total charge enclosed. See Ex-
ercise 6.8.12 for a further exploration of this analogy between index and charge.

Theorem 6.8.2: Any closed orbit in the phase plane must enclose fixed
points whose indices sum to +1.

Proof: Let C denote the closed orbit. From property (4) above, I. =+1.

Then Theorem 6.8.1 implies ¥ 1, =+1. m
k=1

Theorem 6.8.2 has many practical consequences. For instance, it implies that
there is always at least one fixed point inside any closed orbit in the phase plane (as
you may have noticed on your own). If there is only one fixed point inside, it can-
not be a saddle point. Furthermore, Theorem 6.8.2 can sometimes be used to rule
out the possible occurrence of closed trajectories, as seen in the following exam-
ples.

EXAMPLE 6.8.5:

Show that closed orbits are impossible for the “rabbit vs. sheep” system

x=x(3-x-2y)
y=y2-x-y)

studied in Section 6.4. Here x,y > 0.
Solution: As shown previously, the system has four fixed points: (0,0) = unsta-
ble node; (0,2) and (3,0) = stable nodes; and (1,1) = saddle point. The index at
y each of these points is shown in Figure
e . 6.8.9. Now suppose that the system had a
.’/ YRS Y closed trajectory. Where could it lie?
'L . e There are three qualitatively different lo-
, . cations, indicated by the dotted curves C,,
) Gy C,, C,. They can be ruled out as follows:
SN orbits like C, are impossible because they
don’t enclose any fixed points, and orbits

y
I Y

+1 +1 * like C, violate the requirement that the in-

. dices inside must sum to +1. But what is
Figure 6.8.9 . . . . .

wrong with orbits like C;, which satisfy

the index requirement? The trouble is that such orbits always cross the x-axis or

the y-axis, and these axes contain straight-line trajectories. Hence C, violates the

rule that trajectories can’t cross (recall Section 6.2). m
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EXAMPLE 6.8.6:

Show that the system x = xe™™, y = 1+ x + y° has no closed orbits.
Solution: This system has no fixed points: if x=0, then x=0 and so
y=1+y”> #0. By Theorem 6.8.2, closed orbits cannot exist. m

EXERCISES FOR CHAPTER 6

6.1 Phase Portraits

For each of the following systems, find the fixed points. Then sketch the nullclines,
the vector field, and a plausible phase portrait.

6.1.1 x=x-y,y=1~¢" 6.1.2 )'czx—xB,y:—y
6.1.3 x=x(x-y),y=y2x-y) 6.1.4 x=y,y=x(1+y)—1
6.1.5 x=x(2—-x—-y),y=x-y 6.1.6 xi=x’-y,y=x—y

6.1.7  (Nullcline vs. stable manifold) There’s a confusing aspect of Example
6.1.1. The nullcline x =0 in Figure 6.1.3 has a similar shape and location as the
stable manifold of the saddle, shown in Figure 6.1.4. But they’re not the same
curve! To clarify the relation between the two curves, sketch both of them on the
same phase portrait.

(Computer work) Plot computer-generated phase portraits of the following sys-
tems. As always, you may write your own computer programs or use any ready-
made software, e.g., MacMath (Hubbard and West 1992).

6.1.8 (van der Pol oscillator) x =y, y = —x + y(1—x”)
6.1.9 (Dipole fixed point) x =2xy, y =y —x°

6.1.10 (Two-eyed monster) x=y+y*, y=—+x+1y—xy+£y” (from Borrelli
and Coleman 1987, p. 385.)

6.1.11 (Parrot) ¥ =y+y’, y=-x++y—xy+£y” (from Borrelli and Coleman
1987, p. 384.)

6.1.12 (Saddle connections) A certain system is known to have exactly two fixed
points, both of which are saddles. Sketch phase portraits in which

a) there is a single trajectory that connects the saddles;

b) there is no trajectory that connects the saddles.

6.1.13 Draw a phase portrait that has exactly three closed orbits and one fixed point.

6.1.14 (Series approximation for the stable manifold of a saddle point) Recall

the system x =x+e™”, y=—y from Example 6.1.1. We showed that this system
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