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Abstract. We describe the definition of the SU(3) Casson invariant and
outline an argument which determines the contribution of certain types of
components of the flat moduli space. Two applications of these methods
are detailed. The first is a connected sum formula for the SU(3) Casson
invariant [3]. The second presents a strategy for computing the SU(3)
Casson invariant for certain graph manifolds.

1. Introduction

The aim of this article is to give a non-technical survey of the results in [2, 3]
concerning the SU(3) Casson invariant λSU(3) and to introduce a new technique
for computing it.

We use ideas from equivariant Morse theory to motivate the definition of the
invariant. The invariant involves counting critical points of the Chern-Simons
function on gauge orbits of SU(3) connections. If these critical points are not
regular, then a perturbation of the Chern-Simons function is used to obtain a
function with regular critical set. Although perturbations are an essential part
of the definition of λSU(3) in [2], their role is suppressed here.

The second part of the paper describes an approach to computing λSU(3) , based
on an equivariant version of Bott-Morse theory, which allows computations un-
der less strict regularity assumptions. We use this approach to derive the con-
nected sum formula of [3] and to gain new information about λSU(3) for graph
manifolds obtained by gluing two (2, q) torus knot complements together in a
certain way. These examples include ±1 surgery on the untwisted Whitehead
double of a (2, p) torus knot. For this family of graph manifolds, we prove
that the correction term λ′′SU(3)(X) vanishes and deduce that λSU(3)(X) ∈ Z.1

This is established by showing that only the zero dimensional components of
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1This result may be related to the vanishing of the SU(2) Casson invariant for these graph

manifolds. In the general case, it is not known if λSU(3)(X) ∈ Q .
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the irreducible flat SU(3) moduli space contribute nontrivially to λSU(3)(X).
These connections are of a very specific form (see Section 8) and to complete
the computation of λSU(3)(X), one would need to enumerate them and to de-
termine their su(3) spectral flow mod 2. This problem is not discussed here
and will be treated elsewhere.

Under the weaker regularity assumption, Theorems 6 and 8 describe how various
components of the flat moduli space will contribute to λSU(3) once a perturba-
tion is turned on. This is analogous to the computation of the Euler charac-
teristic χ(M) of a manifold M in terms of a Bott-Morse function. Recall that
a function f : M → R is called Bott-Morse if its critical point set is a union
of smooth submanifolds of M and the Hessian of f is nondegenerate in the
normal directions to those submanifolds. Each connected critical submanifold
contributes plus or minus its Euler characteristic to χ(M) (and it is possible
to determine this sign).

This paper is concerned with calculating λSU(3) in situations where the flat
moduli space satisfies certain regularity assumptions similar to the Bott-Morse
condition. The definition of the invariant, and the nature of the regularity
condition, are complicated by singularities in the space of connections modulo
gauge. Before delving into gauge theory, we describe an equivariant Bott-Morse
theory construction in finite dimensions which illustrates most of the ingredients
in the gauge theory situation.

Our aim here is to give an accessible account of the invariants and the results
derived from this Bott-Morse theoretic approach. Since full details appear
elsewhere, most arguments are sketched.

2. Morse theory and the Euler characteristic

We begin by recalling the definition of the Euler characteristic because it pro-
vides a finite dimensional analog for our later constructions. For a compact
manifold, the Euler characteristic can be viewed as a signed count of the zeros
of a transverse vector field on the manifold. If the vector field is not transverse,
then its zeros may not be isolated. In this case, the vector field can be made
transverse with a small perturbation, and each component of the zero set of the
original vector field gives rise to a finite number of transverse zeros after pertur-
bation. The algebraic number of transverse zeros contributed by a particular
component is independent of the (small) perturbation, so the Euler character-
istic may be interpreted as a sum of contributions from the components of the
zero set. The contribution from a component can often be determined without
perturbing. For example, if one component is contained in the interior of a
ball which does not intersect any other components, then the restriction of the
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vector field to the sphere bounding the ball has a well-defined Gauss map whose
degree gives the contribution of the component.

Suppose M is a compact manifold and f : M → R is a Morse function. For
any Riemannian metric on M , the gradient vector field of f is transverse to
the zero vector field. Let Crit(f) = {p ∈ M | ∇f(p) = 0} be the set of critical
points of f . For each critical point p ∈ Crit(f), define the Morse index µ(p; f)
to be the dimension of the negative eigenspace of Hess f(p).

Define

(1) χ(M ; f) =
∑

p∈Crit(f)

(−1)µ(p;f).

Generally, a different Morse function will have a different critical point set. One
can show, however, using an elementary cobordism argument, that the quantity
χ(M ; f) is independent of f . We sketch the argument below because it provides
a model for the more subtle cobordism argument we need to establish that the
SU(3) Casson invariant is independent of perturbation.

Suppose f0 and f1 are Morse functions on M . Choose a generic path of
functions ft connecting f0 and f1 . The parameterized critical point set

W =
⋃

t∈[0,1]

Crit(ft)× {t},

is then an oriented one dimensional cobordism in M × [0, 1] with

∂W = Crit(f1)× {1} − Crit(f0)× {0}.
For i = 0, 1 and p ∈ Crit(fi), the orientation on (p, i) ∈ ∂W agrees with
(−1)i+µ(p;fi) , which is the same as the sign with which p ∈ Crit(fi) occurs in
the sum ∑

p∈Crit(f0)

(−1)µ(p;f0) −
∑

p∈Crit(f1)

(−1)µ(p;f1).

It follows that χ(M ; f0) = χ(M ; f1). In fact, this invariant of M equals the
Euler characteristic χ(M).

3. The SU(2) Casson invariant via gauge theory

Now suppose X is an oriented homology 3-sphere. This means that X is a
compact, oriented, three dimensional manifold with the same integral homology
as S3 . Let A denote the space of SU(2) connections on the trivial bundle
E = X × C2 . We identify connections with su(2)-valued 1-forms using the
trivialization of E . Let G = {g : X → SU(2)} denote the corresponding gauge
group (the group of bundle automorphisms). The gauge group G acts on A
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with quotient B = A/G. We denote the gauge orbit of a connection A ∈ A by
[A] . The set of irreducible connections is denoted A∗ and its quotient is B∗ .
Using appropriate Sobolev completions, B∗ is a smooth, infinite dimensional
Banach manifold. Each orbit of reducible connections is a singular point in
B because its stabilizer subgroup is larger than that of an orbit of irreducible
connections.

The SU(2) Casson invariant of X can be defined by a formula analogous to
(1). The role of the Morse function is played by the Chern-Simons function
cs : A → R , defined by

(2) cs(A) = 1
8π2

∫
X

tr(A ∧ dA + 2
3A ∧A ∧A).

The critical point set of cs is exactly the set of flat connections, i.e.,

Crit(cs) = {A ∈ A | FA = 0},
where FA = dA + A ∧ A is the curvature of A . The quotient of the set of flat
connections is the moduli space

M = {A ∈ A | FA = 0}/G = Crit(cs)/G,

which is compact and has expected dimension zero (though M is not generally
a finite set). We set M∗ = M∩B∗ .

Floer [6] and Taubes [8] described a set of admissible perturbations, which are
gauge invariant functions h : A → R such that:

(i) The perturbed moduli space Mh := Crit(cs + h)/G is compact.
(ii) For a generic small perturbation h, M∗

h is a smooth, compact, zero
dimensional submanifold of B∗ .

The cobordism argument from Section 2 generalizes to show that an invariant
of X can be defined by counting the critical orbits of cs in B∗ with sign. The
Hessian of cs has infinitely many positive and negative eigenvalues, so the usual
definition of Morse index does not make sense, but one can define suitable signs
by the following construction.

Fix a metric on X and associate to each A ∈ A the self-adjoint elliptic operator

DA : Ω0+1(X; su(2)) −→ Ω0+1(X; su(2))

given by
DA(σ, τ) = (d∗Aτ, dAσ + ∗dAτ).

The spectral flow along a path At of connections is the signed number of eigen-
values of DAt which cross zero from negative to positive (crossings in the reverse
direction count negatively, and our convention is to regard zero modes at t = 0
and t = 1 as positive). This quantity effectively gives a relative Morse index

4



between two critical points. We choose the trivial connection θ as a basepoint,
i.e., replace (−1)µ(p) in formula (1) by (−1)SF (θ,A) . The spectral flow changes
by an even integer under gauge transformation of A , so the sign is well-defined
on gauge orbits [A] .

Theorem 1 (Taubes). For generic small perturbations h, the quantity

(3)
∑

[A]∈M∗
h

(−1)SF (θ,A)

is independent of the metric and perturbation. It equals minus the Casson in-
variant −λSU(2)(X), normalized as in [9]. This invariant is defined by counting
conjugacy classes of nontrivial representations ρ : π1X → SU(2) with sign [1].

Unless X is a homology sphere, M∗ is not generally compact and so the quan-
tity in (3) will typically depend on the choice of perturbation h (see Walker’s
generalization of λSU(2) to rational homology spheres [9], for example). A sim-
ilar problem occurs for homology spheres in SU(n) gauge theory for n > 2. In
[2], an invariant of homology spheres is defined using SU(3) gauge theory by
adding a correction term to the SU(3) analogue of the sum (3). This correction
term involves reducible (perturbed) flat connections. It is needed to compen-
sate for the births and deaths of irreducible gauge orbits of critical points of
cs + h from the stratum of reducible connections as h varies. We will come
back to this problem in Section 5, but first we illustrate the birth and death
phenomena with a finite dimensional model.

4. Equivariant Morse theory and the relative Euler
characteristic

Suppose M is a compact Riemannian manifold and G is a compact Lie group
acting smoothly on M. Let L be the subset of M consisting of points with
nontrivial stabilizer. Setting M∗ = M −L (suggestively), we note that G acts
freely on M∗ . We use

Γp = {g ∈ G | g(p) = p}
to denote the stabilizer subgroup of G at p ∈ M . It is sufficient for our purposes
to assume that Γp is either trivial or isomorphic to U(1) for each p ∈ M. This
implies L is a submanifold of M with smooth quotient L/G and that M/G is
a manifold with singularities along L/G .

Suppose f : M → R is a C3 G-invariant function. For p ∈ Crit(f) ∩ L , we
refine the Morse index µ(p) as follows. The tangent space TpM decomposes
into

(4) TpM = TpL⊕NpL,
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where NpL is the normal bundle fiber at p . The stabilizer subgroup Γp
∼=

U(1) acts nontrivially on NpL with weight one, and since f is G-invariant,
〈∇f(p), ~v 〉 = 0 for all ~v ∈ NpL. In addition, invariance of f implies that
Hess f(p) respects the decomposition in (4). Thus,

µ(p) = µt(p) + µn(p),

where µt and µn denote the dimensions of the negative eigenspaces of Hess f(p)
on the two summands in the decomposition (4).

Definition 2. A C3 G-invariant function f : M → R is called equivariantly
Morse if the following properties hold:

(i) The gradient vector field of the restriction f |L/G is transverse to zero,
so that the set of critical points of f |L/G is a regular, zero dimensional
manifold.

(ii) For all p ∈ Crit(f |L), the Hessian Hess f(p)|Np(L) restricted to the
normal directions is nondegenerate.

(iii) The set of critical points of the induced function f : M∗/G → R is
compact, regular, and zero dimensional.

Note that compactness in the third condition is not automatic, since M∗/G
is not compact. One can show that it follows from the first two conditions,
however.

The proof that Morse functions are generic in the nonequivariant case has been
generalized by Wasserman [10] to prove the following proposition.

Proposition 3. For generic C3 equivariant functions f : M → R, f is equiv-
ariantly Morse.

Given an equivariantly Morse function f : M → R , define

(5) χG(M) =
∑

[p]∈Crit(f)∩M∗/G

(−1)µ(p) − 1
2

∑
[p]∈Crit(f)∩L/G

(−1)µt(p)µn(p).

We will argue that this quantity is independent of f .

For a generic path of functions connecting two equivariant Morse functions,
three distinct types of topological changes, or bifurcations, in the critical set
can occur. These are illustrated in Figure 1, where the dotted curve repre-
sents the parameterized critical set in L/G and the solid curve represents the
parameterized critical set in M∗/G .

The points labeled A and B represent the standard births/deaths of cancelling
pairs of critical points in the zero dimensional critical sets in L/G and M∗/G .
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Figure 1. The three types of bifurcations of the critical set.

The point labeled C in the figure represents the third type of bifurcation, in
which a free critical orbit in M∗ pops out of a critical orbit in L .

This third type of bifurcation can be visualized by taking M = S2 and G =
U(1) acting by equatorial rotations. In this case, L consists of two points,
the North and South poles, denoted N and S . Representing functions on
the sphere as height functions, Figure 2 shows a deformation of the standard
height function during which a critical circle C pops out of S . Note that,
in this birth, not only does the topology of Crit(f) change, but the normal
Morse index µn(S) also changes. In fact, one can show that this third type of
bifurcation occurs precisely when there is a change in normal Morse index at a
critical orbit in L , and a careful check of orientations shows that the formula
(5) remains invariant under all three types of bifurcations. Thus χG(M) is
independent of the choice of equivariantly Morse function f .

����������������������

N
N N

S

C
S

S S

C

Figure 2. A critical circle C popping out of the South pole.

The following result is proved by choosing an equivariantly Morse function
whose values at all the critical points in L are lower than its values at any
other critical points.

Lemma 4. The quantity in formula (5) equals the relative Euler characteristic
χ(M/G,L/G).
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Remark 5. This invariant may be viewed as a differential topological invariant
of the quotient space M/G, which is smooth except along L/G. In this sense,
we have come as close as possible to a differential topological description of an
Euler characteristic of M/G.

5. The SU(3) Casson invariant

In this section, we outline the definition of the SU(3) Casson invariant, using
ideas from the previous section for motivation.

Suppose X is a homology sphere and denote by A the space of SU(3) connec-
tions in the trivial bundle E = X×C3 . The gauge group G = {g : X → SU(3)}
acts on A with quotient B = A/G . Let A∗ be the subspace of irreducible
connections, with quotient B∗ = A∗/G . Choosing appropriate Sobolev comple-
tions, it follows that B∗ is a smooth, infinite dimensional Banach manifold.

Connections in the complement of A∗ are called reducible and are characterized
by the fact that their stabilizer in G is larger than the center

Z(SU(3)) =


 e2πik/3 0 0

0 e2πik/3 0
0 0 e2πik/3

∣∣∣∣∣∣ k = 0, 1, 2

 ∼= Z3.

Throughout this article, given a group G and a subset S ⊂ G, we use Z(S) =
{g ∈ G | gs = sg for all s ∈ S} to denote the centralizer of S.

The SU(3) Casson invariant is defined by adapting the finite dimensional model
from the previous section to the Chern-Simons function of equation (2). As in
the SU(2) case, the critical point set Crit(cs) consists of flat connections and
the flat moduli space is M = Crit(cs)/G . Note that for a nontrivial flat SU(3)
connection A on a homology sphere, the stabilizer subgroup ΓA is isomorphic
to either U(1) or Z3 , depending on whether A is reducible or not.

We can dispense with the infinite dimensional group action, and work instead
with an SU(3) action, as follows. Fix a basepoint x0 ∈ X and consider the
normal subgroup of based gauge transformations G0 = {g ∈ G | g(x0) = 1} .
The quotient B̃ = A/G0 is a smooth manifold and B = B̃/SU(3). The singu-
larities in B occur at orbits in B̃ of connections whose stabilizer (with respect
to the SU(3) action) is larger than Z3.

While cs is not G -invariant, cs(g · A) = cs(A) + deg(g), and so this function
descends to give a smooth function cs : B̃ → R/Z which is equivariant with
respect to the SU(3) action.

The role of L ⊂ M is played by the space of G0 -orbits of reducible connections
in B̃ . It is useful to work with gauge representatives of these orbits that are in
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a standard form. Let Ar ⊂ A be the subspace of connections preserving the
decomposition of E = X×C3 into the sum (X×C2)⊕ (X×C). This splitting
of C3 determines a decomposition of the Lie algebra su(3) = h ⊕ h⊥ , where
h = su(2)⊕ R and h⊥ = C2 . The group SU(2) acts via the adjoint action on
the first summand (and trivially on the R) and via the canonical representation
on the second.

For connections A ∈ Ar , the tangent space TAA = Ω1(X; su(3)) decomposes
into the sum of TAAr = Ω1(X; h) and NAAr = Ω1(X; h⊥). Since the connec-
tion (acting on forms by the adjoint representation) respects this decomposition,
the twisted signature operator DA splits into two operators Dh

A and Dh⊥

A , each
acting on the spaces of twisted (0 + 1)-forms with the specified coefficients. In
fact, since h ∼= su(2) ⊕ R , Dh

A splits further into an operator on su(2)-valued
forms and an untwisted operator on R-valued forms. Furthermore, since Ar is
connected, any A ∈ Ar can be connected to θ by a path in Ar and SF (θ, A)
can thereby be split into “tangential” and “normal” parts.

Based on the finite dimensional case, it is natural to examine the quantity
λ1(X)− λ2(X) where

(6) λ1(X) =
∑

[A]∈M∗
h

(−1)SFsu(3)(θ,A)

and

(7) λ2(X) =
1
2

∑
[A]∈Mr

h

(−1)SFh(θ,A)SFh⊥(θ, A).

Unfortunately, the formula (7) is not well-defined, for the following reason. For
g ∈ G , the spectral flows SF (θ, A) and SF (θ, gA) differ by an even integer.
Thus formula (6) and the leading sign in formula (7) do not depend on the gauge
representative A , but the normal spectral flow SFh⊥(θ, A) does. One way to
eliminate this problem is to replace SFh⊥(θ, A) by SFh⊥(θ, A) − 2cs(A), but
the new quantity depends on the perturbation (varying the perturbation will
cause the critical point to move, thus changing the value of cs at the critical
point).

This difficulty is overcome by using the following formula:

(8) λ2(X) =
1
2

∑
[A]∈Mr

h

(−1)SFh(θ,A)(SFh⊥(θ, A)− 4cs(Â) + 2),

where A is a representative of the gauge orbit [A] of reducible perturbed flat
connections, and Â is an unperturbed flat connection close to A . Since cs is
constant on components of flat connections, this is well-defined (for small h , so
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that A is close to a unique component of flat connections). The addition of the
constant after the Chern-Simons value has the effect of modifying the SU(3)
invariant by addition of a multiple of λSU(2) , and we choose this constant so
that λSU(3)(−X) = λSU(3)(X).

Theorem 6 (Theorem 1, [2]). For a generic set of small perturbations h, the
quantity λSU(3) = λ1 − λ2 , where λ2 is defined in equation (8), is an invariant
of X , independent of perturbation and gauge representatives.

6. Contributions from components of the flat moduli space

To evaluate λSU(3)(X) using the formula in the previous section requires that
the function cs : B̃ → R/Z satisfies a nondegeneracy condition which is an
immediate generalization of the equivariantly Morse condition in Definition
2. In this section we determine the contribution to λSU(3) of several types
of components of the (unperturbed) flat moduli space under a less restrictive
nondegeneracy assumption.

The simplest case is that of a point component C = {[A]} in M . If A is irre-
ducible and H1

A(X; su(3)) = 0, then [A] contributes ±1 to λSU(3)(X), where
the sign is given by the parity of SFsu(3)(θ, A). If A is reducible, then pro-
vided H1

A(X; su(3)) = 0, it contributes the rho invariant %A′(X) to λSU(3)(X).
Here, H1

A(X; su(3)) means cohomology with coefficients in the su(3) bundle
twisted by A and A′ is the flat SU(2) reduction of A . The term %A′(X) is
the Atiyah-Patodi-Singer rho invariant of X associated to the holonomy map
holA′ : π1X → SU(2) using the canonical action2 of SU(2) on C2 . The con-
dition that H1

A(X; su(3)) = 0 is the analog of the conditions (i) and (ii) in
Definition 2.

Consider a path component C of the flat moduli space M such that C ⊂ B∗
and C is a smooth submanifold. Then C is a compact, critical submanifold
of the circle-valued Chern-Simons function on B∗ . We call such a component
a nondegenerate critical submanifold (in the sense of Bott-Morse theory) if the
Hessian of the Chern-Simons function is a nondegenerate bilinear form on each
fiber of the normal bundle to C .

Theorem 7 (Proposition 7, [3]). Suppose that C ⊂ M∗ is a compact compo-
nent. Suppose further C is a nondegenerate critical submanifold for the Chern-
Simons function. Then C contributes (−1)SF (θ,A)χ(C) to λSU(3)(X), where
A is any gauge representative of an orbit in C .

2%A′(X) is not the same as the rho invariant obtained using the adjoint action of SU(2)
on its Lie algebra, which is also studied in gauge theory.
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As is well-known, the same result holds verbatim in the SU(2) context, and we
use it to outline a gauge theoretic proof of the additivity of the SU(2) Casson
invariant.

Corollary 8 (Casson). λSU(2)(X1#X2) = λSU(2)(X1) + λSU(2)(X2).

Sketch of proof. By perturbing, we can assume that the moduli space of X1

and X2 are compact, regular, and zero dimensional. Set X = X1#X2 and
let θi denote the trivial (product) connection on Xi × C2 for i = 1, 2. For a
connection A on X, we denote by Ai the restriction of A to Xi for i = 1, 2.

There are precisely two component types in the perturbed flat moduli space of
X :

(1) Point components of the form [θ1#A2] or [A1#θ2] .
(2) SO(3) components of the form [A1#φA2] , where A1 and A2 are irre-

ducible and φ ∈ SO(3) is the gluing parameter.

Since χ(SO(3)) = 0, Theorem 7 implies that components of the second type
do not contribute to λSU(2)(X). For the point components, we use additivity
of the spectral flow

SFX(A1#A2, B1#B2) = SFX1(A1, B1) + SFX2(A2, B2)

to prove Corollary 8. �

The next result is an equivariant generalization of Theorem 7 and covers many
components of M with mixed isotropy.

Theorem 9. Suppose C̃ ⊂ B̃ is a connected critical submanifold of the Chern-
Simons function which is nondegenerate in the Bott-Morse sense. Set C =
C̃/SU(3), C∗ = C ∩B∗ , and Cr = C ∩Br, and choose [A] ∈ C∗ and [B] ∈ Cr.
Then C contributes

(−1)SFsu(3)(θ,A)χ(C,Cr) + (−1)SFh(θ,B)χ(Cr)(SFh⊥(θ, B)− 4cs(B) + 2)

to λSU(3)(X).

Sketch of proof. Choose a perturbation h such that h|
C̃

is equivariantly Morse
(this is possible by [2], Proposition 3.4). Consider the 1-parameter family
ft = cs + th . Several factors complicate the argument slightly. First, the
parameterized critical set is not generally a manifold. Second, one does not
have the freedom in general to choose h so that for t > 0 the critical set
Crit(ft) near C̃ remains a subset of C̃ . Nevertheless, one can show using the
implicit function theorem that, for small ε > 0, the parameterized critical set⋃

0≤t<ε

Crit(ft)× {t} ⊂ B̃ × [0, ε)
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is homeomorphic to the union of C̃ × {0} and Crit(h|
C̃
) × [0, ε), identified

along t = 0 (and the homeomorphism is a diffeomorphism on either part of the
union). �

7. The Connected Sum Formula

In this section, we outline the proof of the following theorem.

Theorem 10 (Theorem 1 of [3]). Suppose X1 and X2 are integral homology
3-spheres. Then

(9) λSU(3)(X1#X2) = λSU(3)(X1) + λSU(3)(X2) + 4 λSU(2)(X1) λSU(2)(X2),

where λSU(2) is Casson’s original invariant, normalized as in [9].

Remark. Even though λSU(3) is not additive under connected sum, the theorem
implies that the difference λSU(3)− 2λ2

SU(2) is additive under connection sum.

Sketch of proof. Assume that the moduli spaces of flat SU(3) connections on
X1 and X2 are regular (see Definition 3.8 of [2]). In particular, M(X1) and
M(X2) are compact zero dimensional manifolds.

The moduli space M(X1#X2) is not regular because it contains higher dimen-
sional components. We prove (9) by interpreting point components in the usual
way and applying Theorems 7 and 9 to components of positive dimension.

Given flat connections A1 on X1 and A2 on X2 , a well-known procedure (see
section 7.2.1 of [5]) constructs a flat connection A on X = X1#X2. The gauge
orbit [A] is not uniquely determined by [A1] and [A2] . The reason is that
one can gauge transform A1 while keeping A2 fixed and the newly constructed
connection will not be gauge equivalent to the old one.

This is perhaps easiest to understand in terms of SU(3) representation varieties.
For a homology sphere X , set

R̃(X, SU(3)) = Hom(π1(X), SU(3)).

For g ∈ SU(3) and ρ ∈ R̃(X, SU(3)), we define g · ρ to be the represen-
tation sending x ∈ π1X to g ρ(x) g−1 . This defines an action of SU(3) on
R̃(X, SU(3)) and we denote the quotient by

R(X, SU(3)) = R̃(X, SU(3))/SU(3).

By a well-known theorem in differential geometry, M̃(X) ∼= R̃(X, SU(3)) and
M(X) ∼= R(X, SU(3)). We use the notation [ρ] to denote the conjugacy class
of a representation ρ : π1X → SU(3). Thus [ρ] ∈ R(X, SU(3)).
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In case X = X1#X2 decomposes as a connected sum, the fundamental group
is given by the free product

π1X = π1X1 ∗ π1X2.

Thus, SU(3) representations ρ1 and ρ2 of π1X1 and π1X2 define, in an obvious
way, a representation ρ = ρ1 ∗ρ2 : π1X → SU(3) and ρ is uniquely determined
by ρ1 and ρ2 . This gives a canonical isomorphism

R̃(X, SU(3)) ∼= R̃(X1, SU(3))× R̃(X2, SU(3)),

and conjugation acts diagonally. Notice that the conjugacy class [ρ] is not
determined by [ρ1] and [ρ2] because one can conjugate ρ2 relative to ρ1 and
produce new, inequivalent representations.

Fix representations ρ1 and ρ2 of X1 and X2 and consider the family of repre-
sentations ρg defined for g ∈ SU(3) by

ρg = ρ1 ∗ (g · ρ2).

By taking [ρg] , this defines a parameterized family in the representation space
R(X, SU(3)). As we shall see, the correct parameter space for this family is a
double coset space.

For i = 1, 2 define the isotropy subgroup of ρi to be

Γi = {γ ∈ SU(3) | γ · ρi = ρi}.
If γ ∈ Γ2 and g ∈ SU(3) is arbitrary, then

ρgγ = ρ1 ∗ (gγ) · ρ2 = ρ1 ∗ g · ρ2 = ρg.

On the other hand, if γ ∈ Γ1

ργg = ρ1 ∗ (γg) · ρ2 = γ · ((γ−1 · ρ1) ∗ (g · ρ2)),

and thus [ργg] = [ρg] if γ ∈ Γ1 . Thus the subset C = {[ρg] | g ∈ SU(3)} ⊂
R(X, SU(3)) is homeomorphic to

Γ1\SU(3)/Γ2.

If ρ1 is the trivial representation, then Γ1 = SU(3) and Γ1\SU(3)/Γ2 is a single
point. The same is true if ρ2 is trivial. Pairing each nontrivial representation of
X1 with the trivial representation on X2 and vice versa, and using additivity
of the spectral flow and the Chern-Simons invariants, we obtain the first two
terms on the right of equation (9).

The remaining cases to consider are:

(1) Both ρ1 and ρ2 are irreducible.
(2) ρ1 is irreducible and ρ2 is reducible, or vice versa.
(3) Both ρ1 and ρ2 are reducible and nontrivial.
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Note that cases 1 and 2 give rise to components completely contained in the
subvariety R∗(X, SU(3)) of irreducible representations. Case 3 gives rise to
components of mixed isotropy; that is, the constructed representation may or
may not be reducible, depending on the gluing parameter g .

First, assume both ρ1 and ρ2 are irreducible. Then Γ1 = Γ2 = Z(SU(3)) ∼= Z3 ,
and hence Γ1\SU(3)/Γ2

∼= PU(3). Since χ(PU(3)) = 0, Theorem 7 implies
that these components do not contribute to λSU(3)(X).

Next, assume without loss of generality that ρ1 is irreducible and ρ2 is reducible
but nontrivial. Then Γ1

∼= Z3 and Γ2 = H , where H is the U(1) subgroup

(10) H =


 u 0 0

0 u 0
0 0 u−2

∣∣∣∣∣∣ u ∈ U(1)

 .

Thus Γ1\SU(3)/Γ2 is a homogeneous 7-manifold, hence its Euler characteristic
vanishes. Another application of Theorem 7 shows that such components do
not contribute to λSU(3)(X).

The last case is the most interesting because one gets nontrivial contributions
to the SU(3) Casson invariant. Indeed, the nonadditivity of λSU(3) under
connected sum is a direct result of the nonvanishing of the relative Euler char-
acteristic in this case.

Observe that even though both ρ1 and ρ2 are reducible, the induced represen-
tation ρ = ρ1 ∗ ρ2 may be irreducible. To visualize this, let Li ⊂ C3 be the one
dimensional subspace invariant under ρi. Then ρ = ρ1 ∗ ρ2 is reducible if and
only if L1 = L2 .

Alternatively, if ρ1 and ρ2 are reducible with L = L1 = L2, then the repre-
sentation ργ = ρ1 ∗ (γ · ρ2) is reducible if and only if γ preserves L. For the
standard reduction, i.e., if im(ρi) ⊂ S(U(2) × U(1)) and L = span{(0, 0, 1)} ,
this occurs precisely when γ ∈ S(U(2) × U(1)). In this case, Γ1 = Γ2 = H
is the subgroup (10). (This agrees with the proof of Corollary 8 because the
quotient of S(U(2)× U(1)) by Γ1 is indeed isomorphic to SO(3).)

Let C = Γ1\SU(3)/Γ2 be the associated component of the representation va-
riety R(X, SU(3)). As we have already observed, the subset Cr of reducible
representations is parameterized by SO(3) and χ(Cr) = 0. One can show (see
the proof of Proposition 10 of [3]) that χ(C) = χ(C,Cr) = 4, thus an appli-
cation of Theorem 9, together with additivity of spectral flow, completes the
proof of the theorem. �
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8. Graph Manifolds of two (2, q) torus knot complements

In this section, we consider the family of graph manifolds obtained by gluing
the complements of two torus knots together as follows.

Given knots K1 and K2 in S3 with complements X1 and X2 , orient K1 and
K2 and denote by µi and λi the standard oriented meridian/longitude pair of
Ki . Construct a homology sphere X by gluing X1 to X2 by identifying µ1

and λ2 and λ1 and µ2. Thus X = X1 ∪T X2 , where T is the 2-torus and the

gluing is specified by the matrix
(

0 1
1 0

)
in terms of the bases {µ1, λ1} and

{µ2, λ2} for H1(∂X1) and H1(∂X2). A Mayer-Vietoris argument proves that
X is a homology sphere.

We will consider homology spheres of this form in the special case K1 and K2

are torus knots of type (2, q). Recall that a torus knot is determined by a pair
(p, q) of relatively prime integers. It is the knot K : [0, 2π] → R3 ⊂ S3 given
by

K(θ) = ((2 + cos qθ) cos pθ, (2 + cos qθ) sin pθ,− sin qθ).

We first consider representations of the knot complement.

Lemma 11. Suppose X is the complement of the (2, p) torus knot K and let
µ denote its meridian. If ρ : π1X → SU(3) is an irreducible representation,
then ρ(µ) has three distinct eigenvalues.

Proof. We prove this by contradiction, using the well-known fact that µ nor-
mally generates π1X. This fact shows immediately that ρ(µ) has at least two
distinct eigenvalues, so suppose ρ(µ) has an eigenvalue with eigenspace U ⊂ C3

and dim(U) = 2.

Writing π1X = 〈x, y | x2 = yp〉 , notice that x2 is central in π1X. By irre-
ducibility of ρ , it follows that ρ(x2) is central in SU(3). (Hence ρ(x6) = 1.)
Thus ρ(x) also has an eigenspace of dimension two, which we denote by V .
For dimensional reasons, U ∩ V 6= 0. Choosing a nonzero vector v ∈ U ∩ V ,
we see that v is a common eigenvector for ρ(x) and ρ(µ).

We claim that v is also an eigenvector of ρ(y). Since π1X is generated by x
and y, this claim contradicts irreducibility of ρ , as the linear span of v would
then be an invariant subspace.

To prove the claim, recall that µ = xy(1−p)/2 , and hence x5µ = x6y(1−p)/2 .
Since v is an eigenvector of both ρ(x) and ρ(µ), it is also an eigenvector of

ρ(x5µ) = ρ(x6y(1−p)/2) = ρ(x6)ρ(y(1−p)/2) = ρ(y(1−p)/2).
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It follows that v is an eigenvector of ρ(y)1−p = ρ(y)ρ(y)−p . The proof of
the claim is completed by noting that ρ(y)−p is central (and hence is a scalar
matrix). �

The previous lemma is no longer true if one drops the assumption that ρ is irre-
ducible. It obviously fails in the abelian case, but one can also find nonabelian
counterexamples.

We now turn our attention to SU(3) representations of the homology sphere
X = X1 ∪T X2 obtained by gluing a (2, p1) torus knot complement X1 to a
(2, p2) complement X2 with the specific boundary identification described at
the beginning of the section.

Lemma 12. Suppose Xi is the complement of a (2, pi) torus knot Ki for
i = 1, 2 and µi, λi are the standard meridian and longitude for Ki . Let X =
X1 ∪T X2 be the homology sphere obtained by identifying µ1 with λ2 and λ1

with µ2 . If ρ : π1X → SU(3) is a representation whose restriction to π1X1 is
abelian then ρ is trivial. (Similarly for π1X2 .)

Proof. Given ρ : π1X → SU(3), we define representations ρi : π1Xi → SU(3)
for i = 1, 2 by precomposing with the natural map π1Xi → π1X induced by
inclusion. Notice that ρ is determined by the pair (ρ1, ρ2).

If ρ1 is abelian, then because λ1 is null-homologous in X1, it follows that
ρ1(λ1) is the identity. In π1X, we have µ2 = λ1 , hence ρ2(µ2) is also the
identity. But µ2 normally generates π1X2, so this implies that ρ2 is trivial.
This then implies that ρ1 is trivial, hence ρ is trivial. �

Suppose ρ : π1X → SU(3), and let ρi denote the restriction of ρ to π1Xi as
in the proof of the lemma. Note that ρ is completely determined by the pair
(ρ1, ρ2). Note also that if ρ is reducible, then so are ρ1 and ρ2 . Finally, notice
that the converse is false.

Our strategy for computing λSU(3)(X) is to parameterize the various compo-
nents of R(X, SU(3)) and apply Theorem 7. Specifically, for fixed ρ1 and ρ2 ,
we use the stabilizer group of ρ|π1T to parameterize the set

C = {[ρ] | ρ|π1Xi is conjugate to ρi for i = 1, 2} ⊂ R(X, SU(3)).

The next result implies that the stabilizer subgroup of ρ(π1T ) is the maximal
torus of SU(3).

Theorem 13. Suppose K1 and K2 are (2, p1) and (2, p2) torus knots, re-
spectively, and X1 and X2 are their complements. Let X = X1 ∪T X2 be the
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homology sphere obtained by gluing X1 to X2 by identifying meridians and lon-
gitudes. Denote by µ1, λ1 and µ2, λ2 the standard meridian and longitude pair
for the knots K1 and K2, respectively. If ρ : π1X → SU(3) is nontrivial, then
both ρ(µ1) and ρ(µ2) have three distinct eigenvalues.

Proof. As before, associate to ρ the representations ρ1 of π1X1 and ρ2 of π1X2 .
If both ρ1 and ρ2 are irreducible, then the conclusion follows from Lemma 11.
The remaining cases are:

(i) Both ρ1 and ρ2 are reducible.
(ii) ρ1 is reducible and ρ2 is irreducible or vice versa.

By conjugating, if necessary, we can assume that ρ(µ1) and ρ(µ2) are diagonal.
In each case, we shall assume ρ(µ1) has only two distinct eigenvalues and arrive
at a contradiction.

Writing π1X1 = 〈x1, y1 | x2
1 = yp1

1 〉 and π1X2 = 〈x2, y2 | x2
2 = yp2

2 〉 . In terms of
these generators, the meridian and longitude are given by the elements

µ1 = x1y
(1−p1)/2
1 , µ2 = x2y

(1−p2)/2
2 ,

λ1 = x2
1µ
−2p1
1 , λ2 = x2

2µ
−2p2
2 .

Regarding µi and λi as words in xi and yi , we obtain the following presentation
of the fundamental group of X = X1 ∪T X2 :

π1X = 〈x1, y1, x2, y2 | x2
1 = yp1

1 , x2
2 = yp2

2 , µ1 = λ2, µ2 = λ1〉.

In case (i), Lemma 12 implies both ρ1 and ρ2 are nonabelian (otherwise ρ is
trivial). Now, λ2 is homologically trivial in X2, and since ρ2 is reducible, it
follows that ρ2(λ2) has 1 as one of its eigenvalues. Since µ1 = λ2 in π1X, the
same is true of ρ1(µ1). Since the other two eigenvalues are equal, ρ1(µ1) must
have eigenvalues 1,−1 and −1. It follows that ρ1(µ1)2 is the identity matrix.

Applying ρ1 to the relation λ1 = x2
1µ
−2p1
1 , we see that ρ1(λ1) = ρ1(x2

1). Since
x2

1 is central in π1X1 , ρ1(x2
1) ∈ Z(im(ρ1)) has at most two distinct eigenvalues.

But we have already noted that one of its eigenvalues equals 1, hence the other
two are ±1. Since ρ1(x2

1) = ρ1(λ1) = ρ2(µ2) and ρ2 is nonabelian, ρ1(x2
1) is

nontrivial and thus has eigenvalues −1,−1, and 1. Now ρ(x1) is a square root
of ρ(x2

1), thus it has eigenvalues {±i,±i,−1} or {i,−i, 1}. In the first case,
ρ(x1) ∈ Z(im(ρ1)) since two of its eigenvalues are equal. Thus ρ(x1) commutes
with ρ(y1) implying ρ1 is abelian and contradicting Lemma 12. So we can
assume ρ1(x1) has eigenvalues i,−i and 1.

Conjugate ρ so that ρ1 has image in S(U(2)×U(1)) and ρ(µ1) and ρ(µ2) are
diagonal. Using the fact that µ1 normally generates π1X1 and that ρ1(µ1) has
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eigenvalues ±1, it follows that

im(ρ1) ⊂


 ? ? 0

? ? 0
0 0 ±1

 .

But ρ1(y
p1
1 ) = ρ1(x2

1) has (3, 3) entry equal to 1. Since p1 is odd, this im-
plies ρ1(y1) also has (3, 3) entry equal to 1. Thus ρ1(x1) and ρ1(y1), and
consequently all matrices in im(ρ1), are of the form ? ? 0

? ? 0
0 0 1

 .

Consequently

ρ(µ1) =

 −1 0 0
0 −1 0
0 0 1

 ,

which implies ρ1 is abelian, a contradiction.

The proof in case (ii) is similar. Assume without loss of generality that ρ1

is reducible and ρ2 is irreducible. As before, we arrange by conjugation that
ρ1(µ1) and ρ2(µ2) are diagonal. We know from Lemma 11 that ρ2(µ2) has
three distinct eigenvalues, so the only way the theorem can fail is if ρ1(µ1)
has eigenvalues t, t, t−2 for some t ∈ U(1). We can conjugate ρ further so
that im(ρ1) ⊂ S(U(2) × U(1)). Since λ1 is homologically trivial, one of its
eigenvalues equals 1 and it follows that

ρ1(λ1) =

 s 0 0
0 s−1 0
0 0 1


for some s ∈ U(1). Using the relations µ2 = λ1 , λ2 = µ1 , and λ2 = x2

2(µ2)−2p2 ,
it follows that

(11) ρ(µ1) = ρ(x2
2)ρ(λ1)−2p2 .

However ρ(x2
2) ∈ Z(SU(3)) since x2

2 is central in π1X2 and ρ2 is irreducible.

Now ρ(µ1) is one of the following three matrices: t 0 0
0 t 0
0 0 t−2

 ,

 t 0 0
0 t−2 0
0 0 t

 ,

 t−2 0 0
0 t 0
0 0 t

 .

In the first case, notice that ρ1(µ1) ∈ Z(im(ρ1)), hence ρ1 is abelian (since
µ1 normally generates π1X1 ). In the second case, equation (11) leads to the
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matrix equation: t 0 0
0 t−2 0
0 0 t

 =

 u 0 0
0 u 0
0 0 u

  s−2p2 0 0
0 s2p2 0
0 0 1

 .

The only solutions in SU(3) occur when t = u, in which case ρ1(µ1) is also
central and ρ1 is abelian. In the third case one can construct a similar argument
with the same conclusion. Therefore, the assumption that ρ(µ1) has eigenvalues
t, t, t−2 cannot hold, and ρ(µ1) has three distinct eigenvalues. �

This theorem shows that if ρ1 and ρ2 are fixed so that ρi(µi) and ρi(λi) are
diagonal, then the component of R(X, SU(3)) consisting of conjugacy classes
of representations ρ with ρ|π1Xi conjugate to ρi is parameterized by a quotient
of the form

Γ1\T/Γ2

where T = S1×S1 is the maximal torus of SU(3). As in the previous section,
Γi denotes the isotropy subgroup of ρi. The various different cases are:

(i) If ρ is reducible, then so are ρ1 and ρ2 and up to conjugation, we have
Γ1 = Γ2 = H , the U(1) subgroup (10). The corresponding component
C = Γ1\T/Γ2

∼= U(1) has χ(C) = 0. Notice that C = Cr, i.e., C∗ =
∅ . Theorem 9 then shows that these components do not contribute to
λSU(3)(X).

(ii) If ρ1 and ρ2 are both irreducible, then Γ1 = Γ2 = Z(SU(3)) ∼= Z3 and
C = Γ1\T/Γ2

∼= T again has χ(C) = 0. Theorem 7 now shows that
these components do not contribute to λSU(3)(X).

(iii) If ρ1 is irreducible and ρ2 is reducible (or vice versa), then we conjugate
until im(ρ2) ⊂ S(U(2) × U(1)) and so Γ1

∼= Z3 and Γ2 = H . Hence
C = Γ1\T/Γ2

∼= U(1) and χ(C) = 0. Again by Theorem 7, we conclude
that these components do not contribute to λSU(3)(X).

(iv) If ρ1 and ρ2 are reducible and ρ is irreducible, then Γ1 and Γ2 are
isomorphic to U(1) subgroups of SU(3) but Γ1 6= Γ2. (In other words,
if Li is the 1-dimensional subspace of C3 invariant under ρi, then L1 6=
L2 ). In this case, C = Γ1\T/Γ2

∼= {∗} is a point which contributes ±1
to λSU(3)(X) depending on the parity of the su(3) spectral flow.

Implicit in the above statements is the fact that the components described there
are nondegenerate. That is, for any orbit [A] ∈ B̃ in a component of the flat
moduli space, the kernel of Hess(cs) on T[A]B̃ is exactly the tangent space of
the component (the double coset space). This can be verified by using Fox
differential calculus to find the first cohomology with twisted coefficients for
the two knot complements and identify their images in the cohomology of the
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splitting torus. Then a Mayer-Vietoris argument completes the proof of this
fact.

This proves the following theorem.

Theorem 14. If X is the homology sphere obtained by gluing X1 to X2 as
above, where X1 is a (2, p1) torus knot complement and X2 is a (2, p2) torus
knot complement, then the correction term λ′′SU(3)(X) vanishes and λSU(3)(X)
is the algebraic count of irreducible representations of π1X of type (iv) above.
In particular, λSU(3)(X) ∈ Z.

Based on our description of the component types (i) – (iv) of R(X, SU(3)), a
reasonable guess is that λSU(3)(X) = 4λSU(2)(X1)λSU(2)(X2) for graph man-
ifolds X = X1 ∪T X2 as in Theorem 14. To prove this, we need to develop
a method for computing the su(3) spectral flow for manifolds split along a
2-torus. We leave this problem to a future article.
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