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ABSTRACT. We develop techniques for computing the integer valued SU(3)
Casson invariant defined in [6]. Our method involves resolving the singularities
in the flat moduli space using a twisting perturbation and analyzing its effect
on the topology of the perturbed flat moduli space. These techniques, together
with Bott-Morse theory and the splitting principle for spectral flow, are applied
to calculate Tgy7(3)(2) for all Brieskorn homology spheres.

1. INTRODUCTION

In this article we compute the integer valued SU(3) Casson invariant Tgy(s)
for Brieskorn spheres X(p,q,7). Computations of 7sy(3)(X(2,¢,7)) appear in [6],
and we extend those computations to all Brieskorn spheres. Our calculations are
consistent with the conjecture that some kind of surgery formula for 75y(3) may
exist, but they also show that 7gy;(3y is not a finite type invariant.

If ¥ is a 3-dimensional homology sphere whose flat SU(3) moduli space is non-
degenerate and O-dimensional, then the integer valued SU(3) Casson invariant
Tsu(3)(2) is simply a signed count of the points in the irreducible stratum of the flat
moduli space. On the other hand, if the moduli space has positive dimension and
is nondegenerate in the sense of Bott and Morse (or more generally if its lift to the
based moduli space is nondegenerate), then one can apply standard (equivariant)
Morse theoretic techniques to compute the invariant 7y(3)(2) (see [4]).

The family of computations given here represents the first successful attempt to
compute the invariant 74y (3)(2) for manifolds ¥ with truly singular moduli spaces.
Even in the connected sum theorem of [4] where one encounters components of
mixed type in the moduli space (i.e. components containing both irreducible and
reducible gauge orbits), when lifted to the based moduli space, these components
become nondegenerate and one can apply equivariant Bott-Morse theory to deter-
mine the invariant 7gy;(3). In contrast, the flat SU(3) moduli space of the Brieskorn
spheres considered in this paper are singular even when lifted to the based moduli
space. Thus the perturbation techniques presented here go beyond the standard
theory and in fact provide a new approach to transversality issues that may well
apply more generally.

The new approach involves a combination of manifold decomposition and Mayer-
Vietoris techniques and traditional holonomy perturbations. Simply put, our idea
is to construct a special type of perturbation (called the twisting perturbation) and
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analyze its effect on the moduli space. We prove that under such perturbations,
the moduli space becomes nondegenerate and we express the invariant 7sy(3) in
terms of the topology of the perturbed moduli space and the spectral flow of the
odd signature operator.

The remainder of this paper is divided into five sections. Section 2 presents
a detailed description of the SU(3) representation varieties of Brieskorn spheres.
Corresponding results for knot complements are given in Section 3. Section 4 in-
troduces the twisting perturbations and describes their effect on the moduli spaces.
Section 5 presents spectral flow computations based on a splitting argument, and
Section 6 presents a lattice point count which provides numerical calculations of
Tsu(s) for families of Brieskorn spheres ¥(p, ¢, 7), including all homology 3-spheres
obtained by Dehn surgery on a (p,q) torus knot. The rest of the introduction is
devoted to outlining the main argument.

Recall first that if 7 is a (finitely presented) group, a representation a: m —
SU(3) is irreducible if no nontrivial linear subspace of C3 is invariant under «a(g)
for all g € w. This is equivalent to the condition that the stabilizer of o with respect
to the conjugation action equals the center of SU(3). Otherwise, «a is reducible and
its image can be conjugated to lie in the subgroup S(U(2) x U(1)).

Suppose that ¥ is a homology 3-sphere and let R(3, SU(3)) be the set of conju-
gacy classes of representations a: m1(X) — SU(3). Then R(X, SU(3)) is a real al-
gebraic variety homeomorphic to the moduli space . (X) of flat SU(3) connections
on X. We denote by R*(X, SU(3)) the subspace of conjugacy classes of irreducible
representations and by .#*(X) the subspace of irreducible flat connections.

The integer valued SU(3) Casson invariant 7gy(3)(X) is defined in [6] and gives
an algebraic count of the conjugacy classes of irreducible representations of m (%),
with a correction term involving the reducible representations. More precisely, the
flatness equations are perturbed so that the flat moduli space becomes nondegen-
erate, and gauge orbits of irreducible perturbed flat connections are counted with
sign given by the spectral flow of the su(3) odd signature operator. The resulting
integer depends on the perturbation used, and to compensate for this we add a
correction term defined in terms of the reducible stratum.

For ¥ = X(p, q, r) the Brieskorn sphere, the analysis of [2] shows that R(X, SU(3))
is a union of path components, each of which is homeomorphic to either an isolated
point or a 2-sphere. More precisely, we will show that each path component is one
of the following four types:

Type Ia: Isolated conjugacy classes of irreducible representations.

Type IIa: Smooth 2-spheres, each parameterizing a family of conjugacy classes
of irreducible representations.

Type Ib: Isolated conjugacy classes of nontrivial reducible representations.

Type IIb: Pointed 2-spheres, each parameterizing a family of conjugacy classes
of representations, exactly one of which is reducible.

The main result in this paper is the following theorem (Theorem 6.2), which
describes how each of the component types contributes to the SU(3) Casson invari-
ant. This, together with enumerations of the components of each type, enable us
to calculate the invariant for a variety of Brieskorn spheres X (p, ¢, 7). The results
of these computations can be found in Table 1 and 2.

Theorem. Type Ia, Ila, Ib, and IIb components each contribute +1, +2, 0, and
+2, respectively, to the integer valued SU(3) Casson invariant Tsy(s)(X(p,q,7))-
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We conclude the introduction by outlining the proof of this theorem. Compo-
nents of Type Ia are regular and remain so after small perturbations. The sign
attached to each such point is positive by the results of [2], and so computing the
contribution of the Type Ia points to 7y (3)(X) reduces to an enumeration problem.
This is carried out in Section 6.

Components of Type ITa are nondegenerate critical submanifolds of the Chern-
Simons function. Bott-Morse theory, together with a spectral flow computation,
implies that each such component contributes x(S?) = 2 to 7gy(3)(2). Thus the
computation of the contribution of the Type Ila components to Tgy(3)(X) is also
reduced to an enumeration problem which is solved in Section 6.

Components of Type Ib do not contribute to Tgy(3)(2) (although they do enter
into the calculations of the invariant Agy(s) given in [5]).

The only remaining issue is to calculate the contribution of components of Type
ITb. This requires some sophisticated techniques that go beyond those of [6], where
one can find computations of 7gy(3) for Brieskorn spheres of the form ¥(2,¢,r)
(whose representation varieties do not contain any Type IIb components). The
problem is that Type IIb components are singular in a strong sense: even their lifts
to the based moduli space are singular. We introduce a perturbation which resolves
these singularities and then carefully analyze its effect on the topology of the moduli
space. We prove that after applying the perturbation, each pointed 2-sphere resolves
into two pieces, one isolated gauge orbit of reducible connections and the other a
smooth, nondegenerate 2-sphere of gauge orbits of irreducible connections (similar
to a Type Ila component).

In defining the perturbation, we regard one of the singular fibers of the Seifert
fibration ¥ — 52 as a knot in ¥ and perturb the flatness equations in a small
neighborhood of this knot. Consequently, perturbed flat connections are seen to
be flat on the knot complement, and we study the perturbed flat moduli space
in terms of the SU(3) representation space of this knot complement. Basically,
the perturbed flat moduli space on ¥ is obtained from the flat moduli space of
the knot complement by replacing the condition “meridian is sent to the identity”
by a condition of the form “the meridian and longitude are related by a certain
equation.”

Having resolved the singularities in the Type IIb components, we then determine
the contribution of the reducible, perturbed flat connection to the correction term.
This is given by the spectral flow (with C? coefficients) of the odd signature opera-
tor. To calculate this we prove a splitting theorem for spectral flow determined by
the decomposition of ¥ into a knot complement and a solid torus.

Notation. If 7 is a discrete group and a: # — G is a representation, we denote
the stabilizer subgroup of a by

Io={g€CG|gag™" =a}.

If G is a Lie group, the orbit of @ under conjugation is smooth and diffeomorphic
to the homogeneous manifold G/T,. We denote the representation variety

R(mw,G) = Hom(w, G)/conjugation.

Given a representation «a: m — G, we denote its conjugacy class by [a]. Given a
manifold X, we denote by R(X,G) the representation variety of the fundamental
group 71 (X).



FIGURE 1. A surgery description of the Brieskorn manifold
Y(p,q,r) indicating the Wirtinger generators z,y,z, and h for
1 (E)

2. SU(3) REPRESENTATION SPACES OF BRIESKORN SPHERES

In this section, we identify the components of the SU(3) representation vari-
eties of Brieskorn spheres ¥, both as topological spaces and as varieties with their
Zariski tangent spaces. The local structure of the representation varieties (e.g. the
identification of the smooth and singular loci) is reflected in the computations of
twisted cohomology groups. The global structure of the representation variety is
presented in Subsection 2.3, which gives a complete classification of the different
path components of R(3, SU(3)).

2.1. Brieskorn spheres. Given integers p, q,, set
Y(p,q,7) = {(z,y,2) € C> | 2P +y? + 2" =0} N S5.

If p, ¢, r are pairwise relatively prime then 3(p, ¢, ) is a homology 3-sphere and has
surgery description in Figure 1 (see [22] for details). Here, a, b, ¢ satisfy

(2.1) aqr + bpr + cpq = 1.

The resulting manifold X(p, ¢,r) is independent of a,b,c, up to orientation pre-
serving homeomorphism. Without loss of generality we assume that p and ¢ are
odd.

Proposition 2.1. The numbers a and b can be chosen to be equal.

Proof. Since p, q, and r are pairwise relatively prime, r(p 4+ ¢q) and pq are relatively
prime. Thus there are integers a and c such that

ar(p+q) +cpg =1,
which is equivalent to the condition (2.1) with b = a. O

Fix integers a and c as above. Note that since p and ¢ are both odd, ¢ must also

be odd. A presentation for the fundamental group of X(p, q,r) is
(2.2) 71 (S0, q,7)) = (@9, 2,k | 2P =y = h®, 2" = B,
| xyz =1, h is central ),

where z,y, z and h are the Wirtinger generators indicated in Figure 1.
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Whenever p, g, and r are clear from the context, we drop them from the notation
and denote the Brieskorn sphere by ¥. A regular neighborhood of the singular r-
fiber in ¥ is a solid torus whose boundary torus 7' splits the Brieskorn sphere
Y =YUrZ, where Y = D2 x S! is the solid torus and Z = £ —Y is its complement.
Alternatively, Z is the complement of an open tubular neighborhood of the core of
the ( f) curve in ¥ and depicted in Figure 1. With regard to the natural peripheral

(&
structure thus obtained on Z, its fundamental group has presentation

(2.3) m(Z) = (z,y,h| xF =y? = h® h is central).

In terms of these generators, the meridian and longitude are represented by
(2.4) = (xy)"h and A = (zy)Pah~(PFOa,

Then p generates the abelianization of m1(Z), and one can check that in H;(Z),
(2.5) [z] = aq[u), [y] = aplu], [h] = pqlp], and [A] = 0.

2.2. Cohomology calculations. In this subsection, we present computations of
H(%; su(3)q), where a: 71 (%) — SU(3) is a representation and SU(3) acts on its
Lie algebra su(3) via the adjoint representation.

We begin with some general comments about representations and twisted coho-
mology groups. Suppose that G is a compact Lie group, acting on its Lie algebra g
via the adjoint action, and 7 is a finitely presented group. Then the Zariski tangent
space to (the algebraic variety) R(w, G) at the conjugacy class of a representation
a:m — G is isomorphic to H'(m;g4). The Kuranishi map embeds a neighbor-
hood of [a] in R(w, G) into its Zariski tangent space modulo T',. In particular if
H'(m;g4) = 0, then [a] is an isolated point in R(w,G) (although the converse is
sometimes false). We say that [a] € R(w, G) is a smooth point if a neighborhood
of [a] in R(m, @) is homeomorphic to H!(m, g,); otherwise [a] is called a singular
point.

We are mostly interested in the case G = SU(3), but we must also consider
possible reductions to the subgroups SU(2) and S(U(2) x U(1)). Note that because
¥ is a homology sphere, any reducible representation a: 7 (X) — SU(3) has image
in in SU(2) x {1} up to conjugation. The decomposition su(3) = su(2) & C* &R
of the Lie algebra gives that

H (X 5u(3)a) = H (3 su(2)s) ® H(Z;C2) @ HY(Z; R),
where the first cohomology group has coefficients su(2) twisted via the adjoint ac-
tion (viewing o as an SU(2) representation), the second has coefficients C? twisted
by the standard representation, and the last has untwisted real coefficients.

The proof of the following proposition is routine, if not short. For the sake
of brevity we omit it and similar calculations below, confident that the interested
reader can provide a proof. Similar calculations can be found in our earlier article
[5]-

Proposition 2.2. Suppose a: m1(X) — SU(3) is a nontrivial representation. Then
« has nonabelian image. Moreover:

(i) If « is irreducible, then a(h) = e*™*/3T for an integer k and
R? if each of a(z),a(y), a(z) has three
HY (2 5u(3)0) = distinct eigenvalues,
0  otherwise.
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(ii) If o is reducible and has been conjugated into SU(2) x {1}, then

£1 0 0
ahy=1] 0 1 0
0 0 1

With respect to the splitting su(3) = su(2)®C*®R, we have that HO(; su(2)s) =
0, H'(3;C2) =0, HY(Z;s5u(2)s) =0 and

(5 C2) = {c? if a(h) =1,

0 otherwise.

2.3. The representation variety R(X,SU(3)). In this subsection, we classify
the different path components of the representation variety R(3, SU(3)). To start
off, we show that every component contains at most one conjugacy class of reducible
representations.

Proposition 2.3. If ay, t € [0,1], is a continuous path of SU(3) representations of
m1 (%) with ag and ay both reducible, then g and ay are conjugate. Consequently,
every path component of R(3, SU(3)) contains at most one conjugacy class of re-
ducible representations.

Proof. For the trivial representation 6, H'(3; su(3)g) = H'(X;R®) = 0, so [f] is iso-
lated. Thus we assume that «; is nontrivial for all ¢. If ag(h) # I, then Proposition
2.2 implies that ] is isolated. So we can assume that ag(h) = I. The continu-
ous function ¢ — tr(ay(h)) takes values in the discrete set {3, —1,3e2™/3 3e4mi/31
by Proposition 2.2. It follows that a;(h) = I for all ¢. The relations (2.2) then
imply that ay(x), a(y), and au(z) are conjugate to fixed p-th, ¢-th, and r-th
roots of unity in SU(3) for all t. (To see this, use continuity and the fact that
the trace map tr: SU(3) — C distinguishes conjugacy classes and sends the set
{A € SU(3) | Ak = I} of all k-th roots of unity into a discrete set.)

Since a and o are both reducible and SU (3) is path connected, we may assume
that the path oy is conjugated so that ag and «; take values in SU(2) x {1}. Thus
ap(z) and «q(x) each have one eigenvalue equal to 1. But since ag(x) and oy (z)
are conjugate (in SU(3)), the other two eigenvalues of ag(z) and «;(z) coincide.
The same argument applies to y and z.

It is well-known that the conjugacy class [§] of a representation 3: m(X) —
SU(2) of a Brieskorn sphere is completely determined by the eigenvalues of 5(x), 5(y),
and ((z) (see [12]). Hence ap and ay are conjugate as SU(2) and hence also as
SU (3) representations. O

Proposition 2.4. FEvery path component of R(X, SU(3)) is either an isolated point,
a smooth 2-sphere consisting of conjugacy classes of irreducible representations,
or a pointed 2-sphere, which is smooth except for exactly one singular point, the
conjugacy class of a reducible representation.

Proof. Tt is proved in [2, 16] that each path component of R(X,SU(3)) is either

an isolated point or a topological 2-sphere. In the case of an isolated point, there

is nothing to prove, so assume the path component is a 2-sphere. Any conjugacy

class [a] of irreducible representations lying on such a component must have nonzero

Zariski tangent space, and Proposition 2.2 then implies H'(¥; su(3),) = R? and

we conclude that [«] is indeed a smooth point of R(3, SU(3)). On the other hand,
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Proposition 2.3 shows that every path component of R(X, SU(3)) contains at most
one conjugacy class of reducible representations. For a pointed 2-sphere component,
the conjugacy class [§] of reducible representations is never a smooth point, since
Proposition 2.2 shows its Zariski tangent space is H'(Z; su(3)5) = R, (Note that
the hypothesis on 3 implies that H*(3; su(3)3) # 0, and then Proposition 2.2 shows
that B(h) =1.) O

The next proposition shows that the pointed 2-spheres are in one-to-one corre-
spondence with the nontrivial reducible representations sending h to the identity.

Proposition 2.5. If a: 71 (2) — SU(3) is a nontrivial reducible representation,
then the following are equivalent:
(i) a(h) =1,

(i) H(S:C2) £0,

(iii) There exists a family of irreducible SU(3) representations limiting to a.
The collection of pointed 2-spheres in R(Z, SU(3)) are in one-to-one correspondence
with conjugacy classes of nontrivial reducible representations o: w1 (3) — SU(3)
with a(h) = I. Further, tr a(z) is constant along a pointed 2-sphere.

Proof. The statement (i) < (ii) follows from Proposition 2.2, (ii). The implication
(iii) = (ii) follows because the Kuranishi map locally embeds R(%, SU(3)) near [a]
into its Zariski tangent space H'(X;su(3),) modulo 'y, and the Zariski tangent
space equals H!(3;C2) by Proposition 2.2.

For the implication (i) = (iii), notice that a representation a: m1(X) — SU(3)
satisfying «(h) = I uniquely determines an SU (3) representation of the (free) group
F = (z,y,z | xyz = 1). Fix three conjugacy classes a, b, ¢ in SU(3) and consider the
space A gpe consisting of conjugacy classes of representations a: F' — SU(3) with
alz) € a, aly) € b, and a(z) € c. In [16], Hayashi gives necessary and sufficient
conditions on a, b, ¢ for #gpe to be nonempty. The resulting inequalities (18 in all)
determine a convex, 6-dimensional polytope P parameterizing all triples (a,b, ¢)
with Agpe # &. Hayashi observes further that .#gpe is a 2-sphere whenever (a, b, ¢)
lies in the interior of P and is a point whenever (a, b, ¢) lies on the boundary of P.
For more details, turn to Subsection 6.2 and read Theorem 6.2.

The key to proving that (i) = (iii) is to show that the triple (a, b, ¢) determined
by a(z), a(y), a(z) lies in the interior of P. From this, it follows that .#gpc, which
is connected and contains [, is a 2-sphere. Assume to the contrary that (a,b, c)
is a boundary point of P. There are two possibilities, because there are two kinds
of boundary points. The first kind occurs when one of the inequalities in equa-
tion (6.2) is an equality. This cannot happen for (a,b, ¢) because a(z), a(y), a(z)
are, respectively, p-th, ¢g-th, and r-th roots of unity in SU(3) and p, q,r are pair-
wise relatively prime. The other kind of boundary point of P occurs when one of
a(x),a(y), a(z) has a repeated eigenvalue. If a(x) were to have a repeated eigen-
value, then since a has image in SU(2) x {1} (up to conjugation), it follows that
1 is an eigenvalue of a(x), and so its other eigenvalues are either both +1 or both
—1. In either case, it follows easily that a(z) commutes with a(y) and a(z), and
the relation xyz = 1 then shows that « has abelian image. Since ¥ is a homology
sphere, this implies « is trivial and gives the desired contradiction. ([

The computations of Propositions 2.2-2.5 give a decomposition of R(3, SU(3))
into the following four types.



(i) The Type Ia components consist of one isolated conjugacy class [a] of ir-
reducible representations with exactly one of a(z), a(y), a(z) having a re-
peated eigenvalue. These representations send h to a central element and
have H'(X; su(3),) = 0.

(ii) The Type Ila components are smooth 2-spheres consisting of conjugacy
classes of irreducible representations o with the property that a(z), a(y), a(z)
all have three distinct eigenvalues. These representations send h to a central
element and have H'(X; su(3),) = R?.

(iii) The Type Ib components consist of one isolated conjugacy class [3] of non-
trivial reducible representations. These representations sent h to an element
with trace —1 and have H'(3;C3) = 0.

(iv) The Type IIb components are topological 2-spheres containing exactly
one conjugacy class [] of reducible representations with H'(%; su(3)5) =
H(Z; (C%) =~ R*. Every other conjugacy class [a] in a Type IIb component
is a smooth point with « irreducible and satisfying H'(3; su(3),) = R2. In
particular, the reducible orbit is the only singular point. Every conjugacy
class of representations in a Type IIb component sends h to the identity
and sends z,y and z to elements with three distinct eigenvalues.

The way in which a component type contributes to the integer valued SU(3)
Casson invariant is explained in Theorem 6.1.

Proposition 2.6. The representation variety R(X(p, q,7), SU(3)) contains a Type
IIb component if (and only if) none of p,q,r equal 2.

Proof. Suppose first that r = 2 and a: m (3(p, ¢,2)) — SU(2) is a representation
with a(h) = I. Then a(2)? = I, hence a(z) = +1 is central. Thus a(y) = +a(z)™t,
which implies « is abelian and hence trivial. Thus, up to reordering, if one of p, ¢, r
equals 2, then R(X(p,q,r),SU(3)) does not contain a Type IIb component.

On the other hand, if none of p, ¢, 7 equals 2, the results of [12] prove the existence
of nontrivial representations a: 71 (X(p,q,r)) — SU(2) with a(h) = I. Apply
Proposition 2.5 to complete the proof. O

3. SU(3) REPRESENTATION SPACES OF KNOT COMPLEMENTS

We next carry out an analysis of the SU(3) representation variety R(Z, SU(3))
of the knot complement Z obtained by removing a neighborhood of one of the
singular fibers of X(p, ¢, 7).

We explain our purpose first. The inclusion Z — ¥ induces a surjective map
m1(Z) — 7 (X). In terms of the presentation (2.3), this map is given by imposing
the relation 4 = 1. Consequently the representation variety R(X,SU(3)) can be
viewed as the subvariety of R(Z,SU(3)) cut out by the equation determined by
the condition that “the meridian is sent to the identity.” By perturbing, we will
replace this equation by a condition of the form “the meridian and longitude are
related by the equation 4.5.” Hence, the perturbed flat moduli space can also be
identified as a subset of R(Z, SU(3)). The results on the local and global structure
of the representation variety R(Z,SU(3)) that are developed in this section will
therefore be essential to our understanding of the behavior of the moduli space
under perturbation.



3.1. Cohomology calculations. Let Z be the complement of the singular r-fiber
in X(p,q,r). In contrast to the homology sphere case, the abelianization of m(Z)
is nontrivial. Consequently, m1(Z) admits nontrivial abelian representations, and
reducible representations of 71(Z) do not always reduce to SU(2) x {1}. Given a
representation a: 71 (Z) — SU(3), there are three possibilities:

(i) « is irreducible,

(ii) « is nonabelian and reducible, or

(iii) « is abelian.

In case (ii), the representation « is conjugate to one with image in the subgroup
S(U(2) x U(1)) € SU(3). The adjoint action of this subgroup decomposes the lie
algebra as su(3) = s(u(2) x u(1)) & C?, and the subgroup acts on the first factor via
its adjoint representation and on the second factor with weight three. Note that
although S(U(2) x U(1)) is canonically isomorphic to U(2), the action on C? is not
the standard one.

More precisely, if we use the map ®: R? — SU(3),

ei(u+v) 0 0
(3.1) D (u,v) = 0 eil-utv) 0
0 0 6721'1;

to parameterize diagonal SU(3) representations, one can easily compute the action

of ®(u,v) on C? to be
D (u,v) [ 1 ] = 3 [ (;51 ] .
z9 (& zZ9

This shows that the centralizer of S(U(2)xU (1)), which is parameterized by ®(0, v),
acts with weight three on C2.

The first result is the analogue of Proposition 2.2 for the knot complement Z.
Once again we omit the routine proof.

Proposition 3.1. Suppose a: m1(Z) — SU(3) is a nonabelian repre-sentation.
(i) If a is irreducible, then a(h) = e*™*/3 . I, HY(Z; su(3)s) = 0, and

HY(Z;su(3)s) =

R* if a(z) and a(y) have three distinct eigenvalues,
R?  otherwise.

(ii) If « is reducible and has been conjugated into S(U(2) x U(1)), then

e’ 0 0
ay=1 0 v 0
0 0 e—2i'u

With respect to the splitting su(3) = s(u(2) x u(1)) ® C?, we have that
H(Z;s(u(2) x u(1))s) = R and H*(Z;C2%) = 0, and also H'(Z; s(u(2) x
u(1))s) = R? and

C% if a(h) is central, i.e. if 3V =1,

0 otherwise.

Hl(Z;Ci)—{

We will also require some calculations for the relative cohomology of the pair
(Z,0Z). The following proposition follows from Proposition 3.1 using Poincaré
duality and the long exact cohomology sequence of the pair (Z,907).
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Proposition 3.2. Suppose a: m1(Z) — SU(3) is a nonabelian repre-sentation.

(i) If « is irreducible, then
HY(Z,07: su(3)s) {R4 if a(z) and a(y) have 3 distinct eigenvalues,
) ;UL )o) =

R?  otherwise.

(ii) If « is reducible and has been conjugated into S(U(2) x U(1)), then with re-

spect to the splitting su(3) = s(u(2)xu(1))®C?, we have that H (Z,0Z; s(u(2)x

u(1))s) =R and

HY(Z,02:C2) c? if a(h)‘is central,
0  otherwise.
The map H*(Z,0Z;C2) — H(Z;C2) induced by inclusion is an isomor-
phism.
We now turn our attention to the cohomology of the abelian representations of
m1(Z). We omit the proof; similar computations can be found in [20].

Lemma 3.3. Suppose a: m1(Z) — U(1) is a nontrivial representation. Then
H°(Z;C,) =0 and

C ifa(w)P?=1, a(p)™ #1 and a(p)* # 1,
0 otherwise.

HY(Z;Cy) = {
Now consider abelian representations a:: m1(Z) — SU(3). By conjugation, we

can assume that « takes values in the maximal torus T C SU(3). Under the adjoint
action of T, the Lie algebra su(3) decomposes as

(3.2) su(3) = C* @ R%

The C? corresponds to the off-diagonal entries and R? to the diagonal entries. Then
T acts trivially on R? and by rotations on each of the three complex factors. More
precisely, the action on C? is given by

w1 0 0 Z1 w1 21
0 wo 0 oz | = w%wg 29
0 0 w2 23 wlwg 23

An abelian representation a: m1(Z) — SU(3) is completely determined by a(u),
since H1(Z;Z) is generated by [p]. Suppose in addition that « is the limit of a
sequence of SU(2) x {1} representations. Then we can arrange that

w 0 0
(3.3) ap)=]0 @ 0O
0 0 1

In this case, there is a distinguished C? subbundle of the adjoint bundle Z x su(3)
on which a(u) acts by (z1,22) — (wz1,@22) (namely the last two coordinates in
C3). Suppose further that « is nontrivial. Then H°(Z;C?) = 0. Applying Lemma

3.3 to C2 = C,, @ Cg, and noting that H*(X;C,) = H*(X;Cy), we see that
C? ifwPl=1and w™® #1 # w™,
0  otherwise.

Hl(Z;Ci)Z{

The next proposition extends these computations to abelian representations in a
neighborhood of a.
10



Proposition 3.4. Let a: m(Z) — SU(3) be a fized nontrivial, abelian representa-
tion with a(w) given by the diagonal matrix in equation (3.3). Suppose further that
WPl =1 and w™ # 1 # w*. (Thus H(Z;C%) = C2.) Consider abelian representa-
tions B: m(Z) — SU(3) near to but distinct from «. Conjugating, we can arrange
that

w1 0 0

pp)=1 0 wr 0

0 0 Wiy
with wy close to w and wy close to @ (so wiws s close to 1). Then, for B close
enough to o, we have H°(Z; (C%) =0 and

HY(Z;C3) = H'(Z,0Z;C}) = {(g Z}i‘:ﬁ;ﬁq =1 orif (wwi)?? =1,

Proof. That H°(Z; (C%) = 0 follows from upper semicontinuity of dim H° on the
representation variety. The computation of H'(Z;C3) follows from Lemma 3.3,
keeping in mind that our hypotheses exclude the possibility 6 = «. All that remains
is to prove the claim about relative cohomology. Set T = 0Z. If v: 7 (T) — SU(2)
is any nontrivial representation, then H*(T;C2) = 0 (cf. equation (3.4) of [5]).
Now using the long exact sequence in cohomology, it follows that H'(Z;C3) =
HY(Z,0Z;Cp) for 3 in a small enough neighborhood of «. O

3.2. The representation variety R(Z,SU(3)). Consider the representation va-
riety R(Z,SU(3)). Tt is the union of three different strata:

(i) R*(Z,SU(3)), the stratum of irreducible representations.
(i) Rrd(Z,SU(3)), the stratum of reducible, nonabelian representations.
(iii) R2P(Z,SU(3)), the stratum of abelian representations.

We will describe each of these strata presently. For R*(Z, SU(3)), this involves
certain double coset spaces, and for R™4(Z, SU(3)), this builds on the results in [20].
Note that, given any finitely presented group w, two nonabelian representations
ag,a1: ™ — S(U(2)xU(1)) are conjugate in SU(3) if and only if they are conjugate
by a matrix in SU(2) x{1}. In particular, the natural map R*(Z, S(U(2)xU(1))) —
R(Z,SU(3)) is injective and has image in R*(Z, SU(3)).

We begin with the description of R**(Z, SU(3)) because it is the simplest. Since
the homology class of the meridian u generates Hy(Z;Z), a conjugacy class [a] of
abelian representations is completely determined by the conjugacy class of a(u).
Thus, R*(Z,SU(3)) is parameterized by the quotient SU(3)/conj, which is just
the quotient T'/S5 of the maximal torus by the Weyl group. This is parameterized
by the standard 2-simplex A, see equation (6.1) in Subsection 6.2.

For the stratum R™4(Z, SU(3)), note that every reducible representation can be
conjugated to have image in S(U(2) x U(1)). We will see that every S(U(2) x U(1))
representation of 7 (Z) is obtained by twisting an SU(2) representation, and we will
combine this observation with an explicit description of the SU(2) representation
varieties of 71 (Z) (essentially from Klassen’s work [20]) to prove that R™(Z, SU(3))
is a union of (p — 1)(¢ — 1)/4 open 2-dimensional cylinders under the assumption
that p, ¢ are both odd (see Proposition 3.8).

Let a: m1(Z) — SU(3) be a nontrivial reducible representation sending (zy)"h®
to the identity. Thus a extends over the solid torus and gives a reducible represen-
tation m1(X) — SU(3). In particular, « reduces to SU(2) x {1} and is nonabelian.

11



Proposition 3.1 states that H'(Z;s(u(2) x u(1))a) = R?, hence the reducible
stratum R*4(Z, SU(3)) has 2-dimensional Zariski tangent space at [a]. In this
subsection, we construct an explicit 2-parameter family of reducible representations
asy: m(Z) — SU(3) near o, showing that all the Zariski tangent vectors are
integrable. From this, we will conclude that the reducible stratum R™?(Z, SU(3))
is smooth and 2-dimensional near [«].

The 2-parameter family will be obtained by twisting SU(2) x {1} representa-
tions of m1(Z) to representations with image in S(U(2) x U(1)). To get started,
we describe the SU(2) representation variety of m1(Z). The knot complement Z
is sometimes, but not always, the complement of a torus knot in S2. In [20], one
will find a complete description of the SU(2) representation varieties of torus knot
complements, and the techniques that Klassen developed work equally well to de-
scribe R*(Z,SU(2)). In the following result, which can be proved using methods
from [20], SU(2) is viewed as the unit quaternions and typical elements are written
as a +ib+ jc+ kd for a,b,c,d € R such that a® + b2 4+ c? +d? = 1.

Proposition 3.5. R*(Z, SU(2)) consists of (p—1)(q—1)/2 open arcs of irreducible
representations. These arcs are given as follows. For each k € {1,---,p — 1},
e {l,---,q—1},e € {0,1} satisfying k = £ = ae (mod 2), the assignment to
s€0,1]:

= cos(nk/p) + isin(wk/p),
= cos(ml/q) + sin(ml/q)(i cos(ms) + j sin(ws))
(=1)°

)
)
)
defines a path of SU(2) representations which are irreducible for all s € (0,1).
Moreover, for s € (0,1),

C% ife=0, e if Bs(h) =1,

liz.02 y =
H(Z;C3,) = {O ife=1, i.e. if Bs(h) = —1.

The two limit points of each open arc, By and (1, are abelian representations
r(kq+ep) 7‘(’6(17%))
prq

sending p to (—1)’“67”( ) and (—1)’“67”(

(The cohomology calculation in Proposition 3.5 follows from Proposition 3.1.)

To summarize, the subspace of R(Z, SU(3)) consisting of conjugacy classes of
nonabelian SU(2) x {1} representations of 1 (Z) is a union of (p—1)(¢—1)/2 open
arcs with ends that limit to points in the abelian stratum. The intersection of the
subspace R(X, SU(3)) C R(Z,SU(3)) with such an arc of reducible representations
consists of either reducible representations on pointed 2-spheres or isolated reducible
representations (i.e. Type Ib representations), depending on whether or not h is sent
to I.

In defining these 1-parameter families of representations, we arranged that x
was sent to a diagonal matrix. For future applications, it is convenient to arrange
(by conjugation) that xy is sent to a diagonal matrix, because then it follows from
equations (2.4) that the meridian and longitude will also be diagonal.

Fix a connected component of R*(Z,SU(2)) determined by the triple (k,¢,¢)
with & = ¢ = ae (mod 2) as above, and denote by a; the corresponding arc of
SU(2) x {1} representations sending zy to a diagonal matrix. A short calculation

12



shows that

e* 0 0
as(zy) = 0 e ™ 0
0 0 1

where u satisfies the equation
(3.4) cos(u) = cos(mwk/p) cos(nl/q) — sin(mk/p) sin(ml/q) cos(rs).

We next show that the arc [as] of SU(2) x {1}-representations is a codimension
one subset of R™4(Z,SU(3)). The other degree of freedom comes from twisting a
representation out of SU(2) x {1}, keeping it in S(U(2) x U(1)).

First, given

a b
A= [ b a ] € SU(2),
the twist of A by €? € U(1) is the S(U(2) x U(1)) matrix
e? 0 0 a b 0 e“gg e 0
0 ¢? 0 b a 0|=]| - e%a 0
0 0 e 20 0 0 1 0 0 e 29

The map SU(2) x U(1) — S(U(2) x U(1)) defined by twisting is a 2-to-1 map. In
terms of U(2), this is simply the description U(2) = SU(2) xz, U(1), and twisting
is just scalar multiplication by €. Notice that the matrix ®(u,v) appearing in
equation (3.1) is the twist of the diagonal SU(2) matrix A with entries e, e~ by
e'.

Suppose x: m(Z) — U(1) is abelian and 3: m(Z) — SU(2) is nonabelian.
The reducible SU(3) representation obtained by twisting 3 by x is defined to be
representation m1(Z) — S(U(2) x U(1)) taking an element w € m1(Z) to the twist
of B(w) by x(w). Notice that, since H1(Z;Z) = Z is generated by the meridian p,
any U(1) representation x is completely determined by the element x(u) € U(1),
which can be arbitrary. If x(u) = —1, then the twist of 3 by x is again an SU(2)
representation, and twisting by this central representation defines an involution on
the SU(2) representation variety of knot complements.

We give a more explicit description of the stratum R**4(Z, SU(3)) of reducible
SU (3) representations in terms of twisting the arcs 85 described above.

Definition 3.6. Fix e € U(1) and let xy be the U(1) representation sending x to
e, Let (3, be representation described in Proposition 3.5 corresponding to a triple
(k,l,e) and s € (0,1). Define the reducible SU(3) representation agg: m(Z) —
S(U(2) x U(1)) € SU(3) to be the twist of 85 by xo.

Proposition 3.7. Fix (k,{,e) with k = £ = ac (mod 2) as in Proposition 3.5 and
let as,g be the 2-parameter family of S(U(2) x U(1)) repre-sentations corresponding

to twisting s by 0. Then the representation as g sends x to the twist of as(z) by
€%y to the twist of as(y) by €P?, and h to the twist of as(h) by e9®. Moreover,

(_1)kcei(9+ru) 0 0
as,ﬁ(ﬂ) — 0 (_1)kcei(07ru) 0
0 0 6—21'9
and
(—1)kalpta) givau 0 0
as0(N) = as(\) = 0 (—1)kalpta)g=ipau (o |
0 0 1
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FIGURE 2. An open cylinder of reducible SU(3) representations
with two seams of SU(2) x {1} representations given by a; o and
Qs -

)

where u satisfies equation (3.4). The representation o g s conjugate to one in
SU(2) x {1} only for 6 € ©Z, and the arcs oo and as . are different components
of R(Z,SU(2)). The map (s,0) — asg defines a smooth 2-dimensional subvariety
of R(Z,SU(3)) contained in R™¥(Z,SU(3)) and homeomorphic to (0,1) x S*.

Proof. The first few assertions follow immediately from the definitions and equa-
tions (2.4) and (2.5).

By taking the determinant of e?? g, it is easy to check that ay g is an SU(2) x {1}
representation if and only if # € 7Z. The representation a o takes h to the diagonal
matrix with entries (—1)%,(—1)%,1 and o . takes h to the diagonal matrix with
entries (—1)P9t¢ (—1)P9¢ 1. Since p and ¢ are both odd, a0 and «s - are different
arcs. The map (s,0) — [asg] € R(Z,SU(3)) is injective, and since H*(Z; s(u(2) x
u(1)))a, ,) = R? by Proposition 3.1, this parameterizes a smooth subvariety. [

Every representation o in R*4(Z, SU(3)) is conjugate to some a g for some
choice of (k,¢,¢) and (s,6). The reason for this is that one can first conjugate «
into S(U(2) x U(1)), and then if the (3,3) entry of a(u) is €2, a must be the
O-twist of some SU(2) representation «.

By Proposition 3.5, it follows that R™?(Z, SU(3)) contains exactly (p—1)(¢g—1)/4
components, each of which is a smooth open cylinder with two seams of SU(2) x {1}
representations (see Figure 2).

The following theorem summarizes our discussion.

Theorem 3.8. Suppose X(p,q,r) is a Brieskorn sphere and reorder p,q,r so that
p and q are both odd. Let Z be the complement of the singular r-fiber of X(p, q, ).
Then the stratum R*4(Z, SU(3)) of con-jugacy classes of nonabelian reducible rep-
resentations is a smooth, open, 2-dimensional manifold consisting of (p—1)(¢—1)/4
path components, each of which is diffeomorphic to the open cylinder (0,1) x St.
The closure of such a component in R(Z,SU(3)) contains two boundary circles,
which are circles immersed in the abelian stratum R*P(Z, SU(3)) with isolated dou-
ble points.

Fix (k,¢,e) with k = £ = ae (mod 2) as in Proposition 3.5 and let a5 9: m(Z) —
S(U(2) x U(1)) denote the corresponding 2-parameter family of representations.
Suppose for some s, as o extends to a reducible representation on 7y (X). This is
the case if and only if a o(1) = I, namely if o o(zy) is an r-th root of ay o (h¢).

Since H'(2;su(2)a,,) = 0 and ¥ is a homology sphere, none of the nearby
representations in the 2-parameter family a9 of 71 (Z) extend to representations
of st (E) .
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If [cvs,0] lies on a 2-sphere component of R(X, SU(3)), then it follows that H*(X;C2) #
0 and ag0(h) = I (i.e. € = 0). Hence as0(xy) is an r-th root of I and s satisfies
the equation

2mm

cos (222 = cos(rk/p) cos(wl/q) — sin(rwk/p) sin(ml/q) cos(ms)

for some 0 < m < r. In particular,

e27rim/r 0 0
(3.5) aso(zy) = 0 e~2mim/m
0 0 1

We now consider irreducible representations a: 71 (Z) — SU(3) and give a de-
scription of the closure of R*(Z,SU(3)). We begin with a simple observation. If
a: m(Z) — SU(3) is an irreducible representation, then a(h) lies in the center
of SU(3) and it follows from the presentation (2.3) that a(z)? = a(y)? = a(h)®.
Conversely, suppose we are given matrices A, B, H € SU(3) with H central such
that

(3.6) AP = B9 = [0,

then setting a(z) = A, ay) = B, and «(h) = H uniquely determines a represen-
tation a: m1(Z) — SU(3). This representation is reducible if and only if A and B
share an eigenspace.

For A, B, H diagonal SU(3) matrices with H central and satisfying equation
(3.6), we can write H = e2>™/3[ for a unique ¢ € {0,1,2} and we denote by
€45 C R(Z,SU(3)) the subset of conjugacy classes [a] of representations with
a(r) conjugate to A, a(y) conjugate to B, and a(h) = e*™*/3]. There is a map
U: SU(3) — €% where ¥(g) = [1h,] is the conjugacy class of the representation
ty with ¥,(z) = A and ¥,(y) = gBg~!. Let I'y and 'y denote the stabilizer
subgroups of A and B. If v € I'p, then ¢4, = 1, for all g € SU(3). Likewise,
if v € T4, then 9,y = v,y ! for all g € SU(3). Thus, ¥ factors through left
multiplication by I'4 and right multiplication by I'g and determines a map from
the double coset space

U:TA\SU(3)/Ts — Cip
which is a homeomorphism which is smooth on the stratum of principal orbits.

Elementary dimension counting gives that ¢4 5 has dimension four if both A and
B have three distinct eigenvalues and dimension two if exactly one of A or B has a
2-dimensional eigenspace. In all other cases, (fﬁ p does not contain any irreducibles.
For example, if both A and B have double eigenspaces, then the eigenspaces in-
tersect nontrivially in an invariant linear subspace, giving a reduction. Similarly,
if either A or B has an eigenvalue of multiplicity three, then the corresponding
representation is necessarily abelian.

Observe further that the set €% 5 depends only on ¢ € {0, 1,2} and the conjugacy
classes of the matrices A and B. Thus, we can assume without loss of generality
that A and B are both diagonal.

Theorem 3.9. The closure of the stratum R*(Z,SU(3)) of irreducible representa-
tions is a union | )€’ g, where the union is over pairs ([A],[B]) € (SU(3)/conj)?
and ¢ € {0, 1,2} satisfying the conditions:
(i) AP = B9 = H®, where H = ¢*™*/3],
(ii) neither A nor B is central, and
15



(iii) one of A or B has three distinct eigenvalues.
In particular

e If either A or B has a repeated eigenvalue, then €y is 2-dimen-sional and
is called a Type I component of R(Z,SU(3)).

e If both A and B have three distinct eigenvalues, then €45 is 4-dimensional
and is called a Type II component of R(Z,SU(3)).

Given a nonabelian reducible representation a:: 71 (Z) — SU(3), we would like to
know when there exists a 1-parameter family of irreducible representations limiting
to a. If there is, then Proposition 3.1 implies that «(h) is central. The following
proposition is a partial converse.

Proposition 3.10. If a: m(Z) — SU(3) is a nonabelian reducible representation
satisfying:

(i) a(h) is central, and

(ii) one of a(x) or a(y) has three distinct eigenvalues,

then there exists a 1-parameter family of irreducible SU(3) representations limiting
to a.

Remark 3.11. Notice that the condition H'(Z;C?) # 0, which is equivalent to (i),
is not enough to guarantee that there be a family of irreducible representations
limiting to «. There are nonabelian reducible representations with a(h) central

such that a(z) and a(y) both have repeated eigenvalues. Such representations are
not in the closure of R*(Z, SU(3)) even though H'(Z;C2) # 0.

Proof. Set A = a(z) and B = «a(y). Notice that the assumption that « is nonabelian

implies that neither A nor B is central. Obviously [a] € €4 5. The subspace ‘Kﬁ’;d
of conjugacy classes of reducible representations has codimension greater than or
equal to one, and this completes the proof. O

It is not hard to show that %ﬁ’éCd has dimension one. We leave this as an exercise

for the reader. Note that (fﬁ’gd is also a codimension one subset, of R™4(Z, SU(3)).
The next lemma is a slight reformulation of [16, Lemma 2.4]. The proof is routine
so is skipped.

Lemma 3.12. Suppose A, B € SU(3) are diagonal matrices and consider the map
@: SU(3) — C defined by setting o(g) = tr(AgBg~!). Then, for fived g € SU(3),
the differential dy, is surjective provided

(i) A and gBg~* have no common eigenvectors, and

(i) the product AgBg~" has three distinct eigenvalues.
Equivalently, d¢, is surjective if 1¥y: mZ — SU(3) is irreducible and ¥4(zy) has
three distinct eigenvalues.

Now suppose A, B, £ satisfy the hypotheses of Theorem 3.9. Define ¢: €45 — C
by setting ¢([a]) = tr(a(x)a(y)) and notice that the following triangle commutes:

SU(3)
\yl Y‘
¢y — C



Define A = SU(3)/conjugation = maximal torus/Weyl group. This quotient
space is a topological 2-simplex, described in Section 6 in more detail. The edges
contain conjugacy classes of matrices with double eigenvalues, and the vertices are
the conjugacy classes of the central elements.

The map ¢ : €45 — C clearly factors through the map &: €55 — A sending
a — [a(zy)], and the map tr: A — C, which is smooth on the interior of the
simplex. In Section 6 (following Hayashi [16]) we identify the image £(€45) C A
(which we denote by Q%) as a convex polygon. Indeed, Q% 5 is a hexagon if €% 5
is a Type I component (i.e. if one of A or B has a repeated eigenvalue) and Q¥ 5 is
a nonagon if ¢ 5 is a Type II component (i.e. if A and B each have three distinct
eigenvalues). If €5 is a Type II component, then £1(p) is homeomorphic to a
2-sphere for all p in the interior Qﬁl B

Corollary 3.13. Set €57, = €43 NR*(Z,S5U(3)). Then the map §|%”f;]§ G — A

is a submersion except on the preimages of the intersection Qﬁ;B N oA.

Proof. Lemma 3.12 effectively states that the differential of the composition tr of|. ¢ . : ‘@”ﬁ’g —
AB

C has rank 2 except on £~ 1(JA). Applying the chain rule tells us that the same
statement holds for 5|<€£~g' O

When {5 is 4-dimensional, the structure of the fiber £71(p) is described by
Theorem 6.2. We summarize this information below.

Theorem 3.14. Suppose ‘KﬁB is a Type II component (i.e. suppose it is 4-dimensional),
and set Q&TBCd = {(%ﬁ’gd). Then Q&TBCd is 1-dimensional and the fiber of &: €45 —
A over p € QY is:

(1) A point if p € 0Q% 5,
(ii-a) A smooth 2-sphere if p € Int Qﬁxg and p & Qiiréd,
(ii-b) A pointed 2-sphere if p € Int QYy; and p € Q"

By a pointed 2-sphere, we mean a 2-sphere which is smooth away from one point.
If a: mZ — SU(3) is a representation with [a] € €4 such that a(\) does not
have 1 as an eigenvalue, then p = £([a]) & Qiirgd. If, in addition, p € IntQ% 5,

then it follows that £~1(p) is a smooth 2-sphere.

Proof. The subset ‘@”j’gd of reducible representations can be identified with the
image under W : T4\SU(3)/T'p — €5 of the following subset of SU(3):

{g="(955) € SUB) | g12 = g13 =0 or g13 = ga3 = 0 or g12 = ga3 = 0}.

This subset is 4-dimensional, and the principal orbits under the I'y x I'p action
are 3-dimensional (because their isotropy group is a 1-dimensional subgroup of the
4-dimensional group I'y x I'g). Thus its image in I'4\SU(3)/T'p, and hence in
‘Kﬁ’ged, is 1-dimensional.

Suppose that p = £([a]) € QﬁrBCd. Then we have a reducible representation
B:mZ — SU(3) with [3] € £ 1(p). Clearly B(xy) and a(xy) are conjugate in
SU(3). Since S is reducible and A lies in the commutator subgroup of 71 (Z), it fol-
lows that 3()\) has (at least) one eigenvalue equal to 1. Because A = (xy)P¢h~(PTae
and « and 3 send h to the same central element, it follows that a(A) and () are
conjugate, and hence a(\) must also have 1 as an eigenvalue.
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The rest of the statement follows from Theorem 6.2, and we explain the re-
lationship between the different notations here and there. Suppose A, B,C €
SU(3) are diagonal with eigenvalues {e27i01 e?miaz e2mias)  [o2miby o2miby o2mibs}
and {e?mic1 e2mic2 e2mics) respectively. Then the set £ ~1([C]), which is the preim-
age of the conjugacy class of C' in €%, can be identified with the moduli space
Mape described in Theorem 6.2. O

4. PERTURBATIONS

The representation varieties for ¥ and Z discussed in the previous sections can
be identified with the moduli spaces of flat SU(3) connections on ¥ x SU(3) and
Z x SU(3). The principal advantage of this perspective is that flat moduli space
is the critical set of a function on the space of all connections, modulo gauge, and
this gives a framework to perturb for transversality purposes. In particular, we
deform the function of which the flat moduli space is the critical set, and consider
the critical set of the deformed function to be the “perturbed moduli space.”

After introducing some notation, we will define the twisting perturbations and
analyze their effect on the moduli space. Of central importance is the behavior of
pointed 2-spheres under twisting perturbations. In Subsection 4.3, we show that
under a twisting perturbation, every pointed 2-sphere resolves into two pieces: an
isolated reducible orbit and a smooth, nondegenerate 2-sphere.

4.1. Gauge theory preliminaries. Suppose X is a 3-manifold with Riemannian
metric. Let 27 (X) be the space of SU(3) connections over X, 4(X) be the group
of SU(3) gauge transformations, Z(X) be the quotient &7 (X)/¥4(X) , and .#(X)
be the moduli space of gauge orbits of flat connections. These are completed with
respect to the usual Sobolev norms (L? and L3, respectively) as in [5]. When the
manifold is clear from context, we will drop it from the notation and simply write
A, G, B and M .

The spaces &7, B, and .# are stratified by levels of reducibility, and we adopt a
notation consistent with that used for the representation varieties. In particular:

(i) .#* is the moduli space of irreducible flat SU(3) connections.
(ii) ™4 is the moduli space of reducible, nonabelian flat SU(3) connections.
(iii) .23 is the moduli space of abelian, flat SU(3) connections.

Given an SU(3) connection A, covariant differentiation defines a map
da: Q(X;su(3)) — QX su(3)).

If A is flat, these operators define a twisted de Rham complex. We denote the co-
homology groups by H% (X;su(3)). Note that H(X; su(3)) is identified with the
Lie algebra of the stabilizer of A, and H(X;su(3)) is the Zariski tangent space
of 4 at [A]. When X is closed, the Hodge star isomorphism *: Q(X; su(3)) —
Q34(X; su(3)) induces isomorphisms H'y(X;su(3)) = H5 *(X;su(3)). Further-
more, the de Rham theorem for twisted cohomology gives isomorphisms H? (X; su(3))
HY(X;5u(3)q), where a: m1(X) — SU(3) is the holonomy representation of the flat
connection A.

In this section, we will consider a special Floer type perturbation of the flatness
equation, which we call a twisting perturbation. Whereas Floer perturbations gen-
erally alter the flatness equation in a neighborhood of a collection of loops in X,
the twisting perturbation involves only one loop. We refer to Section 2.1 of [3] for
a detailed discussion of perturbations in the SU(3) context.
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Given a perturbation h : & — R, we denote by .#} the moduli space of h-
perturbed flat SU(3) connections, that is, those satisfying the perturbed flatness
equation Fy = x47>Vh(A). For such a connection, there is a Fredholm perturbed
de Rham complex, for which we denote the cohomology groups fo,h(X 5 su(3)).

H) ,(X;su(3)) is the tangent space to ., (X).

Definition 4.1. The odd signature operator twisted by a connection A is the linear
elliptic differential operator

Da: QYTHX; su(3)) — QOUFL(X; su(3))
Dy(o,7) = (d%7,dao + *daT).

It is a generalized Dirac operator (in the sense of [8]).
The perturbed odd signature operator for a connection A and a perturbation h is
similarly defined to be

Dyn(o,1) = (dy7, dao+*dant)
= (da7, dao + xdaT — 47* Hess h(A)(7))
= Da(o,7) + (0, —47* Hess h(A)(1)).
Here we use the metric to view Hess h(A)(7) as a 1-form with su(3) coefficients.

The Hessian is bounded as a map from L? to L? ([24], [3], [18]). Thus the
composite of the compact inclusion of L? — L? with the bounded Hessian L? — L?
is a compact map L} — L? and the addition of the Hessian to the signature
operator is a compact perturbation. Since D4 j differs from D4 by a compact
perturbation, it is again Fredholm when X is closed.

The usual Hodge theory argument shows that if X is closed, the kernel of D4 p,
is isomorphic to HY ,(X;su(3)) @ H} ,(X;su(3)). If X is not closed, then D4
is not Fredholm. The operators D 4 and D4, are symmetric: (Dg p(¢1), p2) =
(1, Dan(d2)) if ¢1 and ¢o are supported on the interior of X. Thus if X is closed
D4 and Dy, are self-adjoint.

The operator Dy, p, is not local. It is neither a differential nor a pseudodifferential
operator. However, (D4, — Da)(¢) depends only on the restriction of A and ¢ to
the compact domain in X along which the perturbation is supported and moreover
(Dan — Da)(¢) vanishes outside of this domain (in the case considered in this
article, the compact domain is a neighborhood of the r-singular fiber). The proof
of this fact is given in Proposition 2.2 of [18].

Basic for us will be the splitting

(4.1) X(p,q,r) =Y Ur Z.
Here,
T =8"x 8" ={(*, ")}
is the 2-torus with the product metric and orientation so that dzdy is a positive
multiple of the volume form. Its fundamental group m (T') is generated by the loops

w={(e® 1)} and A = {(1,e¥)}.
The 3—manifold Y is the solid torus

Y =D*x S' = {(re",e¥) |0<r <1}

oriented so that drdxdy is a positive multiple of the volume form; it is a neighbor-
hood of the r-singular fiber in X(p,q,r). Choose a metric on Y so that a collar
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neighborhood of the boundary is isometrically identified with [—1,0] x T. As ori-
ented manifolds, 0Y = {0} x T. The fundamental group m1(Y") is infinite cyclic
generated by the longitude . (The meridian p bounds the disc D? x {1} and so is
trivial in m1(Y").)

The 3-manifold Z is the complement of an open tubular neighborhood of the
r-singular fiber in ¥(p, ¢,r). Choose a metric on Z so that a collar neighborhood of
the boundary 07 is isometrically identified with [0, 1] x T, and A is null-homologous
in Z. As oriented manifolds, 9Z = —{0} x T.

The metrics on Y and Z induce one on X with the property that a bicollared
neighborhood of T' C ¥ is isometric to [—1,1] x T. We call [-1,1] x T the neck.
Every connection A on ¥ which is flat on the neck is gauge equivalent to one in
cylindrical form, meaning that its restriction A|j_; 1)< to the neck is the pullback
of a connection on the torus under the projection [—1,1] x T'— T. There are similar
results for Y using the collar [-1,0] x T' C Y and for Z using [0,1] x T C Z. A
connection in cylindrical form and which is flat on the neck is gauge equivalent to
one whose meridinal and longitudinal holonomies are diagonal.

4.2. The twisting perturbation on the solid torus. In this subsection, we
define the twisting perturbation and study the perturbed flatness equations on the
solid torus. The crucial issue is to determine which flat connections on the boundary
extend as perturbed flat connections over the solid torus.

We begin with some notation. For a complex number ¢, let £(¢) be its real part
and $(C) its imaginary part. Recall the parameterization ®: R? — SU(3) of the
maximal torus T' C SU(3) from equation (3.1).

Let z = (21, z2) be coordinates on the 2-disk D? and 6 on the circle S. Suppose
n: D — R is a radially symmetric nonnegative function supported in a small
neighborhood of z = 0 with [}, n(x) dz = 1.

Fix a basepoint §, € S'. For a connection A on the solid torus D? x S,
let hol,(A) denote its holonomy around {z} x S! starting and ending at (z,6).
Although hol, (A) depends on the choice of basepoint, its trace ¢r hol,(A) is inde-
pendent of this choice.

Definition 4.2. The twisting perturbation function is the function f: o (D? x
S1) — R defined by

(4.2) f(A) = -2 /1:)2 S(tr holy(A))n(x) dx.

The admissible holonomy perturbations described in [3] involve sums of functions

of the form
f(holy(A)n(z) dx,
D2

where f : SU(3) — R is any adjoint invariant function. The twisting perturbation
is simply a special case, where f is taken to be —ﬁ% o tr. For the particular
3-manifolds considered in this paper, this special type of perturbation is sufficient
to eliminate the transversality problems in the moduli space.

Let M3(C) be the vector space of 3 x 3 complex matrices and regard su(3) as
a subspace of M3(C). Define Il ) : M3(C) — su(3) to be orthogonal projection
with respect to the standard inner product on Ms3(C).
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Proposition 4.3. The gradient of the perturbation of (4.2) is given by
VF(A) = — gz Mau) (i holu(A)) n(z) db.

Proof. If A is a connection on S! and « is an su(3)-valued 1-form on S!, then
Proposition 2.6, [3] gives the differentiation formula

d
ES tr holy(A + sa)

= Str(hol,( fsl ,
s=0

where [g, a is interpreted as in Section 6 of [3].

From equation (4.2), f(A + sa) is clearly independent of all components of «
except the df component. We can find its derivative by integrating the formula in
the circle case:

(4.3) d%f(A + sa)

=2 [ Str(holy(4) [4 a)n(x) dz
s=0 D2

Since [q; o is su(3)-valued, we have

r(holo(A) [ra) = —Rir (i holy(A)[q )
(44) = <Hsu(3)ZhOl A fSl >Su(3)a

where we identify — #r(AB) with the standard inner product (-, -)syu3) on su(3).
Therefore equation (4.3) can be rewritten as

d .

Ef(A + Sa) o = <_#Hsu(3) (Z hOZI(A))n(x) dev a>L2(D2><Sl) .
Here, hol;(A) is interpreted as a section of the bundle End(E) of endomorphisms
of the rank three bundle E — D? x S*. The section hol,(A) is covariantly constant
around the circle fibers with respect to the induced connection on End(FE). (]

Definition 4.4. Given t € R, ¢f is an admissible perturbation, and a connection
A on the solid torus is called (tf)-perturbed flat if it satisfies the equation

Fp = %41tV f(A)

where F4 denotes the curvature of A. Since 7 is supported on a small neighborhood
of 0 € D% a (tf)-perturbed flat connection is flat near the boundary torus (see
Proposition 4.6 below).

The next two propositions are well-known. The first was initially observed by
Floer in [13]. Its proof is based on the previous observation that a perturbed flat
connection has curvature only in the dxidxs direction.

Proposition 4.5. Suppose A is a connection on the solid torus. If A is (tf)-
perturbed flat, then hol,(A) is independent of x € D2.

Proof. On the disk D? x {6}, trivialize the SU(3) bundle using radial parallel

translation starting at the center (0,6p). For each z € D?, take the line segment

0z and consider the annulus 0z x S*. Since xF4 = i df, the restriction of A to this

annulus is flat. But parallel translation along the line segment 0z is trivial, and so

hol,(A) = holg(A) and is independent of x € D?. O
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Proposition 4.5 shows that for a perturbed flat connection A on the solid torus,
we can denote holy(A) € SU(3) unambiguously by holx(A). We call this the
longitudinal holonomy of A. The holonomy of A along the meridian dD? x {6y} is
called the meridinal holonomy.

The next result states that perturbed flat connections are flat outside a neigh-
borhood of the perturbation curves.

Proposition 4.6. If A is perturbed flat with respect to a perturbation h supported
on a single thickened curve v: D* x St — X, then A is flat on the complement
¥ —y(D? x S1).

Proof. Under the hypothesis, one can easily see that the equation for perturbed
flatness is just xF4 = 472Vh(A), but Vh(A) = 0 outside the image y(D? x S'). O

The twisting perturbation is well-defined as a function
fr(E(p,q,7) — R,

once one fixes a framing on the solid torus Y in the decomposition (4.1). We use
the framing Y = D? x S! in which the longitude X is homotopic to {z} x S! in
the complement of K for all nonzero x € D?. We assume further that the bump
function n(z) is supported in a small enough neighborhood that it vanishes on
the neck [—1,1] x T. Proposition 4.6 then implies that every (tf)-perturbed flat
connection A on ¥ restricts to a flat connection on ([—1,0] x T)U Z. The definition
of f and Proposition 4.3 show that f(A), Vf(A), and Hess f(A) depend only of
the restriction of A to the interior of Y.

The last result in this subsection determines an equation on meridinal and lon-
gitudinal holonomies that a connection A must satisfy in order for it to be (tf)-
perturbed flat.

Proposition 4.7. Suppose that A is a connection on D* x S* which (tf)-perturbed
flat. Then there is a smooth gauge representative for [A]. Furthermore, if holy(A) =
®(u,v), then the meridinal holonomy is given by

(4.5) hol,(A) = ® (—tsinusinv, £(cosucosv — 2cos’ v+ 1)) .
Proof. The smoothness property holds for all holonomy type perturbations, not
just the twisting perturbation we have defined here. This is claim (1) of Lemma
8.3 in [24].

The second claim is a generalization to SU(3) (and imaginary part of trace) of
a well-known fact for SU(2) perturbed flat connections, going back to Floer. Note
first that V(tf) = tVf. Let A be a smooth ¢f-perturbed flat connection, gauge
transformed so that holx(A) is diagonal.

Since the curvature Fy = x472tV f(A) takes only diagonal matrix values, we
can find the meridinal holonomy by integrating F4 over a disk that the meridian
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bounds, namely
hol,(A) = exp( f6D2 )
exp (— fDQdA)
exp (— [ F(4))
(= [pdm® % V(tf)(A))
= exp (t[pHsue) (i holx(A)) n(z) dzy A das)
= exp (tHsu(g) (i holA(A))) .

The projection of a diagonal matrix B onto su(3) is given by taking the imaginary
part of B — % tr(B)I. Applying this to ti holy(A) shows that

= exp

Hsu(g) (Z hol,\(A)) = Hsu(g)i@(u,v)
= S[i®(u,v) — £ tr ®(u,v)]]
tap 0 0
- 0 dax 0 |,
0 0 iag
where
a1 = % (2cos(u+v) — cos(—u+v) — cos(2v)),
az = % (—cos(u+v)+2cos(—u+v) — cos(2v)),
a3 = % (—cos(u+v) —cos(—u+v) + 2cos(2v)).
Setting 4 = “5%2 and v = “1'2"“2 and applying the angle addition formulas, we

see that & = —sinwusinv and v = % (cos wcosv — 2 cos? v + 1) . These substitutions

simplify the formula for hol,(A) to give

hol, (A) = ® (—tsinusinv, £ (cosucosv —2cos’ v+ 1)) .

O

Remark 4.8. Assuming holy(A) = ®(u,0) in this proposition (namely if v = 0),
then the conclusion is that hol, (A) = ®(0, £(cosu — 1)).

4.3. The effect of the twisting perturbation on a pointed 2-sphere. We
now consider twisting perturbations on ¥ =Y Up Z supported on the solid torus
Y. In the last subsection we showed that any perturbed flat connection A on ¥ is
indeed flat on Z (Proposition 4.6) and we obtained an equation that the meridinal
and longitudinal holonomies must satisfy to extend as a perturbed flat connection
on Y (Proposition 4.7). In this subsection, we use this equation to analyze the
topology of the perturbed flat moduli space. We are particularly interested in the
effect of the twisting perturbation on the pointed 2-spheres in .#. We show that
the perturbed flat moduli space near a pointed 2-sphere resolves into two pieces: an
isolated gauge orbit of reducible connections and a smooth, nondegenerate 2-sphere
of gauge orbits of irreducible connections.

We identify the perturbed flat moduli space .#;f(X) as the subset of the flat
moduli space .#(Z) of gauge orbits which extend as perturbed flat connections
over the solid torus. We explain the geometric picture before going into details.

The moduli space .Z(T) is the quotient of the product of two copies of the
maximal torus of SU(3) modulo the diagonal action of Weyl group Ss, the group
of symmetries on three letters. Thus .#(T") is 4-dimensional.
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With respect to the splitting > =Y Ur Z, we have the three restriction maps
G M (Y) = M(T), G MNZ) — M(T), (g2 M*(Z) — M(T),

defined by sending [A] to [A|r]. Denote the images of these maps by 2y = im((y ),
254 = im(¢%?) and 2 = im(C%). We also have the restriction maps rz: .# (%) —
AM(Z) and ry : M (E) — A (Y), a commutative diagram

A(Z)
() (T
SN
(Y

and similar diagrams for the reducible and irreducible moduli spaces.

All three of 25, Z%°d and 27 are codimension two submanifolds of . (T'). The
map 7z is injective. This is just the statement that the flat connections on ¥ can be
identified with those flat connections on Z which extend flatly over the solid torus
Y. The crux of the matter is that the flat extension to the solid torus is uniquely
determined by A|r up to gauge transformation.

Thus the moduli space .#"4(¥) can be identified with

rgd (D)) = () THLY) = {[Al € 4™U(2) | [Alr] € 25 0 25},
and likewise we can identify .Z*(X) as the subset of .#*(Z) given by
ry (A (D) = ()71 (2v) = {[Al € 47 (2) | [Alr] € 25 0 25}

If [Ap] is the unique reducible gauge orbit on a pointed 2-sphere, then C%ed and ¢
are individually transverse to 25 at [Ag|r]. But 25 intersects both 27°! and 27
at [Ao|r], causing difficulties. The reducible part (¢¥9)~1([Ao|r]) is simply [Ao],
while the irreducible part (¢%)~*([Ao|r]) is the complement of [A] in the pointed
2-sphere (and in particular is not compact).

To make .# (¥) non-degenerate, we apply a twisting perturbation which moves
Zy slightly. As with the flat moduli space, we have a restriction map Cy,p: A (Y) —
A (T) defined by sending [A] € #;;(Y) to [A|r]. (Recall that A|r is necessarily
flat.) Denote the image of this map by %y ;s = im(Cy,.f). As before, we can iden-
tify the strata of reducible and irreducible gauge orbits in the perturbed flat moduli
space #,; as the subsets of .#(Z) given by

MFUE) = (CED T (Zvap) = {[A] € A™N(Z) | [Alr] € Zyep 01 25

(4.6) )

and
(D) = () (Zvy) = {[Al € 7 (Z) | [Alr] € Zvup N 27}

We will show that for small t > 0 25, intersects 2%°! and 27 at points
with nondegenerate preimages, namely that ((59)~1(Zy,.¢) is an isolated reducible
connection [A] with H}(Z;C?) =0, and (¢})~'(Z%.+f) a smooth 2-sphere.

We will show this to be the case by determining, to first order in ¢, where this
intersection point lies. The idea is to pin down their meridinal and longitudinal
holonomies.

Throughout the remainder of this section, Ag will be a fixed reducible flat con-
nection whose gauge orbit [Ag] lies on a 2-sphere component. Identify .4 (%))
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with //lg(U@)XU(l))(E) and note that [Ap] is a regular point of this latter moduli

space. This follows because [Ap] can be represented by an SU(2) x {1} connection
Ap and Proposition 2.2 implies that

Hj, (5 s(u(2) x u(1))) = Hj, (35 su(2)) ® Hy, (S5 u(1)) = 0.
Regularity of .#™4(X) near [Ag] implies that, for 0 < t < ¢, there is a family

of reducible (¢f)-perturbed flat connections A; which are deformations of Ag. Our
first goal is to show that [A;] is an isolated point in the perturbed flat moduli space

M.

Proposition 4.9. Assume [Ao] is a gauge orbit of reducible flat connections on X
that lies on a 2-sphere component. Choose a representative Ag in cylindrical form
whose holonomy on the torus T is diagonal. Equation (3.5) gives that

holay(Ag) = @ (222,0)

T

for some integer m with 0 < m < r. For 0 < [t| < ¢, let [A¢] be the family of
gauge orbits of reducible (tf)-perturbed flat connections near [Ag]. As before, choose
representatives in cylindrical form. Since each A; restricts to a flat connection on
Z, we can also arrange that A: has diagonal holonomy on the torus T. Then the
holonomies satisfy:

hol,(A;) = @ (27m, L (cos (222) — 1)),

holy(A;) = @ (22240).

Proof. The Implicit Function Theorem implies the path [A;] is smooth. As with
single connections, the path of gauge representatives for [A;] can be chosen to be
smooth, in cylindrical form, and with the property that hols,(A:) and holj(A;) are
diagonal. Note that by Proposition 4.6 these connections are flat on Z.

Equation (3.5) and the discussion immediately preceding it imply that

holyy(Ao) = ®(220) and  holj,(Ao) = I.

Therefore,
holyy(As) = ®(us,v¢) and  holp(As) = (0, wy)
for some functions u;, vy, w; satisfying ug = %Tm, vg = 0 = wp. Here we know that

holp(A¢) has the form stated because it commutes with the nonabelian representa-
tion hol(Az): mZ — S(U(2) x U(1)), so it is in the center of S(U(2) x U(1)).
It follows from equation (2.4) that

hol,,(A¢) = ®(rus, rve + cwy) and holy(A¢) = ®(pqus, pque — (p + q)awy).

Proposition 3.7 shows that the second argument in holy(A;), namely pqus — (p +
q)awy, must equal zero. Proposition 4.5 (see Remark 4.8) now implies that

D (rug, vy + cwy) = (0, £ (cos(pquy) — 1)).

From this it follows that u; = 2= independent of ¢, and hence that rv; + cwy =

= —’I‘ s

L (cos(%’#)—l). O

Corollary 4.10. For sufficiently small |t| > 0, the representation oy : m(Z) —
SU(3) induced by the reducible flat connection A, is twisted (i.e. takes values in
S(U(2) x U(1)) but not in SU(2) x {1}) and satisfies H'(Z;C2,) =0

Proof. Proposition 4.9 shows hol,(A;) is twisted, and consequently that «; is
twisted. The cohomology claim then follows from Proposition 3.4. O
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Corollary 4.10 will be used in Section 5 to show that, for small ¢, the orbit [A]
of reducible perturbed flat connections near [Ay] is isolated in s (X).

We now turn our attention to understanding the effect of the twisting pertur-
bation on the stratum of irreducible connections. We continue to assume that Ag
is a reducible flat connection, in cylindrical form, with hol,,(Ao) diagonal, and
that [Ap] lies on a pointed 2-sphere. As pointed out in the proof of Proposition
4.9, there is an integer m with 0 < m < r such that holy,(Ay) = ®(222,0) and
hol(A) = ®(FL™,0).

Now consider an irreducible (¢f)-perturbed flat connection A near Ay. We as-
sume A is in cylindrical form on the neck and that the meridinal and longitudinal
holonomies of A are diagonal. Since hol.(A) is close to hol(Ag) for all v € m1(2),
we can write

(4.7) holx(A) = ®(u,v) and hol,(A) = ®(w,2)

for (u,v) near (222 0) and (w, z) near (0,0). Because the restriction of A to Z is
irreducible and flat, hol,(A) = I. (To see this, note that h € m1(Z) is central and
holp(A) is a priori near holp(Ag) = I.) Equation (2.4) now implies that

(hol,(A))" = (holx(4))"
and plugging this into equation (4.7) gives that

(4.8) w="2"9rm and z=_.
pq pq
On the other hand, if A extends as a (tf)-perturbed flat connection over Y, equation

(4.5) implies that
(4.9) w = —tsinusinv and 2z =t(cosucosv —2cos’v + 1).

Combining equations (4.8) and (4.9), we obtain a pair of equations (depending on
the parameter ¢t) which determine u and v.

We now solve for v and v to first order in ¢. To facilitate the argument, define
the function P: R?® — R? given by

P(t,u,v) = ((%) tsinusinwv, % - % (cosucosv —2cos? v + 1)) .

The map (u,v) — P(0,u,v) is clearly a submersion, and the Implicit Function
Theorem provides smooth functions u(t) and v(t) near ¢t = 0 such that (¢, u(t), v(t))
parameterizes the solutions of the equation P(t,u,v) = 0 near (O, w, O). Dif-
ferentiating the equation P(¢,u(t),v(t)) = 0 with respect to ¢t at t = 0 yields

W/(0)=0 and v/(0) =24 (cos (Z24™) —1).

Thus any irreducible (¢f)-perturbed flat connection A near Ag satisfies:
holy(A) = ® (22U 124 (cos (27241) — 1)) + O(t?),

hol, (A) = @ (0, £ cos (@) - L)+ o).

(4.10)

This characterization of the longitudinal and meridinal holonomies of the per-
turbed flat irreducible connections near Ay allow us to prove the following theo-
rem, which describes the perturbed flat moduli space of ¥ in a neighborhood of the
pointed 2-sphere.
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FIGURE 3. The effect of a twisting perturbation on a pointed 2-
sphere. Here .#*(Z) is 4-dimensional and the map (5 : A4*(Z) —
A (T) has 2-sphere fibers.

Theorem 4.11. Let S C .4 (X) be a pointed 2-sphere, and let [Ag] € S be the gauge
orbit of reducible connections. For a sufficiently small neighborhood % C B(X) of
S, and for sufficiently small [t| > 0, % N M5(X) consists of two components. The
first is an isolated gauge orbit of reducible connections, and the second is a smooth
2-sphere of gauge orbits of irreducible connections. See Figure 3.

Remark 4.12. In this theorem we do not claim that the reducible connection [A;] €
M (2) near [Ag] satisfies the nondegeneracy condition H}, ,(3; su(3)) = 0. This
will be proved in Proposition 5.4.

Proof. Choose a neighborhood % of [Ao|z] in £z with the following properties:
(i) Uz N M*(Z) C €, where € is the 4-dimensional Type II component of
M*(Z) containing [Ap|z], as in Theorem 3.9.
(i) %z N (Z) C €7, where € is the 2-dimensional component of
AM°4(Z) containing [Ag|z], as in Theorem 3.8.
(iii) =Y (%z) N A () = S, where r: B(X) — HB(Z) is the restriction map.
(iv) The restriction of (54 to €7 N %y is injective.
Set % = r~Y(%z). The intersection ,///trfd(E) N is identified with

{[A] € €™ N Uz | [Al7] € 25790 Zy 41}

This intersection is a single point, identified in Proposition 4.9 and the restriction
map (54 maps €7 N %z injectively into .#(T). Thus ,///tr;ﬁd(E) N is a single
point.

Now consider .#"(X) N %, which is identified with

{[A] e €Nz | [Alr] € Z5 N Zyz}.

Equations (4.10) identify the unique point in (z(¢ N %z) N Zy,¢. This point has
a 2-sphere preimage in € N %z for small ¢, because € is topologically a 2-sphere
27




bundle. This can be seen by observing that the map (z : € "%z — .# (T?) factors
through &: € N %y — A, which sends a to [a(xy)], because a(h) = e2™/3[ X\ =
(zy)Pah=(P+De and p = (zy)"he. Again by equations (4.10), the longitudinal ho-
lonomy does not have 1 as an eigenvalue, and hence the 2-sphere fiber does not
contain any reducibles, so by Theorem 3.14 it is a smooth 2-sphere of gauge orbits
of irreducible connections. ]

5. SPECTRAL FLOW ARGUMENTS

In this section, we perform computations of the spectral flow of the odd signature
operator. These are necessary to calculate the contribution of the pointed 2-spheres
to the invariant 7gy(3)(X). The main result here is that, given a path A; of reducible
(tf)-perturbed connections on ¥ where [Ag] is flat and lies on a 2-sphere, the C?
spectral flow of the perturbed odd signature operator equals SFr2(A;;X) = —2.
This is proved by splitting the spectral flow according to the manifold decomposition
¥ =Y Ur Z (Theorem 5.6), and then computing the spectral flow on Z (Theorem
5.7).

5.1. The odd signature operator, spectral flow, and splittings. As in Sec-
tion 4 we assume that ¥ = X(p, ¢,r) is endowed with a metric isometric to the
product metric on a bicollared neighborhood [—1,1] x T, where ¥ =Y Ur Z.

The operator D4 is a self-adjoint Dirac-type operator. Thus on the closed man-
ifold ¥(p,q,7), Da has a compact resolvent and hence the spectrum of D4 is un-
bounded but discrete, and each of its eigenspaces is finite dimensional. Although
D 4 1, is not a Dirac-type operator, it is a compact perturbation of D4 and also has
a compact resolvent.

Given a suitably continuous path Dy, 0 <t < 1, of self-adjoint operators with
discrete, real spectrum each of whose eigenspaces is finite dimensional, one can
define the spectral flow SF(D,) € Z to be the algebraic intersection in [0, 1] x R of
the track of the spectrum

{(t,\) |t € [0,1], X € Spec(D)}

with the line segment from (0, —¢) to (1, —¢), where € > 0 is chosen smaller than
the modulus of the largest negative eigenvalue of Dy and of Dy (this is called the
(—e, —e) convention).

If A, is a continuous path of SU(3) connections on the closed 3-manifold X and h;
a continuous path of perturbations, we denote by SF(Da, p,; X) or SF (A, he; X)
the spectral flow of the family of odd signature operators D 4, , on Q°T(X; su(3)).
(A proof that the family Dy, is suitably continuous and a careful definition of the
spectral flow can be found in [9] and [18].) The spectral flow is an invariant of
homotopy rel endpoints, and to emphasize this point we will occasionally write
SF(Ao, A1; X) instead of SF(Da, n,; X) when the path of perturbations is under-
stood (the parameter space of pairs (A, h) is contractible).

If Aisan S(U(2)xU(1)) connection on X, then D 4 j, respects the decomposition
on forms induced by the splitting of coefficients su(3) = s(u(2) x u(1)) @ C2. In
particular, for a path A; of S(U(2) x U(1)) connections and path of perturbations
ht, we denote by SFg2(Ay, hy; X) the spectral flow of the restriction of the path
Da, n, to Q°F1(X;C?). Similar notation applies to the other summand in this
decomposition of su(3).
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In computing the C? spectral flow, we count eigenvalues with their real multi-
plicity and hence SFg2(As, he; X) is always a multiple of two. Note that

SFaues) (At he; X) = SFyu2)xu)) (Ae, he; X) + SFe2 (Ag, he; X).

When X is compact but has nonempty boundary 0X = W the constructions
must be refined in order to obtain suitable families of operators for which one can
define the spectral flow. We must draw on deeper results from the Calderén-Seeley
theory of boundary-value problems for Dirac operators. A good reference is the
book by Booss-Bavnbek and Wojciechowski [8].

Assume the metric on X is isometric to the product metric on a collar W x (—1, 0]
of the boundary X = W x {0}. We work with connections A on X that are in
cylindrical form, namely we assume that the restriction of A to the collar W x (—1, 0]
is the pullback of a connection a on W under the natural projection W x (—1,0] —
w.

Given an su(3) connection a on W, define the de Rham operator

Sy QUHFZ(W 5 su(3)) — QOFHIH2(W; su(3))
Sa(a,ﬁ, 7) = (*daﬁu —xdga — dg * v, dg * 6)

Here, *: Q' (W;su(3)) — Q2~4(W;su(3)) denotes the Hodge star operator on W.
Define P to be the positive and negative eigenspans of this operator on the space
of L? forms L2(Q01F2(W; su(3))).

If a is a flat connection on W, then the Hodge and de Rham theorems identify
the kernel of S, with the cohomology groups HO1+2(W; su(3)) with coefficients in
the local system su(3) twisted by a. Define the operator

J: QU2 su(3)) — QUFI2(W; su(3))
J(Oé,ﬁ/Y) = (_ *77*67*(1)'

Notice that J? = —1. Setting w(z,y) = (v, Jy) 12 defines a symplectic structure on
the Hilbert space L2(Q0T12(W; su(3))) of L? forms. By restricting this also gives
a symplectic structure to ker Sj,.

If Ais an SU(3) connection on X in cylindrical form, and a is its restriction to
the boundary 0X = W, then along the collar W x [—1, 0], we have

(51) DA:J(Sa'i_%)u

where s denotes the collar coordinate. (See Lemma 2.4 of [5].) This holds more
generally for D4, provided the perturbation is supported away from the collar.
Given a Lagrangian subspace L C ker S,, the operator D4 j taken with domain
those L? sections ¢ € Q°T(X; su(3)) satisfying the APS boundary condition

¢|W€L€BP;_

is self-adjoint with compact resolvent and hence discrete spectrum. Given a family
(At, ht) and a choice of Lagrangian subspaces L; C ker S,, so that L; & P(;t is
continuous, the spectral flow SF(Da p, P;t) € Z is well defined (see e.g. [9]). In our
context below we will have ker S,, = 0 for all t and P,} continuous.

Given a connection A on X in cylindrical form,and h a perturbation of the type
we described above we define an (infinite-dimensional) Lagrangian subspace

Ax,ap C L2 (Q0F2(W; su(3)))
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as follows. The main result of [18] implies that there is a well-defined injective map
r: ker (DM; L3 (O (X3 su(3))) — L2, (Q°+1(X;su(3)))) .
L2 (Q0F 2 (W su(3)))

given by restriction whose image is a closed, infinite dimensional Lagrangian sub-
space called the Cauchy data space of the operator D4, on X and is denoted Ax 4 .
Since the restriction map r is injective, the kernel of D4 j, with P;f (i.e. APS) bound-
ary conditions is isomorphic to Ax 4, N Pj . When the context is clear, we will
abbreviate Ax 45 to Ax 4 or even Ax.

The space Ax 4,5, varies continuously (in the graph topology on closed subspaces)
with respect to A, h, and the metric on X. This result is well known in the case
of Dirac-type operators (such as Dy4), see e.g. [8]. The theorems of the article [18]
extend these standard results to the more general setting of small perturbations of
Dirac operators such as D 4 5, (which is not a differential or even a pseudodifferential
operator).

Remark 5.1. The previous remarks change slightly when the collar of 0.X is param-
eterized as [0,1) x W with 0X = {0} x W. The significant difference is that the
positive eigenspan P} of S, is replaced by the negative eigenspan P,.

We will apply these observations to the decomposition ¥ = YUr Z. Parameterize
a collar of the separating torus 7" as (—1,1) x T'in X, with (—1,0] x T" a collar of
the boundary of the solid torus Y and [0,1) x T a collar of the boundary of Z.

The fact that the operator D4 j on ¥ is Fredholm is equivalent to the fact
that the pair (Ay,ap,Az4,) form a Fredholm pair of (Lagrangian) subspaces,
and hence if (Ay, ht)epo,1) is @ path, the Maslov index Mas(Ay, a,n, Az a,n) is well
defined. Similarly the restriction of Dy j to Y with P;f boundary conditions is
Fredholm because the pair of subspaces (Ay 4 n, P;7) is Fredholm, and the restric-
tion of D to Z with P, boundary conditions is Fredholm because the pair of
subspaces (P, , Az a,5) is Fredholm. Proofs of these facts can be found e.g. [8, part
ii], [21], and [19, Section 2].

5.2. Some vanishing results. This subsection consists of an interlude to prove
some needed vanishing results for the perturbed flat cohomology groups. To begin
with, we note the following property of perturbed flat cohomology. The proof is the
same as the standard proof of the exactness of the Mayer-Vietoris sequence and is
left as an exercise. Note that the restriction of A to Z is flat and so H} ;(Z; C?) =
H*(Z;C?) and similarly for T'.

Lemma 5.2. If A is a (tf)-perturbed flat connection on 3, the Mayer-Vietoris
sequence
- = HY(T3C%) — Hj 45(3%C%) — Hjy o, (Vi C*) @ HA(Z;C%)
— HY(T5C) - -
18 exact.

To use the Mayer-Vietoris sequence in the present context, we need to know the
perturbed flat cohomology of the perturbed flat connections on Y. This information
is provided by the following lemma.
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Lemma 5.3. For 0 <4 < 3, define the open rectangle
Rs ={(u,v) | d <u<2m—6, —6/4<v<d/4}.

Given 0 < § < Z, there exists an € > 0 such that, if —e < t < € then H(Y;C?) =
0 and H} ,(Y; (C2) = 0 for every (tf)-perturbed flat connection A on Y with
holy(A) = <I>(u v) for (u,v) € Rs.

Proof. Fix 0 < § < § and consider the subset .#s(Y) of .# (Y) consisting of gauge
orbits of flat connections A with holx(A) conjugate to ®(u,v) for (u,v) in the
closure of Rs. Obviously .#;s is a compact subset of .#. Moreover, the conditions
on (u,v) guarantee that holy(A) acts nontrivially on C? for all [A] € .#5. From
this, it follows that HY(Y;C?) = 0 for all [A] € .#5. Poincaré duality on the circle
(a retract of V) then gives H} (Y;C?) = 0 as well.

On the closed manifold ¥, if A is a flat connection, then one may identify the co-
homology HY (X; su(3)) with the kernel of the operator da @ d% : LIQP(3; su(3)) —
L2QPTH(E; su(3)) & L2QP~(E; su(3)), which is elliptic and hence Fredholm. On
the manifold Y, with non-empty boundary, one must impose Neumann boundary
conditions for this to be an elliptic operator, namely replace the domain by

1302V 5u(3)) = I3{a € 97(S; su(3)) | *alr = 0}.

The map D4 is equivalent to the sum of the de Rham operator and its adjoint
from odd forms to even forms, except that we have used the Hodge star operator
to replace 3-forms by O-forms and 2-forms by 1-forms. Hence the appropriate
Dirichlet/Neumann-type boundary conditions for D 4 are to restrict the domain to

LQQOJrl {(a, B) € LfQOH(Y; su(3)) | alr = 0,%x08|r = 0}.

If A is not flat, then this operator D4 differs from that of a flat connection (for
example, the trivial connection) by a compact operator (see [24]). As pointed
out above, the operator Dy s also differs from D4 by a compact operator and
hence, with these boundary conditions, is still Fredholm. Again the (perturbed)
cohomology HY(Y;su(3)) ® Hj ,;(Y;su(3)) of a tf-perturbed flat connection is
identified with the kernel of this operator with the restricted domain.

For flat connections A, we have [A] € 5, and the kernel of D4 restricted to
LIOYTN(Y; su(3)) equals HOT!(Y; C?), which vanishes for [A] € .#; by the previous
argument. Using upper semicontinuity of the dimension of the kernel of a continuous
family of Fredholm operators, the family D 4 ¢, with the same boundary conditions,
must have trivial kernel neighborhood of ([A¢],0) for fixed [Ag] € #;5. Using
compactness of .#, we obtain an € > 0 such that if A is (¢ f)-perturbed flat for —e <
t < e and if holx(A) = ®(u,v) for (u,v) € Rs, then H}(Y;C?) and H} ,((Y;C?)
vanish. (]

As in Section 4, suppose Ay is a reducible flat connection on . whose gauge orbit
[Ap] lies on a 2-sphere component. For 0 <t < e, let A; be the family constructed
in Subsection 4.3 of reducible (¢f)-perturbed flat connections on ¥ limiting to [Ag]
ast — 0.

Proposition 5.4. Ift > 0 is sufficiently small, then we have that H}lhtf(E; su(3)) =
0. '

Proof. We split the coefficients as su( ) = s(u(2) x u(1)) & C? and argue the two
cases separately. The fact that H} (¥;s(u(2) x u(1))) = 0 implies that the same
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holds true for the perturbed cohomology for small t. As far as the C? cohomology
goes, we cannot make the same argument since H) (¥;C?*) = C*. Instead, we
combine Corollary 4.10 and Lemma 5.3, using the Mayer-Vietoris sequence, to
obtain the desired conclusion. (]

5.3. The spectral flow to the reducible perturbed flat connection. We turn
now to an analysis of the spectral flow from the reducible flat connection whose
orbit lies on a pointed 2-sphere to the nearby reducible perturbed flat connection.
The set-up is as follows. We have a path A; of reducible (¢f)-perturbed flat con-
nections on X such that A is a flat connection whose gauge orbit lies on a 2-sphere
component. In Theorem 5.7 we compute the spectral flow

SFez2(Ap,tf; ;0 <t <)

of the path of perturbed odd signature operators D4, +f: Q071(3; C?) — Q0+1(%;C?)
from t = 0 to t = €. The strategy is to use the machinery of Cauchy data spaces to
prove a splitting result for spectral flow. This is accomplished in Theorem 5.6 which
which shows that the spectral flow is concentrated on Z. The path A; restricts to a
path of flat connections on Z which allows us to compute the the resulting spectral
flow by topological methods. (For the remainder of this subsection, we restrict
Da, +¢ to C? valued forms and write SF for SFg: without further reference.)

As before we let a; denote the path of flat connections on the separating torus T’
in the decomposition (4.1) and let S,, be the corresponding path of of twisted de
Rham operators on Q°T1+2(T; C2). Since the twisting perturbation is supported on
the interior of the solid torus and vanishes on the neck, it follows that the operators
Dy, .y and D 4, coincide on ([—1,0] x T')U Z. Thus on the neck, equation (5.1) gives
that

(5.2) Daytr = J(Sa, + 55).

Let PtjE denote the positive and negative eigenspans of the operator S,,. Denote
by Ay (t) C L?(Q°1+2(T;C?)) the Cauchy data space of the operator Dy, +f on Y
and by Az(t) the Cauchy data space of Dy, +¢ on Z. Thus the kernel of D4, +¢ is
isomorphic to the intersection Ay (¢) N Az(t).

Let Y2 be Y with a collar of length R attached, namely

YE=YU(0,R] xT).

Any connection A € &7 (Y) in cylindrical form extends in the obvious way to give
a connection on Y® in cylindrical form. Thus the family D4, ;s of perturbed odd
signature operators on Y extends (using (5.2)) to give a family of operators on Y.
Let Af(t) denote the Cauchy data space of the operator D4, ;¢ on Q0T (YE;C?).
Similarly, set Zf = ([—R,0] x T) U Z and denote by AZ(t) the Cauchy data space
of the operator D4, 1y on QUH1(ZE;C?).

Lemma 5.5. There exists an € > 0 such that 0 <t < e implies
(i) kerS,, = 0.
(ii) AB()N P =0 for all R > 0.
(iii) Rlim A)@ (t)= P, .
(iv) ARZ(e)nP= =0 for all R > 0.
(v) B}im AB(e) = P
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Proof. As in Subsection 4.3, the reducible flat connection Ay has longitudinal ho-
lonomy holy(Ag) = QJ(M,O) for some 0 < k < r. The matrix @(M,O) acts
nontrivially on C?, and it follows that H_ (T;C?) = 0. Poincaré duality implies
H? (T;C?) = 0, and Euler characteristic considerations give that H_ (T;C?) =0
as well. Hence

ker Sq, = HXT' (T, C?) = 0.

ao

By upper semicontinuity, ker S,, = 0 for small ¢. This proves (i).

Proposition 2.10 of [5] states that if A is a flat S(U(2) x U(1)) connection on a
3-manifold X with boundary, and if a = A|sx, then Ax 4 N P, is isomorphic to
the image of the relative cohomology in the absolute

Image (H(X,0X;C%) — H)(X;C?).

The proof involves identifying the intersection with the space of L? harmonic forms
on the infinite cylinder and applying Proposition 4.9 of [1]. If HO+1*2(9.X;C?) = 0,
then the image of the relative cohomology in the absolute is exactly HY(X;C?).

Apply this result to the case A = Ay and X = Y. Lemma 5.3 tells us that
H} (YE;C?) =0, and we conclude that Aff(0) N Py" = 0 for all R. This generalizes
to perturbed flat connections as follows. The proof of [1] that the space of L?
harmonic forms injects into H (X; C?) works just as easily to show that the space
of L? solutions to Da, ;f(c,7) = 0 on Y injects into H} ,(Y;C?). Applying
Lemma 5.3 again, we see that H) ,(Y;C?) = 0. This proves (ii).

Assertion (iv) follows by applying the same argument to the case A = A,
and X = Z. Note that Proposition 4.9 implies that, for ¢ > 0 small enough,
H) (Z;C?) =0.

Assertion (iii) follows from (i) and (ii) and a theorem of Nicolaescu ([21, Corollary
4.11]; see Theorem 2.7 of [5] for the result in the present context). Similarly,
Assertion (v) follows from (iv). O

The restriction of the operator D4, +r to Z coincides with D4, on Z. The
operator D 4 ;¢ restricted to those L? sections whose restriction to the boundary lie
in P is a well-posed elliptic boundary value problem which, furthermore, is self-
adjoint since ker S,, = 0. This implies that the spectral flow SF(Da, .5; Z; P;) is
well-defined. (These are well-known facts, originating in [1], whose proofs can be
found in many places, e.g. [19].)

The next result is a splitting theorem which uses the vanishing of cohomology
on the solid torus Y to localize the spectral flow on the knot complement Z.

Theorem 5.6. For small e > 0,
SF(Da,if;2;0<t<¢e)=8F(Da,; Z; P,;0<t<e).

Proof. By part (i) of Lemma 5.5, we have HJM'T2(T;C?) = 0 for 0 < t <e. A
theorem of Nicolaescu ([21]; see also [19]) states that

(5.3) SF(Da, 7 ) = Mas(Ay (t), Az ().

As in [5] and [10], we use homotopy invariance and additivity of the Maslov index
to complete the argument. (For a precise definition of the Maslov index in this
context, see [21, 19] and [5, Definition 2.13]).
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Consider the 2-parameter family
1/(1-s) <
L(s,t) = A): (t) .f0r0_3<1
P, ifs=1
for 0 < s < 1,0 <t <e Lemma 5.5(iii) and the appendix to [10] shows that for
each fixed t this is a continuous path. What we need is uniform continuity in the
t parameter. Such families are not always continuous (see [5] for a discontinuous
example) but in this case the family is continuous by [21, Corollary 4.12]. The
required nonresonance hypothesis is exactly what Lemma 5.5 (ii) asserts.
Since L(0,t) = Ay (¢) and L(1,t) = P, additivity and homotopy invariance of
the Maslov index implies that
Mas(Ay (t), Az(t)) = Mas(L(s,0), Az(0)) + Mas(P;, Az(t))
— Mas(L(s,€), Az (e)).
Since Ay is flat, Proposition 2.2 shows that, for 0 < s < 1,
dim(L(s,0) N Az(0)) = dimker D4, = dim(H}"(;C?)) = 4.
(Note, all dimensions computed here are real.) For s =1,
L(1,0)NAz(0) = Py NAz(0) = Image (H}, (Z,T;C*) — Hy (Z;C?)).
Since HOH'*2(T;C?) = 0, the image of the relative cohomology in the absolute

is all of H) (Z;C?) which has complex dimension 2 by Proposition 3.1. Thus
dim(L(s,0) N Az(0)) is constant in s and it follows that

(5.5) Mas(L(s,0),Az(0)) = 0.
By Lemma 5.5 (iv), L(1,e) N Az(e) = 0. For 0 < s < 1, we have
dim (L(s,€) N Az(€)) = dimker (D4, .y : Q"F1(2F;C%) — QO+ (2F; C?))
= dim H" (3;C%) = 0.
Here, X% = Y2 Uy Z is the result of adding a collar of length R to the neck. The

computation that Hz‘He f (2;C?) = 0 follows by a Mayer-Vietoris argument, using
Lemma 5.3 and Proposition 3.10. Therefore

(5.4)

(5.6) Mas(L(s,€), Az(€)) = 0.
Next,
(5.7) Mas(P; ,Az(t)) = SF(Ay; Z; Pr; 0 <t <e).

(This result is also due to Nicolaescu; see [19] and [5, Theorem 2.18] for proofs
in the present context.) Combining (5.3), (5.4), (5.5), (5.6), and (5.7) with the
observation that Dy, s and D4, agree on Z completes the argument. ([l

Theorem 5.6 reduces the problem of computing SFr2(Da,  r;2) from the flat
irreducible connection A and zero perturbation to the ef-perturbed flat reducible
connection A, and perturbation ef to the problem of computing the spectral flow on
the knot complement, namely, SFr2(Dg,; Z; P, ). This is a much easier problem
for the following reason. The path of perturbed flat connections A; restricts to a
path of flat connections on Z, and the kernel of D 4, acting on C2-valued forms with
boundary conditions P~ is isomorphic to the image of H'(Z,T;C2 ) — H*(Z;C%))
(see the proof of Lemma 5.5). Corollary 4.10 then implies that this kernel is 0 for
t > 0, and Proposition 3.2 shows that the kernel is C2 = R* for t = 0. We will
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prove that two zero-modes become positive and two become negative, so that the
spectral flow equals —2 (with our conventions). The homotopy will be a disk in the
cylinder S* x R of Theorem 3.8.

Theorem 5.7. With € > 0 as in Theorem 5.6, we have
SF(Da,; Z; P, ; 0<t<e¢e)=—-2.

Proof. As mentioned above, for t = 0, the kernel of D4, with P~ boundary condi-
tions has real dimension 4, but for ¢ > 0, the kernel is trivial.

In Subsection 3.2, we constructed 2-parameter families of reducible SU(3) rep-
resentations on Z. These results give 2-parameter families of based gauge orbits
of flat connections on Z. The based gauge group is the subgroup of ¥(Z) con-
sisting of those gauge transformations in the path component of the identity. The
point is that spectral flow is a well defined concept for connections modulo based
gauge transformations, so we can use the parameterization from Subsection 3.2 to
compute spectral flow.

If needed, gauge transform the path A; so that its path of holonomy represen-
tations v : m(Z) — SU(3) takes values in S(U(2) x U(1)) and so that xy is sent
to a diagonal matrix. Notice that 7y takes values in SU(2) x {1} since A; is the
restriction of flat connection on X(p, ¢, ). Thus g lies on an arc « (see Definition
3.6) for some k, ¢, and e. The precise values of k, ¢, and € are not needed for our
argument.

Suppose that 79 = «g, for some sg € (0,1). Proposition 4.7 (in particular
(4.5)) shows that +; lies off the seam of SU(2) x 1 representations for ¢ > 0,
and in particular ~; is a S(U(2) x U(1) representation but not an SU(2) x {1}
representation for ¢ > 0. Hence Theorem 3.8 implies that ~; is of the form o, g,
for paths s; € (0,1) and 0, € [0,7]. (We assume e is small so that 6, is also small.)

Now the construction of Definition 3.6 gives a 2-parameter family of representa-
tions: namely the disk in the cylinder bounded by union of the 4 curves (see Figure
4):

(1) Tt = OéSt-,et’t € [Oa E]a
(ii) Qg (1—u)fes U S [0, 1],

(lll) a(l,u)séﬂo,u € [0, 1],

(IV) Al 0, U S [O, So].

This disk determines a 2-parameter family of reducible flat connections
{45410<s<1,0<t<¢€}

such that:
(i) Agp=Asfor 0 <t<e.
(ii) Aseisaflat S(U(2)xU(1)) connection with H} (Z;C?*) =0for0 < s <1
(see Lemma 5.3).
(ili) Ay, is a flat abelian connection for 0 < ¢ < € and H}h,t(Z;(C2) = 0 for
O0<t<e.
(iv) Aspois aflat SU(2) x {1} connection with H}  (Z;C*) =C?for 0 <s < 1.

The parameterization in s and ¢t may be chosen so that, when s is near 1, the

t parameter is simply twisting, hol,(As:) equals the twist of hol,(Aso) by the

U(1) representation sending u to e®. This family parameterizes a thin strip on the

cylinder S x R with the edge corresponding to (iii) in the abelian flat connections.
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FIGURE 4. The family A is the shaded rectangle within a cylin-
drical component of R™4(Z, SU(3)).

We assume that A,; is in cylindrical form and has diagonal holonomy on the
boundary.

Let a,; denote the restriction of A to the torus, and let P;‘ft be the positive
and negative eigenspans of S, ,. Since

ot

ker(S,,,) = Hot!(T;C*) =0

Qs t

for 0 < s <1land0 <t < ¢, the Lagrangian spaces stt vary continuously. Thus the
odd signature operator D 4_, acting on sections over Z with Py, boundary condi-
tions is a continuous 2-parameter family of self-adjoint operators. This 2-parameter
family gives a homotopy from the path D4, ,, 0 <t < ¢, to the composition of the
three paths
(i) Da,,, 0<s<1,
(i) Da,,, 0<t<e,
(111) DAI—S,&? 0<s< 17

and hence
SF(Da,) =SF(Da,,)sejo,1) + SF(Da, )icpo, + SF(Da,_,.)sclon)-

The flat connections A, act nontrivially on C2, hence H} (Z;C?) = 0 for all
s,t. The path A;,0 < s <1 runs along the seam of the cylindér and Propositions
3.2 and 3.5 show that H}‘S’O(Z; C2%) = C? for 0 < s < 1. By choosing e sufficiently
small, we can arrange that H}‘M(Z; C*H=0for 0<s<1and0<t<e (For this
deduction, notice that A,; has been twisted out of the SU(2) x {1} stratum for
t>0.)

Since the kernel of D4, , with P~ boundary conditions is isomorphic to the
image of the restriction homomorphism H}"(Z,02;C?) — H}"(Z;C?) (see the
paragraph preceding the statement of Theorem 5.7), and this ma’p is surjective by
Proposition 3.2, it follows that along the first path D 4, , the kernel is constant (and
4-dimensional) and along the third path the kernel is trivial. Hence the spectral
flow along the first and third paths vanishes. Thus

SF(Day,; Z; Py 0<t <€) =SF(Da,,; Z; Pl ;; 0<t<e).

We have reduced the proof to the problem of computing the spectral flow SF (D4,

t < ¢), along the path A;; of abelian flat connections. We will show that the four

zero-modes bifurcate into two positive and two negative eigenvalues. The idea

of the argument is simple but the execution is a bit technical, so we outline the

argument first. We will embed the path A;;,¢ € [0,€] in a 2-parameter family

By, (u,v) € R? so that A, corresponds to a short path starting at the origin
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moving along the positive v-axis. The operator Dp, , with P~ boundary condi-
tions will be seen to have kernel of dimension 2 along the two lines v = u/3 and
v = —u/3 (and hence 4-dimensional kernel at the origin). The spectral flow along
the u axis through the origin (i.e. SF(Dp, ,,P~,—€ < u < €)) equals 4 or —4.
Thus in the four cone shaped regions complementary to the two lines, the two re-
gions containing the positive and negative v axis must correspond to two of the
zero-modes becoming positive and two becoming negative.

Since A; . is an abelian flat connection on Z, it is completely determined by its
meridinal holonomy. Suppose hol, (A1,0) = ®(uo,0) and let B, ; be a 2-parameter
family of abelian flat connections with By = A ; and hol,(Bs:) = ®(ug + s,1t).
Notice that each By is an SU(2) x {1} connection.

By [1], the kernel of Dp,, with P~ boundary conditions is isomorphic to the
image of the relative cohomology in the absolute

Tmage (H}gs’t(z, T:C?) — Hgs,t(Z;CQ)) .

For s and ¢ small, Hy (T;C?) = 0, so the latter image is simply Hp_ (Z;C?),

which is computed in Proposition 3.4. In the present context, this proposition
implies that, for small s and ¢, the kernel of Dp, , with P~ boundary conditions is

C? ifs=t=0,
Hp (Z;C*)={C ift=+45#0,
0 otherwise.

For paths of SU(2) x {1} connections, the odd signature operator respects the
quaternionic structure on C2, and for this reason, the spectral flow

SF(Bso; Z; P73 —e<s<e¢)=+4

(cf. Theorem 6.12 in [5]). We assume this spectral flow equals +4. The argument
in the other case is similar and is left to the reader. Because there are only four
zero-modes, all at s = 0, we see that the spectral flow along the first half of this
path {(s,0) | —e < s <0} must also equal +4 (by our spectral flow conventions).

Clearly, the straight line {(s,0) | —e < s < €} is homotopic to the semicircle
{(—€cosf,esinf) | 0 < O < 7}. The semicircle passes through the two diagonal lines
through (uo,0) exactly once. Each time it crosses a diagonal line ¢t = &3, exactly
one eigenvalue (of multiplicity two) of Dp,, crosses zero from negative to positive
(since the total spectral flow is +4). Thus, the spectral flow along the quarter circle
{(—€cosb,esinf) | 0 < 6 < 7/2} must equal +2. Of course, the quarter circle is
homotopic to the composition of the two straight lines {(s,0) | —e < s < 0} and
{(0,t) | 0 <t < e}. We already concluded that the spectral flow along the first line
equals +4, hence the spectral flow along the second must equal —2. Thus

SF(Boy; Z; P7;0<t<e¢)=-2.

In other words, the behavior of the four zero-modes of Dy, , as t increases from
t = 0 is that two go up, the other two go down. This completes the proof. O

6. APPLICATIONS

In this section, we present computations of the integer valued SU(3) Casson
invariant 75y 3y for Brieskorn spheres ¥(p, ¢,7). As we know from Subsection 2.3,
there are exactly four types of path components, so our first task is to explain
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how each type contributes to Tgy(3). This reduces the problem of computing
Tsu3)(X(p,¢,7)) to an enumeration problem, which we then phrase and solve in
terms of counting lattice points in rational polytopes. From this, we deduce that
Tsu () is a quadratic polynomial in n for 1/n-Dehn surgery on a (p, ¢) torus knot,and
more generally for the families X, = 3(p, ¢, pgn+m) for p, ¢, m > 0 fixed, relatively
prime integers with m < pq.

6.1. The integer valued SU(3) Casson invariant. In this subsection, we de-
termine how the different component types contribute to the integer valued SU(3)
Casson invariant defined in [6].

Theorem 6.1. Suppose X is a Brieskorn sphere. The contribution of a given path
component of R(X,SU(3)) to the integer valued SU(3) Casson invariant Tgy(s)
depends only on the component type and is as follows.

(i) Type Ia components are isolated points of conjugacy class of irreducible
SU(3) representations and contribute +1 to Tgy(3)(X).

(ii) Type Ila components are a smooth 2-spheres of conjugacy classes of irre-
ducible SU(3) representations and contribute +2 to Tgy(s)(X).

(iii) Type Ib components are isolated points of conjugacy classes of reducible
SU(3) representations and do not contribute to Tsy(z)(X).

(iv) Type IIb components are pointed 2-spheres containing one conjugacy class
of reducible SU(3) representations and contribute +2 to Tgy(3)(X).

Proof. This theorem uses Proposition 5.1 from [2], which states that for any irre-
ducible flat SU(3) connection A on ¥, the adjoint su(3) spectral flow SF(0O, A) is
even. Given a nondegenerate component ¢ C R*(X,SU(3)) and [A4] € €, Propo-
sition 8 of [4] states that ¢ contributes (—1)5F(®:4) (%) to Agy(s). But the only
difference between the invariants 773y and Agy(s) is in their correction terms. In
other words, on the level of the irreducible stratum, these two invariants coincide.
Thus, since components of Types I and II are nondegenerate, we conclude that
components of Type Ia contribute +1 and components of Type Ila contribute +2
to Tsu(3)(2).

Next, consider a component € of Type Ib. Thus € = {[Ay]} for an isolated
reducible orbit [Ag] € .. Proposition 2.2 implies that H} (3;C?) = 0. Given a
generic path hy of small perturbations, the path A; of nearby reducible h;-perturbed
flat connections also have H} , (3;C?) = 0. As a result, SFg2 (A, hy; ) = 0 and
we conclude that components of Type Ib do not contribute to 75y (s)-

Finally, consider a component % of Type IIb. So % is a pointed 2-sphere and
has two strata: ¢ = €* U €. Let tf be the path of twisting perturbations on
¥ as in Section 4. Denote by 6; C .4, the part of the (¢f)-perturbed flat moduli
space of ¥ near ¥. As we have shown, for ¢t small, %; is a disjoint union of two
components

Cgt — Cgf,* U cgtred'
Choose ¢ > 0 as in Theorem 5.6 and suppose [Bi] € %, is a path of gauge

orbits of irreducible (¢f)-perturbed flat connections on ¥ for 0 < t < e. Then
Hp, (3 5u(3)) = R? for 0 < t < ¢, and hence

SF(B,tf;3;0<t<¢)=0.
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Since SF(O, By;X) is even, another application of Proposition 8 of [4], together
with the fact that € is a nondegenerate 2-sphere, shows that € contributes +2
to TSU(B) (E)

Now suppose [A;] € €/ is a path of gauge orbits of reducible (tf)-perturbed
flat connections on ¥. Corollary 5.4 shows {[A;]} is isolated for 0 < ¢t < ¢, and
Theorems 5.6 and 5.7 imply that SFr2(Ap, Ae; X) = —2. In addition, Proposition
2.2 tells us that H} (¥;C?) = C?. Thus

29 Fc2(Ag, A X) + dim H} (5;C?) = —44+4 =0,

and the contribution of €7 to Tsu(s)(X) is 0. Consequently, each component of
Type IIb contributes +2 to Tgy(3)(2), and this completes the proof. O

6.2. SU(3) fusion rules. The set of SU(3) matrices modulo conjugation is pa-
rameterized by the 2-simplex
A= {(a1,a2,a3) € R3 | a1 + az + a3 = 0 and

6.1
(6.1) a1 <az <az<a+1}.

Suppose T is a discrete group and a € R(T', SU(3)). Define the map A\,: ' — A
by sending v € T to the unique (a1, az2,a3) € A such that «(y) has eigenvalues

eQﬂ'ial e27ria2 627”(13.

The fundamental group of a thrice-punctured 2-sphere has the presentation G =
(x,y,z | xyz = 1), where x, y, z are represented by loops around the three punctures.
(Of course G is a free group on 2 generators.) Given any representation a: G —
SU(3), the assignment o — (Ao, (), Ao (¥), Ao (2)) defines a map

U: R(G,SU(3)) — A X A x A.

The following theorem, due to Hayashi (see Theorems 3.3 and 3.4 of [16]), describes
the image of this map as a convex 6-dimensional polytope & in A x A x A.
Given a,b,c € A, let A ape be the moduli space of flat connections on a thrice-
punctured 2-sphere with monodromies around the three punctures specified by
a,b, c. Clearly A ape can be identified with the fiber of the map ¥ over (a, b, ¢).

Theorem 6.2. The moduli space Mape is nonempty if and only if a = (a1, az,as),
b= (b1,b2,b3) and ¢ = (c1,ca,c3) satisfy the 18 inequalities:
a1 +bs+co <0 a1 +bs+c3 >0 as+bs3+c3<1
as +by +c2 <0 az+by+c3>0 ag+by+c3<1
as +bs+c1 <0 az+bs+c1 >0 az+bs3+cy <1
(6.2)
a2 +ba+c3 >0 a1 +b1+c3 <0 a1 +b1+c2>
as +bs+co >0 a1 +bs+c1 <0 a1 +by+c1 > —1
ag+by+co >0 az+by+c1 <0 as +by +c1 >
Let 22 = {(a,b,c) | all 18 of the inequalities (6.2) are satisfied}. Then &P = im (V)

is conver and 6-dimensional. Moreover, Mape 1S homeomorphic to a 2-sphere if
(a,b,c) lies in the interior of Pand a point if (a,b,c) lies on the boundary of L.

These equations can be used to describe the irreducible stratum R*(Z, SU(3))
of the representation variety of m1Z as follows. Fix elements A, B € SU(3) and
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FIGURE 5. QY is a hexagon if €%, is Type I and a nonagon if €%,
is Type II.

¢ € {0,1,2} as in Theorem 3.9 and let a,b € A be the conjugacy classes of A, B, re-
spectively. Recall the presentation (2.3) for 71 Z and denote by €%, C R(Z,SU(3))
the subset consisting of conjugacy classes of representations «a: m1Z — SU(3) such
that A\ (z) = @, \a(y) = b, and a(h) = €2>7*/3]. (This set was denoted €45 in
Theorem 3.9.)

The assignment o — A\, ((zy) 1) defines a map

Yoyt Cop — A

Let Q% = im(¥%,) be the image of this map, so Q% is the intersection of &
with the 2-dimensional slice obtained by fixing a and b. Solving equations (6.2) for
c1, C2,C3, we see that

ébCAz{(01,02,03)€R3|cl§02§03§cl+1andcl+02+0320}

consists of triples (c1, g, c3) satisfying the six inequalities:

X < a < X,
Yo < e £V,
Zy < 3 < Zuy,
where
Xg = max{—l—a1—bg,—l—ag—bl,—a3—b3},
Xu = min{—a1 —b3,—a3 —bl,—ag —bg},
Yy = max{—1-—a; —b1,—as — b3, —as — ba},
Y, = min{—a; —by,—as —b1,1 — a3 — bs},
Zg = max{—al —b3,—a3 —bl,—ag —bg},
Zy = min{—a; —b1,1 —as —bs,1 —as — ba}.

Using these equations, one can determine that ng is either a hexagon or a
nonagon, depending on whether ‘be is a Type I or II component, respectively.
(Recall the definition of Type I and II in Theorem 3.9, see also Figure 5). With a
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little more work, one sees that the vertices of Q%, are given by
Vi = (Xu, —Xu—Zo, Ze), Vi= (Xé, —X¢— Zu, Zu),
(6.3) Vo= (=Yu—Zo,Yu, Zp), Vs =(-Ye—Zu,Ys, Zu),
Va=(X¢,Yu,=Xe = Yy), Vo= (Xu,Ye,—Xu—Ye),
in the hexagonal case (i.e. when €, is Type I), and by
V1 = (Xu, —Xu — Zo, Zp), Vg =(Z,—-1,1-22,,7,),

= (=2Z4, Zy, Z), = (=Ye — Zy, Yo, Zu),
(6.4) = (- QYU,YU,Y) = (Y, Yg, —2Yy),
V4—(X Yu,— -Y.), = (Xy, Xu, —2X,),
(Xg,—1—2Xz,1+Xg)

in the nonagonal case (i.e. when €%, is Type II).

6.3. Lattice points in rational polytopes. In this subsection, we use Ehrhart’s
theorems on enumerating lattice points in rational polytopes to establish two re-
sults. The first, Theorem 6.3, is essential for the computations in Subsection 6.4.
It shows that the integer valued SU(3) Casson invariant on homology 3-spheres ob-
tained by 1/n surgery on a torus knot (or torus-like knot) is a quadratic polynomial
in the surgery coefficient n. The second result, Proposition 6.6, enumerates Type
I and IT components in the SU(3) representation variety of knot complements Z
obtained by removing one of the singular fibers of X(p, ¢, ).

To begin, suppose ¥ = X(p, ¢,7) is a Brieskorn sphere and Z is the complement
of a regular neighborhood of its singular r-fiber. Recall the presentations (2.2) and
(2.3) for the fundamental groups m ¥ and 71 Z. Restriction from ¥ to Z defines a
natural inclusion map R(3, SU(3)) — R(Z, SU(3)), under which

(6.5) R(X,SU(@3)) = {a: mZ — SU3) | a((xy)"h®) = I}/conj.

Any irreducible representation a: mZ — SU(3) must send h to a central element,
thus a(h) = e?™*/3] for some £ € {0,1,2}. Hence a(z) and a(y) are p-th and
g¢-th Toots of the central element a(h)® = €2™*/3] and the results in Subsection
3.2 imply that R*(Z, SU(3)) is a union of components €%, over all a,b € A and
¢ €{0,1,2}, of the form

(6.6) a= (.8 252). b= (%2 42).
where i1, 12, j1, jo are integers satisfying i1 = i3 = j1 = j2 = af (mod 3).

A conjugacy class [a] € €7, with representative a: 11 Z — SU(3) extends to
a representation of m¥ = mZ/{(xy)"h®) if and only if a((zy)"h®) = I. Setting
c=Xa((zy)™1) € Q) we see that o extends if and only if

(6.7) c= (5, 52, ke

for integers k1, ko such that kq = ko = ¢f (mod 3).

In this way, we reduce the problem of computing 7sy(3)(¥) to one of counting
lattice points of the form (6.7) in the regions Q%,, for all a, b, £ satisfying (6.6). Of
course, some lattice points contribute +1 and others contribute +2, depending on
the topology of the fiber of 1qp (cf. Theorem 3.14). This is a routine matter, as
the topology of the fibers is constant within the interior of Qf;b
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The same approach can be used to perform computations for the entire family

of Brieskorn spheres
En =2, ¢;pgn+m), n =0,

where p, ¢, m are fixed, pairwise relatively prime positive integers with m < pq. We
have described R(X,,, SU(3)) as a disjoint union of points and 2-spheres. Under the
identification (6.5), each point and 2-sphere corresponds to a lattice point in one
of the regions Qf;b. Observe that the regions Qf;b are themselves independent of n;
the dependence on n is entirely through the denominators of the lattice points via
equation (6.7) and r = pgn + m.

Theorem 6.3. Suppose p,q,m > 0 are pairwise relatively prime with m < pq. Set
Yn = 2(p, ¢, pgn+m). Then Tsy(3)(Xn) is a quadratic polynomial in n of the form

TSU(B) (En) = A?’L2 + BTL + C
Obviously C = Tsy(3)(X(p, ¢, m)) and vanishes for m = %1.

Our proof uses Ehrhart’s results on counting lattice points in rational polytopes
[11], so we begin by introducing notation and defer the proof to the end of this
subsection.

A lattice polytope & in RY is a convex polytope whose vertices lie on the standard
integer lattice A = Z, and a rational polytope 2 in RV is one whose vertices have
rational coordinates. Equivalently, 2 is rational if the dilated region d2 = {dz |
x € 2} is a lattice polytope for some positive integer d. For example, the 2-simplex
A of equation (6.1) is a rational polytope which, when dilated by d = 3, is a lattice
polytope.

We are interested in counting lattice points in integral dilations n&? of such
polytopes. Denote by fa(Z,n) = # (n NA), the number of lattice points in
n. Ehrhart showed that if &2 is a lattice polytope, then fa (£, n) is a polynomial
in n of degree dim &. Ehrhart also proved that if 2 is a rational polytope such
that d 22 is a lattice polytope, then fa(2,n) is a quasi-polynomial of degree dim 2
and periodicity d, where (see [11] or p.235 of [23]). Recall that a quasi-polynomial
f(n) of degree j and periodicity d is a function of the form

f) =Y ai(myn’
=0

whose coefficient functions a;(n) are periodic in n of period d.
Fix p,q,m and set ¥,, := X(p, ¢, pgn + m) as in the theorem. Choose integers
G, Cp, Satisfying

(6.8) an(pgn +m)(p+q) + capg =1

as in Proposition 2.1. Denote by Z,, the complement of a regular neighborhood of
the (pgn + m)-fiber in X,, = X(p, ¢, pgn + m). The fundamental group m Z,, has
presentation (z,y,h | P = y? = h%, h central). We will see that the Type I and
IT components €%, of R(Z,,SU(3)) are independent of n. (Here, as established
in Theorem 3.14, components of Types I and IT have real dimension two and four,
respectively.)

We will identify components of R*(X,,SU(3)) with the union over all a,b of
certain lattice points in Qf;b C R3, and a key point is that these regions depend
only on a,b and not on n.
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Lemma 6.4. The numbers a,,c, can be chosen so their values modulo three are
independent of n. Moreover:

(i) If both p and q are relatively prime to 3, then we can choose ay,cy, so that
an =0 (mod 3) and ¢, = pg £ 0 (mod 3).
(ii) If either p or q is a multiple of 3, then we can choose ay, ¢, so that a, =

(p+qm#0 (mod 3) and ¢,, = —m £ 0 (mod 3).
Proof. We start with a,,, ¢, satisfying (6.8) and use the substitutions a!, = a,, +pgk

and ¢, = ¢, — k(p + q)(pgn + m). For example, in case (i), we can choose k so

n
that a}, is a multiple of 3 since pq is relatively prime to 3. Reducing equation (6.8)
modulo 3 then implies that ¢/, = pg (mod 3). In case (ii), the mod 3 reduction of
equation (6.8) gives that a,, = (p+¢)m before (and after) making any substitutions.
Now since (p + ¢)m is relatively prime to 3, so is (p + ¢q)(pgn + m), and it follows

that we can substitute so that ¢, = —m (mod 3). O

Remark 6.5. In case (i), a consequence of Lemma 6.4 is that a has the form
(%, %, %) and b has the form (%, %2, %) when p, q are both relatively
prime to 3 (cf. equation (6.6)). In this case, the three components €, 6, 4, Cay,
have the same values for a, b.

In case (ii), we see that ¢ is completely determined by a (or b) since a,, # 0
(mod 3) when p or ¢ is a multiple of 3. In this case, different values of ¢ require
different values of a, b.

The next result gives an enumeration of the number of Type I and Type II
components in R(Z,, SU(3)).

Proposition 6.6. Suppose Z,, is the complement of the (pgn + m)-singular fiber
in X(p,q,pgn +m). Then there are
P—D@-1p+q—4)

Ny = 5 and

N, = =D -2)g-1@-2)
o=
12
components of Type I and Type II in R(Z,,SU(3)), respectively.

The next lemma is the key to proving this proposition.

Lemma 6.7. Suppose p € Z is a positive integer and £ € {0,1,2}. Let fo(p) denote
the number of conjugacy classes of p-th roots of e /31 in SU(3) with three distinct
eigenvalues, and let go(p) denote the number of conjugacy classes of p-th roots of
e?™/3T in SU(3) with two distinct eigenvalues. Then we have:

%(p2 —3p+2) ifp is relatively prime to 3,
fe(p) =S §* = 3p+6) ifp is multiple of 3 and £ =0,
%p —3p) if p is multiple of 3 and £ = 1,2.

— 1 if p is relatively prime to 3,
p—3 if pis multiple of 3 and £ =0,
if p is multiple of 3 and £ =1,2.

Observe that Zé ofelp) =2(p—1)(p—2) and Ee 09¢(p) = 3p — 3 hold for all
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Proof. We begin by proving the stated formulas for fy(p) and g¢(p) under the
assumption that p is relatively prime to 3.

Consider the analogous problems for U(3). Set ¢ = ¢>™/? and notice that every
p-th root of unity in U(3) has all its eigenvalues in the set {1,¢,¢2,..., (P71}
Conjugacy classes in U(3) are uniquely determined by their eigenvalues, and it
follows that there are (§) conjugacy classes of p-th roots of unity in U(3) with three
distinct eigenvalues and that there are p(p — 1) conjugacy classes of p-th roots of
unity in U(3) with two distinct eigenvalues

Multiplication by ¢ defines a Z, action on these conjugacy classes. Using that
det (CA) = ¢3det A, we see that with respect to the map det: U(3) — U(1), the
induced Z, action downstairs on U(1) has weight three. If (3, p) = 1, the action is
effective on the image det({A | AP =I}) = {1,¢(,¢3,...,¢P7 ).

Thus, if (3,p) = 1, the number of conjugacy classes of p-th roots of unity in any
fiber det™'(¢*) is independent of k. Taking k = 0, it follows that fo(p) = %(g) =
(p—1)(p—2)/6 and go(p) = p— 1 if (3,p) = 1. Now multiplication by e>™/3 shows
that fe(p) = fetp(p) and ge(p) = ge+p(p). Thus, if p is relatively prime to 3, it
follows that f¢(p) and ge(p) are independent of £ € {0,1,2} and are as stated in the
lemma.

Now suppose p is a multiple of 3 and notice that the Z, action is no longer
effective on the image det({A | AP = I}) = {1,(,¢?,...,¢P~1}. Since the action
has weight three, there are precisely three orbits of the Z, action, one for each
residue class of k (mod 3), where det A = ¢*.

Claim 6.8. If p is a multiple of 3, then
2

(i) fo(p) = =42 and

(i) go(p) =p — 3.

Establishing the claim proves the lemma, as we now explain. Taking matrix
inverses shows that f1(p) = f2(p) and ¢1(p) = g2(p). As argued before, the total
number of p-th roots of unity in U(3) with three distinct eigenvalues is (g), and
total number of p-th roots of unity in U(3) with two distinct eigenvalues is p(p—1).
This gives the formulas

2 2
S felp) = 2(5) = U2 and Y gi(p) = 207 - p) =3(p - 1),
£=0 £=0

which can then be used to solve for fi(p), ¢1(p) in terms of fo(p), go(p).

Part (ii) of Claim 6.8 can be proved directly. Every conjugacy class is uniquely
determined by its set of eigenvalues, which for a p-th root of unity in SU(3) with
a double eigenvalue is a set of the form {¢¥,¢*,(7%F} for 1 < k < p — 1 with
k # m,2m. (Note: the conditions on k ensure that (¥ # ¢~2*.) There are clearly
p — 3 such sets.

The direct argument for part (i) of Claim 6.8 is somewhat tedious, so we argue
indirectly as follows. Note that the total number of conjugacy classes of p-th roots
of unity in SU(3) includes the three central matrices I, e2mi/3] eATi/3] as well as
the p — 3 conjugacy classes with two eigenvalues listed above. The set

{(¢*, ¢ ¢ ) |1 <a,b < p}

of order p? lists all possible eigenvalues of p-th roots of unity as ordered sets. Sub-
tracting 3 for the central roots and 3(p — 3) for the p-th roots of unity with two
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distinct eigenvalues (each one being listed 3 times as ordered sets), and dividing by
the order of the symmetric group Ss3, we get that

fo(p) = L(p? — 3(p — 3) — 3) = E2=3p6

as claimed. This completes the proof of the lemma. O

Proof of Proposition 6.6. We consider the following two cases:

CASE 1: Both p and q are relatively prime to 3.
CASE 2: One of p or g is a multiple of 3.

Assume 1 holds and choose a, = 0 (mod 3) as in Lemma 6.4. Given an ir-
reducible representation a: 7,7, — SU(3), we have a(h) = €2/ for some £ €
{0,1,2}. Then for each a,b € A with p-a,q-b € A = Z3, there are three isomorphic
copies of €%y, one for each possible value of £. Thus N; = 3(fo(p)go(q)+g0(p) fo(q))
and Nir = 3f0(p)fo(q), and the formulas for Lemma 6.7 complete the argument in
this case.

Now assume 2 holds, and note that a,, Z 0 (mod 3) by Lemma 6.4. Without loss
of generality, we can assume that p is a multiple of 3 and that ¢ is relatively prime to
3. The number of Type Ia components is given by summing over the possible values
for £ € {0,1,2}, and similarly for the number of Type Ila components. Lemma 6.4
implies that f(q) = §(¢ — 1)(¢ — 2) and g¢(q) = ¢ — 1 independent of £. It also
gives that

2
> fip)=3(—1(p-2) and > g(p)=3p-3.
=0

Using these formulas, one computes that

2
Ni = > fi)ge(a) + gep) fela) = 30— 1)(g = D(p+q—4),
ézo
Ny = > filp)file) = 5@ -1 -2)(q—1)(g—2),
£=0
completing the proof of the proposition. O

Proof of Theorem 6.53. It is enough to show that the contribution of each compo-
nent 6%, in R(Z,, SU(3)) to Tsy(3)(En) is quadratic in n. As with the proposition,
there are two cases.

CASE 1: Both p and q are relatively prime to 3.
CASE 2: One of p or g is a multiple of 3.

In order to apply Ehrhart’s theorem, we consider translations of the standard
lattice and (in Case 2) of the rational polytopes Q%,.

Assume 1 holds and choose a,, =0 (mod 3) and ¢, = pg (mod 3) as in Lemma
6.4. As noted in Remark 6.5, the sets Qf;b are identical for the different £ € {0, 1,2}
corresponding to the different choices for a(h) = e27*/3]. It follows from equations
(6.3) and (6.4) that Q% is a rational polytope whose dilation by d = pq is a lattice
polytope.

When ¢ = 0, the component 6.2, contributes

Fa(Q0p: pan +m) = # ((pgn +m)Qoy N A)
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to Tsy(3)(Xn), where A = Z3 is the standard integer lattice in R®. By [11], fA(Q%,, k)
is a quasi-polynomial of periodicity d = pq, and we see that fA(Q%,,pgn + m) is
polynomial in n simply because the residue class of pgn + m modulo d = pq is
constant.

This same idea should work for / = 1,2, but there are difficulties adapting
the argument to these cases individually. Instead, we combine the three cases
¢ = 0,1,2 by superimposing the three sets of lattice points. This is possible here
since Q%, = QL, = Q2,. We denote this subset as Qqp for the remainder of this
argument.

Let A’ be the 3-dimensional lattice in R?® generated by the vectors (1,0,0),
(0,1,0), (%, %, %) As a set, A’ is the union Ag U A1 U Ay, where

A=A+ (555)
is the translate of the standard integer lattice A by the vector (é, %, %) . Alterna-
tively, A’ is the lattice which intersects the unit cube [0, 1]% at its vertices and at
the interior points (%, %, %) , (%, %, %) . It is evident that A’ contains the standard
integer lattice as a sublattice.

Given an arbitrary lattice A in RY, we call a convex polytope & a A-lattice poly-
tope if & has vertices on A; and we call 2 a A-rational polytope if d2 is a A-lattice
polytope for some dilation by a positive integer d. Let fa(£,n) = # (nFZ NA)
be the number of lattice points in the dilated region. Ehrhart’s theorems translate
immediately to this setting because the entire picture can be pulled back to the
standard situation by a linear map which takes A isomorphically to the standard
lattice.

Returning to our situation of the nonstandard lattice A’ in R3, for £ € {0,1,2}
fixed, it follows from equation (6.7) with r = pgn + m that the contribution of the
component €%, to Tsy(3)(Xn) is given by # ((pgn + m)Q%, N A¢). Summing over
£, we compute that the contributions of the components U?:o ¢ty to Tsu(3)(Xn)
are given by fa/(Qab, pgn + m). Note that Qqup is a A’-rational lattice with d = pg,
$0 far(Qap, k) is a quasi-polynomial of periodicity d = pg. Again, since the residue
class pgn + m modulo d = pq is constant, we conclude that fa/(Qab, pgn + m) is
actually polynomial in n, completing the proof of the theorem in this case.

Assume 2 holds and choose a,, = (p + ¢)m (mod 3) and ¢, = —m (mod 3) as
in Lemma 6.4. If ¢ = 0, then QY, is a rational polytope with d = pg and the
contribution of €5, to Tsy(3)(Xn) is given by fa(Q4,. pgn + m). Since fa(Q%,, k)
is a quasi-polynomial of periodicity d = pq, and since the residue class of pgn + m
modulo pq is constant, it follows that the contribution of 62, to Tsua)(En) is a
quadratic polynomial in n.

If £ =1 or 2, then Qf;b is a rational polytope with d = 3pgq, but that is not
sufficient for our needs. Notice from equations (6.3) and (6.4) that the dilation
quf;b has vertices on the translate

Ac=A+(5.53)
of the standard integer lattice A, where € € {0, 1,2} is given by ¢ = —m/{ (mod 3).
Further,the contribution of €%, to Tsy(3)(Xn) is given by # ((pgn + m)Q%, N Ac)
(because € = —ml = ¢, £ (mod 3)). Although A, is not really a lattice, we can

translate the entire situation by subtracting (%, 5 %) from A. and subtracting

€. e _c ¢ : . S0 .
( 3ra’ 370 3pq) from Q. The resulting region, denoted here Q,,, is a rational
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polytope with d = pq. Moreover,

Fa(Qbp pan +m) = # ((pqn +m)Qgp N A) = # ((pgn + m)Qqp N Ac) ,
the contribution of €, to Tsu(3)(Xn). Now since fA(@f;b, k) is a quasi-polynomial
of periodicity d = pq, we obtain the desired conclusion and this completes the proof.
O

6.4. Concluding remarks. Table 1 gives some computations of the integer valued
Casson invariant Tgy;(3) for Brieskorn spheres ¥(p, ¢,7). This extends the compu-
tations given in [6], where it was assumed that p = 2.

| z | Tsu(s) (X) |
3(2,3,6n+1) 3n?+n
(2,5, 10n £ 1) 3302 £ 9n
$(2,5,10n£3) | 3302 +£19n +2
>(2,7, 14n+ 1) 138n° £ 261
$(2,7,14n+3) | 13802 £ 62n + 4
$(2,7,14n+5) | 13802 £ 102n + 16
$(2,9,18n = 1) 39012 + 53n
$(2,9,18n+5) | 39002 £ 2100 + 24
$(2,9,18n+7) | 390n% £ 208n + 52
¥(3,4,12n + 1) 105n° £ 21n
$(3,4,12n+5) | 1050 £ 87n + 16
$(3,5, 15n = 1) 27612 + 40n
(3,5, 15n+2) | 276n% £ 7dn + 2
(3,5,15n+4) | 27602 £ 148n + 16
$(3,5,15n+7) | 276n% £ 254n + 56

TABLE 1. CALCULATIONS OF THE INTEGER VALUED SU(3) Cas-
SON INVARIANT FOR SOME BRIESKORN SPHERES X(p, q, 7).

Let K, 4 be the (p, ¢) torus knot and set X,, = 1/n Dehn surgery on K, ,. Then
Xn = £X(p,q,7) for r = |pgn —1|. Table 2 gives the value of gy () (X, ) for various
p,q. These computations were performed using MAPLE.

For surgeries on torus knots, Theorem 6.3 asserts that

TSU(3) (Xy) = A(Kp-,q)”2 — B(Kp,q)n,

where A(K, 4) and B(K, ) depend only on K, ,. There is a pattern for the leading
coefficient A(K, 4) present in Table 2. Tf Ag(2) = 35,54 c2:(K)z*" denotes the
Conway polynomial of K, we conjecture generally that 7y (3)(Xy) has quadratic

growth in n with leading coefficient

(6.9) A(K) = 6c4(K) + 3c2(K)?.
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This is what one would expect from Frohman’s work [14] on SU(n) Casson knot
invariants in the case of n = 3, at least for fibered knots (cf. [15, 7]). It gives the

formula ) ) - ) )
_ (= 1(¢* = 1)(2p°¢* — 3p* — 3¢° - 3)
A(KP;Q) - 240 ’
which agrees with the data in Table 2.
p=2 Tsu(3) (Xn) p= Tsu(3)(Xn)
Ko 3 3n? —n K3 4 10502 — 21n
K275 33”2 —9n K375 276n2 —40n
Ks7 138n2% — 26n Ks 7 1128n2 — 124n
Koo 390n? — 58n Ksg 1953n2 — 179n
K2 11 885”2 —107n K3710 4851”2 —367n

K2 13 1743n2 —179n K3 11 7140”2 — 476n
Ko1s 3108n2 — 276n Ksi3 | 14028n2 — 812n
Ko 17 5148n2 — 404n Ksqs | 1891512 — 993n
K> 19 8055n2 — 565m K3 16 32385n% — 1517n
K2 21 12 045”2 — 765n K3 17 41 328”2 — 1788n
Koo | 17358n% —1006n || Ksi9 | 6462002 — 2544n
K2 25 24 258n2 — 1294n K3 20 79 401”2 —2923n
K> 97 33033n2 — 1631n K320 | 116403n2 — 3951n

p= Tsu(3)(Xn) p=4 Tsu(3)(Xn)
Kis 1011n2 — 111n Kiz 4110n — 320n
Kio | 1149002 —712n | K1 | 2593502 —1297n
K413 50925n% — 2171n Ky 15 90 636n% — 3320n
K4 17 149 940”2 — 4888n K4 19 234 405n2 — 6789
Ky | 35029502 —9231n || Kysa3 | 504570n2 — 12072n
K25 | 704886n% — 15600n || K427 | 95959512 — 19569n

TABLE 2. CALCULATIONS OF THE INTEGER VALUED SU(3) Cas-
SON INVARIANT FOR 3-MANIFOLDS X, OBTAINED BY 1/n DEHN
SURGERY ON TORUS KNOTS K, 4

The coefficient B(K) of the linear term is not as well-behaved. For example,
interpolating the data from Table 2, we get the formulas

5(¢° —4qg+3) ifg=1 (mod4),

B(Ks,q) = {12(q 3—4q-3) ifg=3 (mod4),

(20¢% + 3¢% — 48¢ +25) ifq=1 ( )

B(Ksy) = (20¢® — 3¢> —48¢+2) ifg=2 (mod 6),

’ (204> + 3q —48¢—2) ifg=4 ( )

(2043 — —48¢—25) ifg=5 ( )
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and

=(164% + q —42¢+25) ifg=1 (mod 8),
+(16¢® — ¢> —42¢+39) ifg=3 (mod 8),
B(K4,q) =31 _ e
6(16q + q —42g—39) ifg=5 (mod 8),
+(16¢® — ¢> — 429 — 25) if¢=7 (mod 8).

The increasing complexity of these formulas makes it difficult to guess a general
formula for B(K) in terms of classical invariants of the knot. Nevertheless, it pro-
vides a negative answer to the question of whether 75y;(3) is a finite type invariant.
For suppose 75y(3) were a finite type invariant. Then, as explained to us by Stavros
Garoufalidis, B(XKp, ) would necessarily be a polynomial in p and g. Since B(K, q)
is obviously not a polynomial in p and g, it follows that 75y(3) is not a finite type
invariant of any order.

Notice that 7gy(3)(X) is even in all known computations. Further, a simple
argument using the involution on .#sy(3) induced by complex conjugation proves
evenness of Tgy(3)(X) under the hypothesis that H} (X su(3)) = 0 for every non-
trivial representation a: 7 X — SU(3). We conjecture that 7gy(3)(X) is even for
all homology 3-spheres.
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