1. Evaluate the following integrals.
(a) $\int_{1}^{2} x^{5} \ln (x) d x$
(b) $\int \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{1 / 2}} d x$
(c) $\int \frac{1}{1+e^{x}} d x$
(d) $\int(1+\tan x)^{2} \sec x d x$
2. Find the average value of the function $f(x)=\frac{1}{\sqrt{x}}$ on the interval $[1,4]$. The Mean Value Theorem implies there exists c in $[1,4]$ with $f(c)=f_{\text {avg }}$. What is the value c ?
3. Let $r>0$. Does the improper integral converge or diverge? (Justify your answer.)

$$
\int_{-\infty}^{\infty} \frac{r}{r^{2}+x^{2}} d x
$$

4. Find the arclength of the curve $y=\ln \left(1+x^{2}\right)$ for $0 \leq x \leq \frac{1}{2}$.
5. (a) The region under the curve $y=\cos ^{2}(x)$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated around the x-axis. Find the volume of the resulting solid.
(b) Find the volume of the solid if the region in part (a) is rotated about the y-axis.
6. (a) The curve $y=x^{2}$ for $0 \leq x \leq 1$ is rotated around the y-axis. Find the area of the resulting surface.
(b) Find the area of the surface if the curve in part (a) is rotated about the x-axis.
7. (a) Find all solutions of the differential equation $y^{\prime}=-x e^{y}$.
(b) Solve the initial value problem $\left(1+e^{x}\right) y^{\prime}=e^{x}, y(0)=0$.
(c) Solve the differential equation $x y^{\prime}-2 y=x^{2}, x>0$.
8. Use Euler's method with step size 0.2 to estimate $y(1)$, where $y(x)$ is a solution to the initial-value problem $y^{\prime}=x^{2} y-\frac{1}{2} y^{2}, \quad y(0)=1$.
9. A tank contains 100 L of pure water. Brine that contains 0.1 kg of salt per liter flows into the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after 6 minutes?
10. Do the following series converge or diverge? In case the series converges, determine its value.
(a) $\sum_{n=1}^{\infty} 3^{2+n} 2^{1-2 n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+7 n+12}$
(c) $\sum_{n=0}^{\infty} \frac{n^{2}}{n^{3}+1}$
11. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is absolutely convergent, conditionally convergent or divergent.
12. Determine if the series $\sum_{n=3}^{\infty} \frac{e^{4 n}}{(n-2)}$ converges or diverges.
13. Express the repeating decimal $4.14237237 \ldots$ as a fraction.
14. Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ correct to four decimal points.
15. Derive the Taylor series of $f(x)=\sqrt{x-1}$ centered at $x=2$. What is its radius of convergence?
16. Evaluate $\int \frac{e^{x}}{x} d x$ as an infinite series.
