ArtsSci 1D06 - Review Problems for Midyear Exam

1. Find the domains of $f(x)=\sqrt{\ln x-5}$ and $g(x)=\frac{2 x^{2}+3 x-5}{e^{2 x}+e^{x}-6}$ and determine all their x-intercepts.
2. (a) Evaluate $\sin \left(\tan ^{-1}\left(\frac{40}{41}\right)\right)$.
(b) Find all solutions to $\sin (2 x)=\tan (x)$ with $-\pi / 2<x<\pi / 2$.
3. Suppose $f(x)$ is even and $g(x), h(x)$ are both odd. In (a)-(d), determine whether the given function is even, odd, or neither.
(a) $f(x)-g(x)$
(b) $g(x)+2 h(x)$
(c) $f(x) g(x)$
(d) $g(x) / h(x)$
4. In (a)-(f), evaluate the following limit if it exists. If the limit is infinite, work out whether the answer is $+\infty$ or $-\infty$. Otherwise, if the limit does not exist, write DNE.
(a) $\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x^{3}-8}\right)$
(b) $\lim _{x \rightarrow 2}\left(\frac{\sqrt{x+2}-\sqrt{2 x}}{x^{2}-2 x}\right)$
(c) $\lim _{x \rightarrow \infty} \tan ^{-1}\left(x-x^{3}\right)$
(d) $\lim _{x \rightarrow 0^{+}}\left(\frac{x}{\ln x}\right)$
(e) $\lim _{x \rightarrow 0}(1-3 x)^{1 / x}$
(f) $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)$
(g) $\lim _{x \rightarrow \infty}\left(x \ln \left(1+\frac{3}{x}\right)\right)$
(h) $\lim _{x \rightarrow 0}\left(\frac{\sinh 2 x}{x^{3}-3 x^{2}+5 x}\right)$
5. In (a)-(f), find $\frac{d y}{d x}$. Simplify your answer if possible.
(a) $y=\tan \left(1-x^{2}\right)$
(b) $y=\sqrt{4+\sin x \cos x}$
(c) $y=\ln (\ln (\ln x))$
(d) $y=\tan ^{-1}(\sinh x)$
(e) $y=x^{\sqrt{x}}$
(f) $\sec (x y)=x^{2}-y$
(g) $y=\frac{x+1}{\tanh (x)}$
(h) $y=\sin \left(x^{3}\right)+\sin ^{3}(x)$
6. Given $f(x)$ and $g(x)$ differentiable functions with $f(1)=5, g(1)=2, f^{\prime}(1)=a$, and $g^{\prime}(1)=b$, find the slope of the line tangent to $y=f(x) g\left(x^{2}\right)+f\left(x^{2}\right) g(x)$ at (1,20) in terms of the constants a, b.
7. Find all critical values of the function $f(x)=\frac{4}{3} x^{3}+2 x^{2}-3 x+2$ and classify them as local maximum or local minimum. Find all inflection points.
8. Construct the linear approximation to $f(x)=\sqrt[5]{1+2 x}$ at $a=0$ and use it to approximate the value $\sqrt[5]{1.02}$.
9. Given a function $f(x)$ with $f^{\prime}(2)=\sqrt{5}$, evaluate the limit $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x^{3}-8}$.
10. Find the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$.
11. Show that $f(x)=x^{3}-7 x^{2}+25 x+84$ has exactly one real root.
12. For the following functions, find all local extrema, inflection points, intervals of increase/decrease, intervals of concave up/down, vertical and horizontal asymptotes, and x and y-intercepts. Using this informtion, sketch the curve $y=f(x)$.
(a) $f(x)=x^{5}-5 x$
(b) $f(x)=2-2 x-x^{3}$
(c) $f(x)=\frac{x}{1-x^{2}}$
(d) $f(x)=\frac{x^{3}-1}{x^{3}+1}$
(e) $f(x)=x \sqrt{2+x}$
(f) $f(x)=1+\frac{1}{x}+\frac{1}{x^{2}}$
13. Use Newton's method with $x_{0}=1$ to find a solution to $x \cos x=x^{2}$ correct to three decimal places.
14. Show that the equation $x^{99}+2 x^{55}+3 x-5=0$ has exactly one real root.
15. Find (a) $\frac{d}{d x} \int_{0}^{\ln x} t^{2}+1 d t$.
(b) $\int_{1}^{3}\left(\frac{d}{d x} \sqrt{\ln x}\right) d x$.
16. In (a)-(f), evaluate the indefinite integral.
(a) $\int(x+2)^{19} d x$
(b) $\int x e^{x^{2}+1} d x$
(c) $\int \frac{x^{2}}{x^{3}+1} d x$
(d) $\int \sin \pi t \cos \pi t d t$
(e) $\int \frac{\sec t \tan t}{1+\sec t} d t$
(f) $\int \frac{1}{\sqrt{4-x^{2}}} d x$
17. (a) Show that $\ln x-\ln a=\int_{a}^{x} \frac{1}{t} d t$ for all $x>a>0$.
(b) Find $\quad \lim _{x \rightarrow a} \frac{1}{x-a} \int_{a}^{x} \frac{1}{t} d t \quad$ for $a>0$.
(c) Evaluate $\quad \lim _{x \rightarrow a} \frac{1}{x-a} \int_{a}^{x} f(t) d t \quad$ if $f(t)$ is defined and continuous for all real numbers.
18. Determine the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{n^{3}}+\frac{2^{3}}{n^{3}}+\frac{3^{3}}{n^{3}}+\cdots+\frac{n^{3}}{n^{3}}\right]
$$

19. (a) Find the area bounded by the curves $y=1+\sqrt{x}$ and $y=(3+x) / 3$.
(b) Find the area bounded by the curves $x+y=0$ and $x=y^{2}+3 y$.
20. A particle moves along a line with velocity $v(t)=t^{3}-9 t$, where v is measured in meters per second. Find the displacement and distance traveled by the particle during the time interval $[1,4]$.
21. At which points on the curve $y=1+30 x^{3}-x^{5}$ does the tangent line have largest slope?
22. For what value of k does the equation $e^{2 x}=k \sqrt{x}$ have exactly one solution?
23. Prove the identity $\sin ^{-1}\left(\frac{x-1}{x+1}\right)=2 \tan ^{-1}(\sqrt{x})-\frac{\pi}{2}$.
