ArtsSci 1D06 • Review Problems for Midyear Exam

1. Find the domains of $f(x) = \sqrt{\ln x - 5}$ and $g(x) = \frac{2x^2 + 3x - 5}{e^{2x} + e^x - 6}$ and determine all their *x*-intercepts.

2. (a) Evaluate $\sin(\tan^{-1}(\frac{40}{41}))$. (b) Find all solutions to $\sin(2x) = \tan(x)$ with $-\pi/2 < x < \pi/2$.

3. Suppose f(x) is even and g(x), h(x) are both odd. In (a)–(d), determine whether the given function is even, odd, or neither.

(a) f(x) - g(x)(b) g(x) + 2h(x)(c) f(x)g(x)(d) g(x)/h(x)

4. In (a)–(f), evaluate the following limit if it exists. If the limit is infinite, work out whether the answer is $+\infty$ or $-\infty$. Otherwise, if the limit does not exist, write DNE.

(a)
$$\lim_{x \to 2} \left(\frac{x^2 - 4}{x^3 - 8} \right)$$
(b)
$$\lim_{x \to 2} \left(\frac{\sqrt{x + 2} - \sqrt{2x}}{x^2 - 2x} \right)$$
(c)
$$\lim_{x \to \infty} \tan^{-1}(x - x^3)$$
(d)
$$\lim_{x \to 0^+} \left(\frac{x}{\ln x} \right)$$
(e)
$$\lim_{x \to 0} (1 - 3x)^{1/x}$$
(f)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$
(g)
$$\lim_{x \to \infty} \left(x \ln(1 + \frac{3}{x}) \right)$$
(h)
$$\lim_{x \to 0} \left(\frac{\sinh 2x}{x^3 - 3x^2 + 5x} \right)$$

5. In (a)–(f), find $\frac{dy}{dx}$. Simplify your answer if possible. (a) $y = \tan(1 - x^2)$ (b) $y = \sqrt{4 + \sin x \cos x}$ (c) $y = \ln(\ln(\ln x))$ (d) $y = \tan^{-1}(\sinh x)$ (e) $y = x^{\sqrt{x}}$ (f) $\sec(xy) = x^2 - y$ (g) $y = \frac{x+1}{\tanh(x)}$ (h) $y = \sin(x^3) + \sin^3(x)$

6. Given f(x) and g(x) differentiable functions with f(1) = 5, g(1) = 2, f'(1) = a, and g'(1) = b, find the slope of the line tangent to $y = f(x)g(x^2) + f(x^2)g(x)$ at (1, 20) in terms of the constants a, b.

7. Find all critical values of the function $f(x) = \frac{4}{3}x^3 + 2x^2 - 3x + 2$ and classify them as local maximum or local minimum. Find all inflection points.

8. Construct the linear approximation to $f(x) = \sqrt[5]{1+2x}$ at a = 0 and use it to approximate the value $\sqrt[5]{1.02}$.

9. Given a function f(x) with $f'(2) = \sqrt{5}$, evaluate the limit $\lim_{x \to 2} \frac{f(x) - f(2)}{x^3 - 8}$.

10. Find the point on the curve $y = \sqrt{x}$ that is closest to the point (3,0).

11. Show that $f(x) = x^3 - 7x^2 + 25x + 84$ has exactly one real root.

12. For the following functions, find all local extrema, inflection points, intervals of increase/decrease, intervals of concave up/down, vertical and horizontal asymptotes, and x-and y-intercepts. Using this information, sketch the curve y = f(x).

(a)
$$f(x) = x^5 - 5x$$

(b) $f(x) = 2 - 2x - x^3$
(c) $f(x) = \frac{x}{1 - x^2}$
(d) $f(x) = \frac{x^3 - 1}{x^3 + 1}$
(e) $f(x) = x\sqrt{2 + x}$
(f) $f(x) = 1 + \frac{1}{x} + \frac{1}{x^2}$

13. Use Newton's method with $x_0 = 1$ to find a solution to $x \cos x = x^2$ correct to three decimal places.

14. Show that the equation $x^{99} + 2x^{55} + 3x - 5 = 0$ has exactly one real root.

15. Find (a) $\frac{d}{dx} \int_0^{\ln x} t^2 + 1 dt.$ (b) $\int_1^3 \left(\frac{d}{dx} \sqrt{\ln x}\right) dx.$

16. In (a)–(f), evaluate the indefinite integral.

(a)
$$\int (x+2)^{19} dx$$

(b)
$$\int xe^{x^2+1} dx$$

(c)
$$\int \frac{x^2}{x^3+1} dx$$

(d)
$$\int \sin \pi t \cos \pi t dt$$

(e)
$$\int \frac{\sec t \tan t}{1+\sec t} dt$$

(f)
$$\int \frac{1}{\sqrt{4-x^2}} dx$$

- 17. (a) Show that $\ln x \ln a = \int_{a}^{x} \frac{1}{t} dt$ for all x > a > 0. (b) Find $\lim_{x \to a} \frac{1}{x - a} \int_{a}^{x} \frac{1}{t} dt$ for a > 0. (c) Evaluate $\lim_{x \to a} \frac{1}{x - a} \int_{a}^{x} f(t) dt$ if f(t) is defined and continuous for all real numbers.
- 18. Determine the limit

$$\lim_{n \to \infty} \frac{1}{n} \left[\frac{1}{n^3} + \frac{2^3}{n^3} + \frac{3^3}{n^3} + \dots + \frac{n^3}{n^3} \right].$$

19. (a) Find the area bounded by the curves $y = 1 + \sqrt{x}$ and y = (3 + x)/3. (b) Find the area bounded by the curves x + y = 0 and $x = y^2 + 3y$.

20. A particle moves along a line with velocity $v(t) = t^3 - 9t$, where v is measured in meters per second. Find the displacement and distance traveled by the particle during the time interval [1, 4].

- 21. At which points on the curve $y = 1 + 30x^3 x^5$ does the tangent line have largest slope?
- 22. For what value of k does the equation $e^{2x} = k\sqrt{x}$ have exactly one solution?
- 23. Prove the identity $\sin^{-1}\left(\frac{x-1}{x+1}\right) = 2\tan^{-1}(\sqrt{x}) \frac{\pi}{2}.$