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Abstract. We develop techniques for computing the integer valued SU(3)
Casson invariant defined in [6]. Our method involves resolving the singularities

in the flat moduli space using a twisting perturbation and analyzing its effect
on the topology of the perturbed flat moduli space. These techniques, together
with Bott-Morse theory and the splitting principle for spectral flow, are applied
to calculate τSU(3)(Σ) for all Brieskorn homology spheres.

1. Introduction

In this article we compute the integer valued SU(3) Casson invariant τSU(3)

for Brieskorn spheres Σ(p, q, r). Computations of τSU(3)(Σ(2, q, r)) appear in [6],
and we extend those computations to all Brieskorn spheres. Our calculations are
consistent with the conjecture that some kind of surgery formula for τSU(3) may
exist, but they also show that τSU(3) is not a finite type invariant.

If Σ is a 3-dimensional homology sphere whose flat SU(3) moduli space is non-
degenerate and 0-dimensional, then the integer valued SU(3) Casson invariant
τSU(3)(Σ) is simply a signed count of the points in the irreducible stratum of the flat
moduli space. On the other hand, if the moduli space has positive dimension and
is nondegenerate in the sense of Bott and Morse (or more generally if its lift to the
based moduli space is nondegenerate), then one can apply standard (equivariant)
Morse theoretic techniques to compute the invariant τSU(3)(Σ) (see [4]).

The family of computations given here represents the first successful attempt to
compute the invariant τSU(3)(Σ) for manifolds Σ with truly singular moduli spaces.
Even in the connected sum theorem of [4] where one encounters components of
mixed type in the moduli space (i.e. components containing both irreducible and
reducible gauge orbits), when lifted to the based moduli space, these components
become nondegenerate and one can apply equivariant Bott-Morse theory to deter-
mine the invariant τSU(3). In contrast, the flat SU(3) moduli space of the Brieskorn
spheres considered in this paper are singular even when lifted to the based moduli
space. Thus the perturbation techniques presented here go beyond the standard
theory and in fact provide a new approach to transversality issues that may well
apply more generally.

The new approach involves a combination of manifold decomposition and Mayer-
Vietoris techniques and traditional holonomy perturbations. Simply put, our idea
is to construct a special type of perturbation (called the twisting perturbation) and
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analyze its effect on the moduli space. We prove that under such perturbations,
the moduli space becomes nondegenerate and we express the invariant τSU(3) in
terms of the topology of the perturbed moduli space and the spectral flow of the
odd signature operator.

The remainder of this paper is divided into five sections. Section 2 presents
a detailed description of the SU(3) representation varieties of Brieskorn spheres.
Corresponding results for knot complements are given in Section 3. Section 4 in-
troduces the twisting perturbations and describes their effect on the moduli spaces.
Section 5 presents spectral flow computations based on a splitting argument, and
Section 6 presents a lattice point count which provides numerical calculations of
τSU(3) for families of Brieskorn spheres Σ(p, q, r), including all homology 3-spheres
obtained by Dehn surgery on a (p, q) torus knot. The rest of the introduction is
devoted to outlining the main argument.

Recall first that if π is a (finitely presented) group, a representation α : π →
SU(3) is irreducible if no nontrivial linear subspace of C3 is invariant under α(g)
for all g ∈ π. This is equivalent to the condition that the stabilizer of α with respect
to the conjugation action equals the center of SU(3). Otherwise, α is reducible and
its image can be conjugated to lie in the subgroup S(U(2) × U(1)).

Suppose that Σ is a homology 3-sphere and let R(Σ, SU(3)) be the set of conju-
gacy classes of representations α : π1(Σ) → SU(3). Then R(Σ, SU(3)) is a real al-
gebraic variety homeomorphic to the moduli space M (Σ) of flat SU(3) connections
on Σ. We denote by R∗(Σ, SU(3)) the subspace of conjugacy classes of irreducible
representations and by M ∗(Σ) the subspace of irreducible flat connections.

The integer valued SU(3) Casson invariant τSU(3)(Σ) is defined in [6] and gives
an algebraic count of the conjugacy classes of irreducible representations of π1(Σ),
with a correction term involving the reducible representations. More precisely, the
flatness equations are perturbed so that the flat moduli space becomes nondegen-
erate, and gauge orbits of irreducible perturbed flat connections are counted with
sign given by the spectral flow of the su(3) odd signature operator. The resulting
integer depends on the perturbation used, and to compensate for this we add a
correction term defined in terms of the reducible stratum.

For Σ = Σ(p, q, r) the Brieskorn sphere, the analysis of [2] shows thatR(Σ, SU(3))
is a union of path components, each of which is homeomorphic to either an isolated
point or a 2-sphere. More precisely, we will show that each path component is one
of the following four types:

Type Ia: Isolated conjugacy classes of irreducible representations.
Type IIa: Smooth 2-spheres, each parameterizing a family of conjugacy classes

of irreducible representations.
Type Ib: Isolated conjugacy classes of nontrivial reducible representations.
Type IIb: Pointed 2-spheres, each parameterizing a family of conjugacy classes

of representations, exactly one of which is reducible.

The main result in this paper is the following theorem (Theorem 6.2), which
describes how each of the component types contributes to the SU(3) Casson invari-
ant. This, together with enumerations of the components of each type, enable us
to calculate the invariant for a variety of Brieskorn spheres Σ(p, q, r). The results
of these computations can be found in Table 1 and 2.

Theorem. Type Ia, IIa, Ib, and IIb components each contribute +1, +2, 0, and
+2, respectively, to the integer valued SU(3) Casson invariant τSU(3)(Σ(p, q, r)).
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We conclude the introduction by outlining the proof of this theorem. Compo-
nents of Type Ia are regular and remain so after small perturbations. The sign
attached to each such point is positive by the results of [2], and so computing the
contribution of the Type Ia points to τSU(3)(Σ) reduces to an enumeration problem.
This is carried out in Section 6.

Components of Type IIa are nondegenerate critical submanifolds of the Chern-
Simons function. Bott-Morse theory, together with a spectral flow computation,
implies that each such component contributes χ(S2) = 2 to τSU(3)(Σ). Thus the
computation of the contribution of the Type IIa components to τSU(3)(Σ) is also
reduced to an enumeration problem which is solved in Section 6.

Components of Type Ib do not contribute to τSU(3)(Σ) (although they do enter
into the calculations of the invariant λSU(3) given in [5]).

The only remaining issue is to calculate the contribution of components of Type
IIb. This requires some sophisticated techniques that go beyond those of [6], where
one can find computations of τSU(3) for Brieskorn spheres of the form Σ(2, q, r)
(whose representation varieties do not contain any Type IIb components). The
problem is that Type IIb components are singular in a strong sense: even their lifts
to the based moduli space are singular. We introduce a perturbation which resolves
these singularities and then carefully analyze its effect on the topology of the moduli
space. We prove that after applying the perturbation, each pointed 2-sphere resolves
into two pieces, one isolated gauge orbit of reducible connections and the other a
smooth, nondegenerate 2-sphere of gauge orbits of irreducible connections (similar
to a Type IIa component).

In defining the perturbation, we regard one of the singular fibers of the Seifert
fibration Σ → S2 as a knot in Σ and perturb the flatness equations in a small
neighborhood of this knot. Consequently, perturbed flat connections are seen to
be flat on the knot complement, and we study the perturbed flat moduli space
in terms of the SU(3) representation space of this knot complement. Basically,
the perturbed flat moduli space on Σ is obtained from the flat moduli space of
the knot complement by replacing the condition “meridian is sent to the identity”
by a condition of the form “the meridian and longitude are related by a certain
equation.”

Having resolved the singularities in the Type IIb components, we then determine
the contribution of the reducible, perturbed flat connection to the correction term.
This is given by the spectral flow (with C2 coefficients) of the odd signature opera-
tor. To calculate this we prove a splitting theorem for spectral flow determined by
the decomposition of Σ into a knot complement and a solid torus.

Notation. If π is a discrete group and α : π → G is a representation, we denote
the stabilizer subgroup of α by

Γα = {g ∈ G | gαg−1 = α}.

If G is a Lie group, the orbit of α under conjugation is smooth and diffeomorphic
to the homogeneous manifold G/Γα. We denote the representation variety

R(π,G) = Hom(π,G)/conjugation.

Given a representation α : π → G, we denote its conjugacy class by [α]. Given a
manifold X , we denote by R(X,G) the representation variety of the fundamental
group π1(X).
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Figure 1. A surgery description of the Brieskorn manifold
Σ(p, q, r) indicating the Wirtinger generators x, y, z, and h for
π1(Σ).

2. SU(3) representation spaces of Brieskorn spheres

In this section, we identify the components of the SU(3) representation vari-
eties of Brieskorn spheres Σ, both as topological spaces and as varieties with their
Zariski tangent spaces. The local structure of the representation varieties (e.g. the
identification of the smooth and singular loci) is reflected in the computations of
twisted cohomology groups. The global structure of the representation variety is
presented in Subsection 2.3, which gives a complete classification of the different
path components of R(Σ, SU(3)).

2.1. Brieskorn spheres. Given integers p, q, r, set

Σ(p, q, r) = {(x, y, z) ∈ C
3 | xp + yq + zr = 0} ∩ S5.

If p, q, r are pairwise relatively prime then Σ(p, q, r) is a homology 3-sphere and has
surgery description in Figure 1 (see [22] for details). Here, a, b, c satisfy

(2.1) aqr + bpr + cpq = 1.

The resulting manifold Σ(p, q, r) is independent of a, b, c, up to orientation pre-
serving homeomorphism. Without loss of generality we assume that p and q are
odd.

Proposition 2.1. The numbers a and b can be chosen to be equal.

Proof. Since p, q, and r are pairwise relatively prime, r(p+ q) and pq are relatively
prime. Thus there are integers a and c such that

ar(p+ q) + cpq = 1,

which is equivalent to the condition (2.1) with b = a. �

Fix integers a and c as above. Note that since p and q are both odd, c must also
be odd. A presentation for the fundamental group of Σ(p, q, r) is

π1

(
Σ(p, q, r)

)
= 〈x, y, z, h | xp = yq = ha, zr = hc,

xyz = 1, h is central 〉,
(2.2)

where x, y, z and h are the Wirtinger generators indicated in Figure 1.
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Whenever p, q, and r are clear from the context, we drop them from the notation
and denote the Brieskorn sphere by Σ. A regular neighborhood of the singular r-
fiber in Σ is a solid torus whose boundary torus T splits the Brieskorn sphere
Σ = Y ∪T Z, where Y = D2×S1 is the solid torus and Z = Σ−Y is its complement.
Alternatively, Z is the complement of an open tubular neighborhood of the core of
the

(
r
c

)
curve in Σ and depicted in Figure 1. With regard to the natural peripheral

structure thus obtained on Z, its fundamental group has presentation

(2.3) π1(Z) = 〈x, y, h | xp = yq = ha, h is central〉.

In terms of these generators, the meridian and longitude are represented by

(2.4) µ = (xy)rhc and λ = (xy)pqh−(p+q)a.

Then µ generates the abelianization of π1(Z), and one can check that in H1(Z),

(2.5) [x] = aq[µ], [y] = ap[µ], [h] = pq[µ], and [λ] = 0.

2.2. Cohomology calculations. In this subsection, we present computations of
Hi(Σ; su(3)α), where α : π1(Σ) → SU(3) is a representation and SU(3) acts on its
Lie algebra su(3) via the adjoint representation.

We begin with some general comments about representations and twisted coho-
mology groups. Suppose that G is a compact Lie group, acting on its Lie algebra g

via the adjoint action, and π is a finitely presented group. Then the Zariski tangent
space to (the algebraic variety) R(π,G) at the conjugacy class of a representation
α : π → G is isomorphic to H1(π; gα). The Kuranishi map embeds a neighbor-
hood of [α] in R(π,G) into its Zariski tangent space modulo Γα. In particular if
H1(π; gα) = 0, then [α] is an isolated point in R(π,G) (although the converse is
sometimes false). We say that [α] ∈ R(π,G) is a smooth point if a neighborhood
of [α] in R(π,G) is homeomorphic to H1(π, gα); otherwise [α] is called a singular
point.

We are mostly interested in the case G = SU(3), but we must also consider
possible reductions to the subgroups SU(2) and S(U(2)×U(1)). Note that because
Σ is a homology sphere, any reducible representation α : π1(Σ) → SU(3) has image
in in SU(2) × {1} up to conjugation. The decomposition su(3) = su(2) ⊕ C2 ⊕ R

of the Lie algebra gives that

Hi(Σ; su(3)α) = Hi(Σ; su(2)α) ⊕Hi(Σ; C2
α) ⊕Hi(Σ; R),

where the first cohomology group has coefficients su(2) twisted via the adjoint ac-
tion (viewing α as an SU(2) representation), the second has coefficients C2 twisted
by the standard representation, and the last has untwisted real coefficients.

The proof of the following proposition is routine, if not short. For the sake
of brevity we omit it and similar calculations below, confident that the interested
reader can provide a proof. Similar calculations can be found in our earlier article
[5].

Proposition 2.2. Suppose α : π1(Σ) → SU(3) is a nontrivial representation. Then
α has nonabelian image. Moreover:

(i) If α is irreducible, then α(h) = e2πik/3I for an integer k and

H1(Σ; su(3)α) =





R
2 if each of α(x), α(y), α(z) has three

distinct eigenvalues,

0 otherwise.
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(ii) If α is reducible and has been conjugated into SU(2) × {1}, then

α(h) =




±1 0 0
0 ±1 0
0 0 1


 .

With respect to the splitting su(3) = su(2)⊕C2⊕R, we have that H0(Σ; su(2)α) =
0, H0(Σ; C2

α) = 0, H1(Σ; su(2)α) = 0 and

H1(Σ; C2
α) =

{
C2 if α(h) = I,

0 otherwise.

2.3. The representation variety R(Σ,SU(3)). In this subsection, we classify
the different path components of the representation variety R(Σ, SU(3)). To start
off, we show that every component contains at most one conjugacy class of reducible
representations.

Proposition 2.3. If αt, t ∈ [0, 1], is a continuous path of SU(3) representations of
π1(Σ) with α0 and α1 both reducible, then α0 and α1 are conjugate. Consequently,
every path component of R(Σ, SU(3)) contains at most one conjugacy class of re-
ducible representations.

Proof. For the trivial representation θ, H1(Σ; su(3)θ) = H1(Σ; R8) = 0, so [θ] is iso-
lated. Thus we assume that αt is nontrivial for all t. If α0(h) 6= I, then Proposition
2.2 implies that [α0] is isolated. So we can assume that α0(h) = I. The continu-
ous function t 7→ tr(αt(h)) takes values in the discrete set {3,−1, 3e2πi/3, 3e4πi/3}
by Proposition 2.2. It follows that αt(h) = I for all t. The relations (2.2) then
imply that αt(x), αt(y), and αt(z) are conjugate to fixed p-th, q-th, and r-th
roots of unity in SU(3) for all t. (To see this, use continuity and the fact that
the trace map tr : SU(3) → C distinguishes conjugacy classes and sends the set
{A ∈ SU(3) | Ak = I} of all k-th roots of unity into a discrete set.)

Since α0 and α1 are both reducible and SU(3) is path connected, we may assume
that the path αt is conjugated so that α0 and α1 take values in SU(2)×{1}. Thus
α0(x) and α1(x) each have one eigenvalue equal to 1. But since α0(x) and α1(x)
are conjugate (in SU(3)), the other two eigenvalues of α0(x) and α1(x) coincide.
The same argument applies to y and z.

It is well-known that the conjugacy class [β] of a representation β : π1(Σ) →
SU(2) of a Brieskorn sphere is completely determined by the eigenvalues of β(x), β(y),
and β(z) (see [12]). Hence α0 and α1 are conjugate as SU(2) and hence also as
SU(3) representations. �

Proposition 2.4. Every path component of R(Σ, SU(3)) is either an isolated point,
a smooth 2-sphere consisting of conjugacy classes of irreducible representations,
or a pointed 2-sphere, which is smooth except for exactly one singular point, the
conjugacy class of a reducible representation.

Proof. It is proved in [2, 16] that each path component of R(Σ, SU(3)) is either
an isolated point or a topological 2-sphere. In the case of an isolated point, there
is nothing to prove, so assume the path component is a 2-sphere. Any conjugacy
class [α] of irreducible representations lying on such a component must have nonzero
Zariski tangent space, and Proposition 2.2 then implies H1(Σ; su(3)α) ∼= R2 and
we conclude that [α] is indeed a smooth point of R(Σ, SU(3)). On the other hand,
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Proposition 2.3 shows that every path component of R(Σ, SU(3)) contains at most
one conjugacy class of reducible representations. For a pointed 2-sphere component,
the conjugacy class [β] of reducible representations is never a smooth point, since
Proposition 2.2 shows its Zariski tangent space is H1(Σ; su(3)β) ∼= R4. (Note that
the hypothesis on β implies thatH1(Σ; su(3)β) 6= 0, and then Proposition 2.2 shows
that β(h) = I.) �

The next proposition shows that the pointed 2-spheres are in one-to-one corre-
spondence with the nontrivial reducible representations sending h to the identity.

Proposition 2.5. If α : π1(Σ) → SU(3) is a nontrivial reducible representation,
then the following are equivalent:

(i) α(h) = I,
(ii) H1(Σ; C2

α) 6= 0,
(iii) There exists a family of irreducible SU(3) representations limiting to α.

The collection of pointed 2-spheres in R(Σ, SU(3)) are in one-to-one correspondence
with conjugacy classes of nontrivial reducible representations α : π1(Σ) → SU(3)
with α(h) = I. Further, tr α(z) is constant along a pointed 2-sphere.

Proof. The statement (i) ⇔ (ii) follows from Proposition 2.2, (ii). The implication
(iii) ⇒ (ii) follows because the Kuranishi map locally embeds R(Σ, SU(3)) near [α]
into its Zariski tangent space H1(Σ; su(3)α) modulo Γα, and the Zariski tangent
space equals H1(Σ; C2

α) by Proposition 2.2.
For the implication (i) ⇒ (iii), notice that a representation α : π1(Σ) → SU(3)

satisfying α(h) = I uniquely determines an SU(3) representation of the (free) group
F = 〈x, y, z | xyz = 1〉. Fix three conjugacy classes a, b, c in SU(3) and consider the
space Mabc consisting of conjugacy classes of representations α : F → SU(3) with
α(x) ∈ a, α(y) ∈ b, and α(z) ∈ c. In [16], Hayashi gives necessary and sufficient
conditions on a, b, c for Mabc to be nonempty. The resulting inequalities (18 in all)
determine a convex, 6-dimensional polytope P parameterizing all triples (a, b, c)
with Mabc 6= ∅. Hayashi observes further that Mabc is a 2-sphere whenever (a, b, c)
lies in the interior of P and is a point whenever (a, b, c) lies on the boundary of P .
For more details, turn to Subsection 6.2 and read Theorem 6.2.

The key to proving that (i) ⇒ (iii) is to show that the triple (a, b, c) determined
by α(x), α(y), α(z) lies in the interior of P . From this, it follows that Mabc, which
is connected and contains [α], is a 2-sphere. Assume to the contrary that (a, b, c)
is a boundary point of P . There are two possibilities, because there are two kinds
of boundary points. The first kind occurs when one of the inequalities in equa-
tion (6.2) is an equality. This cannot happen for (a, b, c) because α(x), α(y), α(z)
are, respectively, p-th, q-th, and r-th roots of unity in SU(3) and p, q, r are pair-
wise relatively prime. The other kind of boundary point of P occurs when one of
α(x), α(y), α(z) has a repeated eigenvalue. If α(x) were to have a repeated eigen-
value, then since α has image in SU(2) × {1} (up to conjugation), it follows that
1 is an eigenvalue of α(x), and so its other eigenvalues are either both +1 or both
−1. In either case, it follows easily that α(x) commutes with α(y) and α(z), and
the relation xyz = 1 then shows that α has abelian image. Since Σ is a homology
sphere, this implies α is trivial and gives the desired contradiction. �

The computations of Propositions 2.2–2.5 give a decomposition of R(Σ, SU(3))
into the following four types.
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(i) The Type Ia components consist of one isolated conjugacy class [α] of ir-
reducible representations with exactly one of α(x), α(y), α(z) having a re-
peated eigenvalue. These representations send h to a central element and
have H1(Σ; su(3)α) = 0.

(ii) The Type IIa components are smooth 2-spheres consisting of conjugacy
classes of irreducible representations α with the property that α(x), α(y), α(z)
all have three distinct eigenvalues. These representations send h to a central
element and have H1(Σ; su(3)α) ∼= R2.

(iii) The Type Ib components consist of one isolated conjugacy class [β] of non-
trivial reducible representations. These representations sent h to an element
with trace −1 and have H1(Σ; C2

β) = 0.

(iv) The Type IIb components are topological 2-spheres containing exactly
one conjugacy class [β] of reducible representations with H1(Σ; su(3)β) =
H1(Σ; C2

β) ∼= R4. Every other conjugacy class [α] in a Type IIb component

is a smooth point with α irreducible and satisfying H1(Σ; su(3)α) ∼= R2. In
particular, the reducible orbit is the only singular point. Every conjugacy
class of representations in a Type IIb component sends h to the identity
and sends x, y and z to elements with three distinct eigenvalues.

The way in which a component type contributes to the integer valued SU(3)
Casson invariant is explained in Theorem 6.1.

Proposition 2.6. The representation variety R(Σ(p, q, r), SU(3)) contains a Type
IIb component if (and only if) none of p, q, r equal 2.

Proof. Suppose first that r = 2 and α : π1

(
Σ(p, q, 2)

)
→ SU(2) is a representation

with α(h) = I. Then α(z)2 = I, hence α(z) = ±I is central. Thus α(y) = ±α(x)−1,
which implies α is abelian and hence trivial. Thus, up to reordering, if one of p, q, r
equals 2, then R(Σ(p, q, r), SU(3)) does not contain a Type IIb component.

On the other hand, if none of p, q, r equals 2, the results of [12] prove the existence
of nontrivial representations α : π1

(
Σ(p, q, r)

)
→ SU(2) with α(h) = I. Apply

Proposition 2.5 to complete the proof. �

3. SU(3) representation spaces of knot complements

We next carry out an analysis of the SU(3) representation variety R(Z, SU(3))
of the knot complement Z obtained by removing a neighborhood of one of the
singular fibers of Σ(p, q, r).

We explain our purpose first. The inclusion Z →֒ Σ induces a surjective map
π1(Z) → π1(Σ). In terms of the presentation (2.3), this map is given by imposing
the relation µ = 1. Consequently the representation variety R(Σ, SU(3)) can be
viewed as the subvariety of R(Z, SU(3)) cut out by the equation determined by
the condition that “the meridian is sent to the identity.” By perturbing, we will
replace this equation by a condition of the form “the meridian and longitude are
related by the equation 4.5.” Hence, the perturbed flat moduli space can also be
identified as a subset of R(Z, SU(3)). The results on the local and global structure
of the representation variety R(Z, SU(3)) that are developed in this section will
therefore be essential to our understanding of the behavior of the moduli space
under perturbation.
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3.1. Cohomology calculations. Let Z be the complement of the singular r-fiber
in Σ(p, q, r). In contrast to the homology sphere case, the abelianization of π1(Z)
is nontrivial. Consequently, π1(Z) admits nontrivial abelian representations, and
reducible representations of π1(Z) do not always reduce to SU(2) × {1}. Given a
representation α : π1(Z) → SU(3), there are three possibilities:

(i) α is irreducible,
(ii) α is nonabelian and reducible, or
(iii) α is abelian.

In case (ii), the representation α is conjugate to one with image in the subgroup
S(U(2) × U(1)) ⊂ SU(3). The adjoint action of this subgroup decomposes the lie
algebra as su(3) = s(u(2)×u(1))⊕C2, and the subgroup acts on the first factor via
its adjoint representation and on the second factor with weight three. Note that
although S(U(2)×U(1)) is canonically isomorphic to U(2), the action on C2 is not
the standard one.

More precisely, if we use the map Φ: R2 → SU(3),

(3.1) Φ(u, v) =



ei(u+v) 0 0

0 ei(−u+v) 0
0 0 e−2iv




to parameterize diagonal SU(3) representations, one can easily compute the action
of Φ(u, v) on C2 to be

Φ(u, v)

[
z1
z2

]
= e3iv

[
eiuz1
e−iuz2

]
.

This shows that the centralizer of S(U(2)×U(1)), which is parameterized by Φ(0, v),
acts with weight three on C2.

The first result is the analogue of Proposition 2.2 for the knot complement Z.
Once again we omit the routine proof.

Proposition 3.1. Suppose α : π1(Z) → SU(3) is a nonabelian repre-sentation.

(i) If α is irreducible, then α(h) = e2πik/3 · I, H0(Z; su(3)α) = 0, and

H1(Z; su(3)α) =

{
R4 if α(x) and α(y) have three distinct eigenvalues,

R2 otherwise.

(ii) If α is reducible and has been conjugated into S(U(2) × U(1)), then

α(h) =




eiv 0 0
0 eiv 0
0 0 e−2iv



 .

With respect to the splitting su(3) = s(u(2) × u(1)) ⊕ C2, we have that
H0(Z; s(u(2) × u(1))α) = R and H0(Z; C2

α) = 0, and also H1(Z; s(u(2) ×
u(1))α) = R

2 and

H1(Z; C2
α) =

{
C2 if α(h) is central, i.e. if e3iv = 1,

0 otherwise.

We will also require some calculations for the relative cohomology of the pair
(Z, ∂Z). The following proposition follows from Proposition 3.1 using Poincaré
duality and the long exact cohomology sequence of the pair (Z, ∂Z).
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Proposition 3.2. Suppose α : π1(Z) → SU(3) is a nonabelian repre-sentation.

(i) If α is irreducible, then

H1(Z, ∂Z; su(3)α) =

{
R4 if α(x) and α(y) have 3 distinct eigenvalues,

R2 otherwise.

(ii) If α is reducible and has been conjugated into S(U(2)×U(1)), then with re-
spect to the splitting su(3) = s(u(2)×u(1))⊕C2, we have that H1(Z, ∂Z; s(u(2)×
u(1))α) = R and

H1(Z, ∂Z; C2
α) =

{
C2 if α(h) is central,

0 otherwise.

The map H1(Z, ∂Z; C2
α) → H1(Z; C2

α) induced by inclusion is an isomor-
phism.

We now turn our attention to the cohomology of the abelian representations of
π1(Z). We omit the proof; similar computations can be found in [20].

Lemma 3.3. Suppose α : π1(Z) → U(1) is a nontrivial representation. Then
H0(Z; Cα) = 0 and

H1(Z; Cα) =

{
C if α(µ)pq = 1, α(µ)ap 6= 1 and α(µ)aq 6= 1,

0 otherwise.

Now consider abelian representations α : π1(Z) → SU(3). By conjugation, we
can assume that α takes values in the maximal torus T ⊂ SU(3). Under the adjoint
action of T , the Lie algebra su(3) decomposes as

(3.2) su(3) = C
3 ⊕ R

2.

The C
3 corresponds to the off-diagonal entries and R

2 to the diagonal entries. Then
T acts trivially on R2 and by rotations on each of the three complex factors. More
precisely, the action on C3 is given by




ω1 0 0
0 ω2 0
0 0 ω̄1ω̄2



 ·




z1
z2
z3



 =




ω1ω̄2 z1
ω2

1ω2 z2
ω1ω

2
2 z3



 .

An abelian representation α : π1(Z) → SU(3) is completely determined by α(µ),
since H1(Z; Z) is generated by [µ]. Suppose in addition that α is the limit of a
sequence of SU(2) × {1} representations. Then we can arrange that

(3.3) α(µ) =



ω 0 0
0 ω̄ 0
0 0 1


 .

In this case, there is a distinguished C2 subbundle of the adjoint bundle Z × su(3)
on which α(µ) acts by (z1, z2) 7→ (ωz1, ω̄z2) (namely the last two coordinates in
C3). Suppose further that α is nontrivial. Then H0(Z; C2

ω) = 0. Applying Lemma
3.3 to C2

α = Cω ⊕ Cω̄, and noting that H∗(X ; Cω) ∼= H∗(X ; Cω̄), we see that

H1(Z; C2
α) =

{
C2 if ωpq = 1 and ωap 6= 1 6= ωaq,

0 otherwise.

The next proposition extends these computations to abelian representations in a
neighborhood of α.
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Proposition 3.4. Let α : π1(Z) → SU(3) be a fixed nontrivial, abelian representa-
tion with α(µ) given by the diagonal matrix in equation (3.3). Suppose further that
ωpq = 1 and ωap 6= 1 6= ωaq. (Thus H1(Z; C2

α) = C2.) Consider abelian representa-
tions β : π1(Z) → SU(3) near to but distinct from α. Conjugating, we can arrange
that

β(µ) =



ω1 0 0
0 ω2 0
0 0 ω̄1ω̄2




with ω1 close to ω and ω2 close to ω̄ (so ω1ω2 is close to 1). Then, for β close
enough to α, we have H0(Z; C2

β) = 0 and

H1(Z; C2
β) = H1(Z, ∂Z; C2

β) =

{
C if (ω2

1ω2)
pq = 1 or if (ω1ω

2
2)

pq = 1,

0 otherwise.

Proof. That H0(Z; C2
β) = 0 follows from upper semicontinuity of dimH0 on the

representation variety. The computation of H1(Z; C2
β) follows from Lemma 3.3,

keeping in mind that our hypotheses exclude the possibility β = α. All that remains
is to prove the claim about relative cohomology. Set T = ∂Z. If γ : π1(T ) → SU(2)
is any nontrivial representation, then H∗(T ; C2

γ) = 0 (cf. equation (3.4) of [5]).

Now using the long exact sequence in cohomology, it follows that H1(Z; C2
β) =

H1(Z, ∂Z; Cβ) for β in a small enough neighborhood of α. �

3.2. The representation variety R(Z,SU(3)). Consider the representation va-
riety R(Z, SU(3)). It is the union of three different strata:

(i) R∗(Z, SU(3)), the stratum of irreducible representations.
(ii) Rred(Z, SU(3)), the stratum of reducible, nonabelian representations.
(iii) Rab(Z, SU(3)), the stratum of abelian representations.

We will describe each of these strata presently. For R∗(Z, SU(3)), this involves
certain double coset spaces, and for Rred(Z, SU(3)), this builds on the results in [20].
Note that, given any finitely presented group π, two nonabelian representations
α0, α1 : π → S(U(2)×U(1)) are conjugate in SU(3) if and only if they are conjugate
by a matrix in SU(2)×{1}. In particular, the natural map R∗(Z, S(U(2)×U(1))) →
R(Z, SU(3)) is injective and has image in Rred(Z, SU(3)).

We begin with the description of Rab(Z, SU(3)) because it is the simplest. Since
the homology class of the meridian µ generates H1(Z; Z), a conjugacy class [α] of
abelian representations is completely determined by the conjugacy class of α(µ).
Thus, Rab(Z, SU(3)) is parameterized by the quotient SU(3)/conj, which is just
the quotient T/S3 of the maximal torus by the Weyl group. This is parameterized
by the standard 2-simplex ∆, see equation (6.1) in Subsection 6.2.

For the stratum Rred(Z, SU(3)), note that every reducible representation can be
conjugated to have image in S(U(2)×U(1)). We will see that every S(U(2)×U(1))
representation of π1(Z) is obtained by twisting an SU(2) representation, and we will
combine this observation with an explicit description of the SU(2) representation
varieties of π1(Z) (essentially from Klassen’s work [20]) to prove thatRred(Z, SU(3))
is a union of (p − 1)(q − 1)/4 open 2-dimensional cylinders under the assumption
that p, q are both odd (see Proposition 3.8).

Let α : π1(Z) → SU(3) be a nontrivial reducible representation sending (xy)rhc

to the identity. Thus α extends over the solid torus and gives a reducible represen-
tation π1(Σ) → SU(3). In particular, α reduces to SU(2)× {1} and is nonabelian.
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Proposition 3.1 states that H1(Z; s(u(2) × u(1))α) = R2, hence the reducible
stratum Rred(Z, SU(3)) has 2-dimensional Zariski tangent space at [α]. In this
subsection, we construct an explicit 2-parameter family of reducible representations
αs,t : π1(Z) → SU(3) near α, showing that all the Zariski tangent vectors are
integrable. From this, we will conclude that the reducible stratum Rred(Z, SU(3))
is smooth and 2-dimensional near [α].

The 2-parameter family will be obtained by twisting SU(2) × {1} representa-
tions of π1(Z) to representations with image in S(U(2) × U(1)). To get started,
we describe the SU(2) representation variety of π1(Z). The knot complement Z
is sometimes, but not always, the complement of a torus knot in S3. In [20], one
will find a complete description of the SU(2) representation varieties of torus knot
complements, and the techniques that Klassen developed work equally well to de-
scribe R∗(Z, SU(2)). In the following result, which can be proved using methods
from [20], SU(2) is viewed as the unit quaternions and typical elements are written
as a+ ib+ jc+ kd for a, b, c, d ∈ R such that a2 + b2 + c2 + d2 = 1.

Proposition 3.5. R∗(Z, SU(2)) consists of (p−1)(q−1)/2 open arcs of irreducible
representations. These arcs are given as follows. For each k ∈ {1, · · · , p − 1},
ℓ ∈ {1, · · · , q − 1}, ε ∈ {0, 1} satisfying k ≡ ℓ ≡ aε (mod 2), the assignment to
s ∈ [0, 1] :

βs(x) = cos(πk/p) + i sin(πk/p),

βs(y) = cos(πℓ/q) + sin(πℓ/q)(i cos(πs) + j sin(πs))

βs(h) = (−1)ε

defines a path of SU(2) representations which are irreducible for all s ∈ (0, 1).
Moreover, for s ∈ (0, 1),

H1(Z; C2
βs

) =

{
C

2 if ε = 0, i.e. if βs(h) = 1,

0 if ε = 1, i.e. if βs(h) = −1.

The two limit points of each open arc, β0 and β1, are abelian representations

sending µ to (−1)keπi( r(kq+ℓp)
pq ) and (−1)keπi( r(kq−ℓp)

pq ).

(The cohomology calculation in Proposition 3.5 follows from Proposition 3.1.)
To summarize, the subspace of R(Z, SU(3)) consisting of conjugacy classes of

nonabelian SU(2)×{1} representations of π1(Z) is a union of (p−1)(q−1)/2 open
arcs with ends that limit to points in the abelian stratum. The intersection of the
subspace R(Σ, SU(3)) ⊂ R(Z, SU(3)) with such an arc of reducible representations
consists of either reducible representations on pointed 2-spheres or isolated reducible
representations (i.e. Type Ib representations), depending on whether or not h is sent
to I.

In defining these 1-parameter families of representations, we arranged that x
was sent to a diagonal matrix. For future applications, it is convenient to arrange
(by conjugation) that xy is sent to a diagonal matrix, because then it follows from
equations (2.4) that the meridian and longitude will also be diagonal.

Fix a connected component of R∗(Z, SU(2)) determined by the triple (k, ℓ, ε)
with k ≡ ℓ ≡ aε (mod 2) as above, and denote by αs the corresponding arc of
SU(2) × {1} representations sending xy to a diagonal matrix. A short calculation
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shows that

αs(xy) =



eiu 0 0
0 e−iu 0
0 0 1




where u satisfies the equation

(3.4) cos(u) = cos(πk/p) cos(πℓ/q) − sin(πk/p) sin(πℓ/q) cos(πs).

We next show that the arc [αs] of SU(2) × {1}-representations is a codimension
one subset of Rred(Z, SU(3)). The other degree of freedom comes from twisting a
representation out of SU(2) × {1}, keeping it in S(U(2) × U(1)).

First, given

A =

[
a b
−b̄ ā

]
∈ SU(2),

the twist of A by eiθ ∈ U(1) is the S(U(2) × U(1)) matrix


eiθ 0 0
0 eiθ 0
0 0 e−2iθ







a b 0
−b̄ ā 0
0 0 1


 =




eiθa eiθb 0
−eiθ b̄ eiθā 0

0 0 e−2iθ


 .

The map SU(2) × U(1) → S(U(2) × U(1)) defined by twisting is a 2-to-1 map. In
terms of U(2), this is simply the description U(2) = SU(2) ×Z2 U(1), and twisting
is just scalar multiplication by eiθ. Notice that the matrix Φ(u, v) appearing in
equation (3.1) is the twist of the diagonal SU(2) matrix A with entries eiu, e−iu by
eiv.

Suppose χ : π1(Z) → U(1) is abelian and β : π1(Z) → SU(2) is nonabelian.
The reducible SU(3) representation obtained by twisting β by χ is defined to be
representation π1(Z) → S(U(2) × U(1)) taking an element w ∈ π1(Z) to the twist
of β(w) by χ(w). Notice that, since H1(Z; Z) ∼= Z is generated by the meridian µ,
any U(1) representation χ is completely determined by the element χ(µ) ∈ U(1),
which can be arbitrary. If χ(µ) = −1, then the twist of β by χ is again an SU(2)
representation, and twisting by this central representation defines an involution on
the SU(2) representation variety of knot complements.

We give a more explicit description of the stratum Rred(Z, SU(3)) of reducible
SU(3) representations in terms of twisting the arcs βs described above.

Definition 3.6. Fix eiθ ∈ U(1) and let χθ be the U(1) representation sending µ to
eiθ. Let βs be representation described in Proposition 3.5 corresponding to a triple
(k, ℓ, ε) and s ∈ (0, 1). Define the reducible SU(3) representation αs,θ : π1(Z) →
S(U(2) × U(1)) ⊂ SU(3) to be the twist of βs by χθ.

Proposition 3.7. Fix (k, ℓ, ε) with k ≡ ℓ ≡ aε (mod 2) as in Proposition 3.5 and
let αs,θ be the 2-parameter family of S(U(2)×U(1)) repre-sentations corresponding
to twisting αs by θ. Then the representation αs,θ sends x to the twist of αs(x) by
eiaqθ, y to the twist of αs(y) by eiapθ, and h to the twist of αs(h) by eipqθ . Moreover,

αs,θ(µ) =




(−1)kcei(θ+ru) 0 0

0 (−1)kcei(θ−ru) 0
0 0 e−2iθ




and

αs,θ(λ) = αs(λ) =




(−1)ka(p+q)eipqu 0 0

0 (−1)ka(p+q)e−ipqu 0
0 0 1



 ,
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αs,0

αs,π

Figure 2. An open cylinder of reducible SU(3) representations
with two seams of SU(2) × {1} representations given by αs,0 and
αs,π .

where u satisfies equation (3.4). The representation αs,θ is conjugate to one in
SU(2) × {1} only for θ ∈ πZ, and the arcs αs,0 and αs,π are different components
of R(Z, SU(2)). The map (s, θ) 7→ αs,θ defines a smooth 2-dimensional subvariety
of R(Z, SU(3)) contained in Rred(Z, SU(3)) and homeomorphic to (0, 1) × S1.

Proof. The first few assertions follow immediately from the definitions and equa-
tions (2.4) and (2.5).

By taking the determinant of eiθαs, it is easy to check that αs,θ is an SU(2)×{1}
representation if and only if θ ∈ πZ. The representation αs,0 takes h to the diagonal
matrix with entries (−1)ε, (−1)ε, 1 and αs,π takes h to the diagonal matrix with
entries (−1)pq+ε, (−1)pq+ε, 1. Since p and q are both odd, αs,0 and αs,π are different
arcs. The map (s, θ) 7→ [αs,θ] ∈ R(Z, SU(3)) is injective, and since H1(Z; s(u(2) ×
u(1)))αs,θ

) = R2 by Proposition 3.1, this parameterizes a smooth subvariety. �

Every representation α in Rred(Z, SU(3)) is conjugate to some αs,θ for some
choice of (k, ℓ, ε) and (s, θ). The reason for this is that one can first conjugate α
into S(U(2) × U(1)), and then if the (3, 3) entry of α(µ) is e2iθ, α must be the
θ-twist of some SU(2) representation αs.

By Proposition 3.5, it follows thatRred(Z, SU(3)) contains exactly (p−1)(q−1)/4
components, each of which is a smooth open cylinder with two seams of SU(2)×{1}
representations (see Figure 2).

The following theorem summarizes our discussion.

Theorem 3.8. Suppose Σ(p, q, r) is a Brieskorn sphere and reorder p, q, r so that
p and q are both odd. Let Z be the complement of the singular r-fiber of Σ(p, q, r).
Then the stratum Rred(Z, SU(3)) of con-jugacy classes of nonabelian reducible rep-
resentations is a smooth, open, 2-dimensional manifold consisting of (p−1)(q−1)/4
path components, each of which is diffeomorphic to the open cylinder (0, 1) × S1.
The closure of such a component in R(Z, SU(3)) contains two boundary circles,
which are circles immersed in the abelian stratum Rab(Z, SU(3)) with isolated dou-
ble points.

Fix (k, ℓ, ε) with k ≡ ℓ ≡ aε (mod 2) as in Proposition 3.5 and let αs,θ : π1(Z) →
S(U(2) × U(1)) denote the corresponding 2-parameter family of representations.
Suppose for some s, αs,0 extends to a reducible representation on π1(Σ). This is
the case if and only if αs,0(µ) = I, namely if αs,0(xy) is an r-th root of αs,0(h

c).
Since H1(Σ; su(2)αs,0) = 0 and Σ is a homology sphere, none of the nearby

representations in the 2-parameter family αs,θ of π1(Z) extend to representations
of π1(Σ).
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If [αs,0] lies on a 2-sphere component ofR(Σ, SU(3)), then it follows thatH1(Σ; C2
α) 6=

0 and αs,0(h) = I (i.e. ε = 0). Hence αs,0(xy) is an r-th root of I and s satisfies
the equation

cos
(

2πm
r

)
= cos(πk/p) cos(πℓ/q) − sin(πk/p) sin(πℓ/q) cos(πs)

for some 0 < m < r. In particular,

(3.5) αs,0(xy) =




e2πim/r 0 0

0 e−2πim/r 0
0 0 1



 .

We now consider irreducible representations α : π1(Z) → SU(3) and give a de-
scription of the closure of R∗(Z, SU(3)). We begin with a simple observation. If
α : π1(Z) → SU(3) is an irreducible representation, then α(h) lies in the center
of SU(3) and it follows from the presentation (2.3) that α(x)p = α(y)q = α(h)a.
Conversely, suppose we are given matrices A,B,H ∈ SU(3) with H central such
that

(3.6) Ap = Bq = Ha,

then setting α(x) = A,α(y) = B, and α(h) = H uniquely determines a represen-
tation α : π1(Z) → SU(3). This representation is reducible if and only if A and B
share an eigenspace.

For A,B,H diagonal SU(3) matrices with H central and satisfying equation
(3.6), we can write H = e2πiℓ/3I for a unique ℓ ∈ {0, 1, 2} and we denote by
C ℓ

AB ⊂ R(Z, SU(3)) the subset of conjugacy classes [α] of representations with

α(x) conjugate to A, α(y) conjugate to B, and α(h) = e2πiℓ/3I. There is a map
Ψ: SU(3) → C ℓ

AB where Ψ(g) = [ψg] is the conjugacy class of the representation
ψg with ψg(x) = A and ψg(y) = gBg−1. Let ΓA and ΓB denote the stabilizer
subgroups of A and B. If γ ∈ ΓB, then ψgγ = ψg for all g ∈ SU(3). Likewise,
if γ ∈ ΓA, then ψγg = γψgγ

−1 for all g ∈ SU(3). Thus, Ψ factors through left
multiplication by ΓA and right multiplication by ΓB and determines a map from
the double coset space

Ψ: ΓA\SU(3)/ΓB → C
ℓ
AB

which is a homeomorphism which is smooth on the stratum of principal orbits.
Elementary dimension counting gives that C ℓ

AB has dimension four if both A and
B have three distinct eigenvalues and dimension two if exactly one of A or B has a
2-dimensional eigenspace. In all other cases, C ℓ

AB does not contain any irreducibles.
For example, if both A and B have double eigenspaces, then the eigenspaces in-
tersect nontrivially in an invariant linear subspace, giving a reduction. Similarly,
if either A or B has an eigenvalue of multiplicity three, then the corresponding
representation is necessarily abelian.

Observe further that the set C ℓ
AB depends only on ℓ ∈ {0, 1, 2} and the conjugacy

classes of the matrices A and B. Thus, we can assume without loss of generality
that A and B are both diagonal.

Theorem 3.9. The closure of the stratum R∗(Z, SU(3)) of irreducible representa-

tions is a union
⋃

C ℓ
AB , where the union is over pairs ([A], [B]) ∈ (SU(3)/conj)

2

and ℓ ∈ {0, 1, 2} satisfying the conditions:

(i) Ap = Bq = Ha, where H = e2πiℓ/3I,
(ii) neither A nor B is central, and
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(iii) one of A or B has three distinct eigenvalues.

In particular

• If either A or B has a repeated eigenvalue, then C ℓ
AB is 2-dimen-sional and

is called a Type I component of R(Z, SU(3)).
• If both A and B have three distinct eigenvalues, then C ℓ

AB is 4-dimensional
and is called a Type II component of R(Z, SU(3)).

Given a nonabelian reducible representation α : π1(Z) → SU(3), we would like to
know when there exists a 1-parameter family of irreducible representations limiting
to α. If there is, then Proposition 3.1 implies that α(h) is central. The following
proposition is a partial converse.

Proposition 3.10. If α : π1(Z) → SU(3) is a nonabelian reducible representation
satisfying:

(i) α(h) is central, and
(ii) one of α(x) or α(y) has three distinct eigenvalues,

then there exists a 1-parameter family of irreducible SU(3) representations limiting
to α.

Remark 3.11. Notice that the condition H1(Z; C2
α) 6= 0, which is equivalent to (i),

is not enough to guarantee that there be a family of irreducible representations
limiting to α. There are nonabelian reducible representations with α(h) central
such that α(x) and α(y) both have repeated eigenvalues. Such representations are
not in the closure of R∗(Z, SU(3)) even though H1(Z; C2

α) 6= 0.

Proof. Set A = α(x) andB = α(y). Notice that the assumption that α is nonabelian

implies that neither A nor B is central. Obviously [α] ∈ C ℓ
AB. The subspace C

ℓ,red
AB

of conjugacy classes of reducible representations has codimension greater than or
equal to one, and this completes the proof. �

It is not hard to show that C
ℓ,red
AB has dimension one. We leave this as an exercise

for the reader. Note that C
ℓ,red
AB is also a codimension one subset of Rred(Z, SU(3)).

The next lemma is a slight reformulation of [16, Lemma 2.4]. The proof is routine
so is skipped.

Lemma 3.12. Suppose A,B ∈ SU(3) are diagonal matrices and consider the map
ϕ : SU(3) −→ C defined by setting ϕ(g) = tr(AgBg−1). Then, for fixed g ∈ SU(3),
the differential dϕg is surjective provided

(i) A and gBg−1 have no common eigenvectors, and
(ii) the product AgBg−1 has three distinct eigenvalues.

Equivalently, dφg is surjective if ψg : π1Z → SU(3) is irreducible and ψg(xy) has
three distinct eigenvalues.

Now suppose A,B, ℓ satisfy the hypotheses of Theorem 3.9. Define φ : C ℓ
AB → C

by setting φ([α]) = tr(α(x)α(y)) and notice that the following triangle commutes:

SU(3)

C
ℓ
AB C

?Ψ Q
QQs

ϕ

-
φ
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Define ∆ = SU(3)/conjugation = maximal torus/Weyl group. This quotient
space is a topological 2-simplex, described in Section 6 in more detail. The edges
contain conjugacy classes of matrices with double eigenvalues, and the vertices are
the conjugacy classes of the central elements.

The map φ : C ℓ
AB → C clearly factors through the map ξ : C ℓ

AB → ∆ sending
α 7→ [α(xy)], and the map tr : ∆ → C, which is smooth on the interior of the
simplex. In Section 6 (following Hayashi [16]) we identify the image ξ(C ℓ

AB) ⊂ ∆
(which we denote by Qℓ

AB) as a convex polygon. Indeed, Qℓ
AB is a hexagon if C ℓ

AB

is a Type I component (i.e. if one of A or B has a repeated eigenvalue) and Qℓ
AB is

a nonagon if C ℓ
AB is a Type II component (i.e. if A and B each have three distinct

eigenvalues). If C ℓ
AB is a Type II component, then ξ−1(p) is homeomorphic to a

2-sphere for all p in the interior Qℓ
AB.

Corollary 3.13. Set C
ℓ,∗
AB = C ℓ

AB∩R∗(Z, SU(3)). Then the map ξ|
C

ℓ,∗

AB

: C
ℓ,∗
AB → ∆

is a submersion except on the preimages of the intersection Qℓ
AB ∩ ∂∆.

Proof. Lemma 3.12 effectively states that the differential of the composition tr ◦ξ|
C

ℓ,∗

AB

: C
ℓ,∗
AB →

C has rank 2 except on ξ−1(∂∆). Applying the chain rule tells us that the same
statement holds for ξ|

C
ℓ,∗

AB

. �

When C ℓ
AB is 4-dimensional, the structure of the fiber ξ−1(p) is described by

Theorem 6.2. We summarize this information below.

Theorem 3.14. Suppose C ℓ
AB is a Type II component (i.e. suppose it is 4-dimensional),

and set Qℓ,red
AB = ξ(C ℓ,red

AB ). Then Qℓ,red
AB is 1-dimensional and the fiber of ξ : C ℓ

AB →
∆ over p ∈ Qℓ

AB is:

(i) A point if p ∈ ∂Qℓ
AB,

(ii-a) A smooth 2-sphere if p ∈ IntQℓ
AB and p 6∈ Qℓ,red

AB ,

(ii-b) A pointed 2-sphere if p ∈ IntQℓ
AB and p ∈ Qℓ,red

AB .

By a pointed 2-sphere, we mean a 2-sphere which is smooth away from one point.
If α : π1Z → SU(3) is a representation with [α] ∈ C ℓ

AB such that α(λ) does not

have 1 as an eigenvalue, then p = ξ([α]) 6∈ Qℓ,red
AB . If, in addition, p ∈ IntQℓ

AB,
then it follows that ξ−1(p) is a smooth 2-sphere.

Proof. The subset C
ℓ,red
AB of reducible representations can be identified with the

image under Ψ : ΓA\SU(3)/ΓB → C ℓ
AB of the following subset of SU(3):

{g = (gij) ∈ SU(3) | g12 = g13 = 0 or g13 = g23 = 0 or g12 = g23 = 0}.

This subset is 4-dimensional, and the principal orbits under the ΓA × ΓB action
are 3-dimensional (because their isotropy group is a 1-dimensional subgroup of the
4-dimensional group ΓA × ΓB). Thus its image in ΓA\SU(3)/ΓB, and hence in

C
ℓ,red
AB , is 1-dimensional.

Suppose that p = ξ([α]) ∈ Qℓ,red
AB . Then we have a reducible representation

β : π1Z → SU(3) with [β] ∈ ξ−1(p). Clearly β(xy) and α(xy) are conjugate in
SU(3). Since β is reducible and λ lies in the commutator subgroup of π1(Z), it fol-
lows that β(λ) has (at least) one eigenvalue equal to 1. Because λ = (xy)pqh−(p+q)a

and α and β send h to the same central element, it follows that α(λ) and β(λ) are
conjugate, and hence α(λ) must also have 1 as an eigenvalue.
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The rest of the statement follows from Theorem 6.2, and we explain the re-
lationship between the different notations here and there. Suppose A,B,C ∈
SU(3) are diagonal with eigenvalues {e2πia1 , e2πia2 , e2πia3}, {e2πib1 , e2πib2 , e2πib3}
and {e2πic1 , e2πic2 , e2πic3}, respectively. Then the set ξ−1([C]), which is the preim-
age of the conjugacy class of C in C ℓ

AB , can be identified with the moduli space
Mabc described in Theorem 6.2. �

4. Perturbations

The representation varieties for Σ and Z discussed in the previous sections can
be identified with the moduli spaces of flat SU(3) connections on Σ × SU(3) and
Z × SU(3). The principal advantage of this perspective is that flat moduli space
is the critical set of a function on the space of all connections, modulo gauge, and
this gives a framework to perturb for transversality purposes. In particular, we
deform the function of which the flat moduli space is the critical set, and consider
the critical set of the deformed function to be the “perturbed moduli space.”

After introducing some notation, we will define the twisting perturbations and
analyze their effect on the moduli space. Of central importance is the behavior of
pointed 2-spheres under twisting perturbations. In Subsection 4.3, we show that
under a twisting perturbation, every pointed 2-sphere resolves into two pieces: an
isolated reducible orbit and a smooth, nondegenerate 2-sphere.

4.1. Gauge theory preliminaries. Suppose X is a 3-manifold with Riemannian
metric. Let A (X) be the space of SU(3) connections over X , G (X) be the group
of SU(3) gauge transformations, B(X) be the quotient A (X)/G (X) , and M (X)
be the moduli space of gauge orbits of flat connections. These are completed with
respect to the usual Sobolev norms (L2

1 and L2
2, respectively) as in [5]. When the

manifold is clear from context, we will drop it from the notation and simply write
A , G , B and M .

The spaces A , B, and M are stratified by levels of reducibility, and we adopt a
notation consistent with that used for the representation varieties. In particular:

(i) M ∗ is the moduli space of irreducible flat SU(3) connections.
(ii) M red is the moduli space of reducible, nonabelian flat SU(3) connections.
(iii) M ab is the moduli space of abelian, flat SU(3) connections.

Given an SU(3) connection A, covariant differentiation defines a map

dA : Ωi(X ; su(3)) → Ωi+1(X ; su(3)).

If A is flat, these operators define a twisted de Rham complex. We denote the co-
homology groups by Hi

A(X ; su(3)). Note that H0
A(X ; su(3)) is identified with the

Lie algebra of the stabilizer of A, and H1
A(X ; su(3)) is the Zariski tangent space

of M at [A]. When X is closed, the Hodge star isomorphism ⋆ : Ωi(X ; su(3)) →
Ω3−i(X ; su(3)) induces isomorphisms Hi

A(X ; su(3)) ∼= H3−i
A (X ; su(3)). Further-

more, the de Rham theorem for twisted cohomology gives isomorphismsHi
A(X ; su(3)) ∼=

Hi(X ; su(3)α), where α : π1(X) → SU(3) is the holonomy representation of the flat
connection A.

In this section, we will consider a special Floer type perturbation of the flatness
equation, which we call a twisting perturbation. Whereas Floer perturbations gen-
erally alter the flatness equation in a neighborhood of a collection of loops in X ,
the twisting perturbation involves only one loop. We refer to Section 2.1 of [3] for
a detailed discussion of perturbations in the SU(3) context.
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Given a perturbation h : A → R, we denote by Mh the moduli space of h-
perturbed flat SU(3) connections, that is, those satisfying the perturbed flatness
equation FA = ⋆4π2∇h(A). For such a connection, there is a Fredholm perturbed
de Rham complex, for which we denote the cohomology groups Hp

A,h(X ; su(3)).

H1
A,h(X ; su(3)) is the tangent space to Mh(X).

Definition 4.1. The odd signature operator twisted by a connection A is the linear
elliptic differential operator

DA : Ω0+1(X ; su(3)) −→ Ω0+1(X ; su(3))

DA(σ, τ) = (d∗Aτ, dAσ + ⋆dAτ).

It is a generalized Dirac operator (in the sense of [8]).
The perturbed odd signature operator for a connection A and a perturbation h is

similarly defined to be

DA,h(σ, τ) = (d∗Aτ, dAσ + ⋆dA,hτ)

=
(
d∗Aτ, dAσ + ⋆dAτ − 4π2 Hess h(A)(τ)

)

= DA(σ, τ) + (0,−4π2 Hessh(A)(τ)).

Here we use the metric to view Hessh(A)(τ) as a 1-form with su(3) coefficients.

The Hessian is bounded as a map from L2 to L2 ([24], [3], [18]). Thus the
composite of the compact inclusion of L2

1 → L2 with the bounded Hessian L2 → L2

is a compact map L2
1 → L2, and the addition of the Hessian to the signature

operator is a compact perturbation. Since DA,h differs from DA by a compact
perturbation, it is again Fredholm when X is closed.

The usual Hodge theory argument shows that if X is closed, the kernel of DA,h

is isomorphic to H0
A,h(X ; su(3)) ⊕ H1

A,h(X ; su(3)). If X is not closed, then DA,h

is not Fredholm. The operators DA and DA,h are symmetric: 〈DA,h(φ1), φ2〉 =
〈φ1, DA,h(φ2)〉 if φ1 and φ2 are supported on the interior of X . Thus if X is closed
DA and DA,h are self-adjoint.

The operator DA,h is not local. It is neither a differential nor a pseudodifferential
operator. However, (DA,h −DA)(φ) depends only on the restriction of A and φ to
the compact domain in X along which the perturbation is supported and moreover
(DA,h − DA)(φ) vanishes outside of this domain (in the case considered in this
article, the compact domain is a neighborhood of the r-singular fiber). The proof
of this fact is given in Proposition 2.2 of [18].

Basic for us will be the splitting

(4.1) Σ(p, q, r) = Y ∪T Z.

Here,

T = S1 × S1 = {(eix, eiy)}

is the 2-torus with the product metric and orientation so that dxdy is a positive
multiple of the volume form. Its fundamental group π1(T ) is generated by the loops
µ = {(eix, 1)} and λ = {(1, eiy)}.

The 3–manifold Y is the solid torus

Y = D2 × S1 = {(reix, eiy) | 0 ≤ r ≤ 1}

oriented so that drdxdy is a positive multiple of the volume form; it is a neighbor-
hood of the r-singular fiber in Σ(p, q, r). Choose a metric on Y so that a collar
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neighborhood of the boundary is isometrically identified with [−1, 0] × T . As ori-
ented manifolds, ∂Y = {0} × T . The fundamental group π1(Y ) is infinite cyclic
generated by the longitude λ. (The meridian µ bounds the disc D2 ×{1} and so is
trivial in π1(Y ).)

The 3–manifold Z is the complement of an open tubular neighborhood of the
r-singular fiber in Σ(p, q, r). Choose a metric on Z so that a collar neighborhood of
the boundary ∂Z is isometrically identified with [0, 1]×T , and λ is null-homologous
in Z. As oriented manifolds, ∂Z = −{0} × T .

The metrics on Y and Z induce one on Σ with the property that a bicollared
neighborhood of T ⊂ Σ is isometric to [−1, 1] × T . We call [−1, 1] × T the neck.
Every connection A on Σ which is flat on the neck is gauge equivalent to one in
cylindrical form, meaning that its restriction A|[−1,1]×T to the neck is the pullback
of a connection on the torus under the projection [−1, 1]×T → T. There are similar
results for Y using the collar [−1, 0] × T ⊂ Y and for Z using [0, 1] × T ⊂ Z. A
connection in cylindrical form and which is flat on the neck is gauge equivalent to
one whose meridinal and longitudinal holonomies are diagonal.

4.2. The twisting perturbation on the solid torus. In this subsection, we
define the twisting perturbation and study the perturbed flatness equations on the
solid torus. The crucial issue is to determine which flat connections on the boundary
extend as perturbed flat connections over the solid torus.

We begin with some notation. For a complex number ζ, let ℜ(ζ) be its real part
and ℑ(ζ) its imaginary part. Recall the parameterization Φ: R2 → SU(3) of the
maximal torus T ⊂ SU(3) from equation (3.1).

Let x = (x1, x2) be coordinates on the 2-disk D2 and θ on the circle S1. Suppose
η : D2 → R is a radially symmetric nonnegative function supported in a small
neighborhood of x = 0 with

∫
D2 η(x) dx = 1.

Fix a basepoint θ0 ∈ S1. For a connection A on the solid torus D2 × S1,
let holx(A) denote its holonomy around {x} × S1 starting and ending at (x, θ0).
Although holx(A) depends on the choice of basepoint, its trace tr holx(A) is inde-
pendent of this choice.

Definition 4.2. The twisting perturbation function is the function f : A (D2 ×
S1) → R defined by

(4.2) f(A) = − 1
4π2

∫

D2

ℑ(tr holx(A))η(x) dx.

The admissible holonomy perturbations described in [3] involve sums of functions
of the form ∫

D2

f(holx(A)η(x) dx,

where f : SU(3) → R is any adjoint invariant function. The twisting perturbation
is simply a special case, where f is taken to be − 1

4π2ℑ ◦ tr . For the particular
3-manifolds considered in this paper, this special type of perturbation is sufficient
to eliminate the transversality problems in the moduli space.

Let M3(C) be the vector space of 3 × 3 complex matrices and regard su(3) as
a subspace of M3(C). Define Πsu(3) : M3(C) → su(3) to be orthogonal projection
with respect to the standard inner product on M3(C).
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Proposition 4.3. The gradient of the perturbation of (4.2) is given by

∇f(A) = − 1
4π2 Πsu(3) (i holx(A)) η(x) dθ.

Proof. If A is a connection on S1 and α is an su(3)-valued 1-form on S1, then
Proposition 2.6, [3] gives the differentiation formula

d

ds
ℑ tr holx(A+ sα)

∣∣∣∣
s=0

= ℑ tr(holx(A)
∫

S1 α),

where
∫

S1 α is interpreted as in Section 6 of [3].
From equation (4.2), f(A + sα) is clearly independent of all components of α

except the dθ component. We can find its derivative by integrating the formula in
the circle case:

(4.3)
d

ds
f(A+ sα)

∣∣∣∣
s=0

= − 1
4π2

∫

D2

ℑ tr
(
holx(A)

∫
S1 α

)
η(x) dx

Since
∫

S1 α is su(3)-valued, we have

ℑ tr(holx(A)
∫

S1 α) = −ℜ tr
(
i holx(A)

∫
S1 α

)

=
〈
Πsu(3)(i holx(A)),

∫
S1 α

〉
su(3)

,(4.4)

where we identify − tr(AB) with the standard inner product 〈·, ·〉su(3) on su(3).
Therefore equation (4.3) can be rewritten as

d

ds
f(A+ sα)

∣∣∣∣
s=0

=
〈
− 1

4π2 Πsu(3)(i holx(A))η(x) dθ, α
〉

L2(D2×S1)
.

Here, holx(A) is interpreted as a section of the bundle End(E) of endomorphisms
of the rank three bundle E → D2×S1. The section holx(A) is covariantly constant
around the circle fibers with respect to the induced connection on End(E). �

Definition 4.4. Given t ∈ R, tf is an admissible perturbation, and a connection
A on the solid torus is called (tf)-perturbed flat if it satisfies the equation

FA = ⋆4π2t∇f(A)

where FA denotes the curvature of A. Since η is supported on a small neighborhood
of 0 ∈ D2, a (tf)-perturbed flat connection is flat near the boundary torus (see
Proposition 4.6 below).

The next two propositions are well-known. The first was initially observed by
Floer in [13]. Its proof is based on the previous observation that a perturbed flat
connection has curvature only in the dx1dx2 direction.

Proposition 4.5. Suppose A is a connection on the solid torus. If A is (tf)-
perturbed flat, then holx(A) is independent of x ∈ D2.

Proof. On the disk D2 × {θ0}, trivialize the SU(3) bundle using radial parallel
translation starting at the center (0, θ0). For each x ∈ D2, take the line segment
0x and consider the annulus 0x× S1. Since ⋆FA = i dθ, the restriction of A to this
annulus is flat. But parallel translation along the line segment 0x is trivial, and so
holx(A) = hol0(A) and is independent of x ∈ D2. �
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Proposition 4.5 shows that for a perturbed flat connection A on the solid torus,
we can denote holx(A) ∈ SU(3) unambiguously by holλ(A). We call this the
longitudinal holonomy of A. The holonomy of A along the meridian ∂D2 × {θ0} is
called the meridinal holonomy.

The next result states that perturbed flat connections are flat outside a neigh-
borhood of the perturbation curves.

Proposition 4.6. If A is perturbed flat with respect to a perturbation h supported
on a single thickened curve γ : D2 × S1 → Σ, then A is flat on the complement
Σ − γ(D2 × S1).

Proof. Under the hypothesis, one can easily see that the equation for perturbed
flatness is just ⋆FA = 4π2∇h(A), but ∇h(A) = 0 outside the image γ(D2×S1). �

The twisting perturbation is well-defined as a function

f : A (Σ(p, q, r)) → R,

once one fixes a framing on the solid torus Y in the decomposition (4.1). We use
the framing Y ∼= D2 × S1 in which the longitude λ is homotopic to {x} × S1 in
the complement of K for all nonzero x ∈ D2. We assume further that the bump
function η(x) is supported in a small enough neighborhood that it vanishes on
the neck [−1, 1] × T . Proposition 4.6 then implies that every (tf)-perturbed flat
connection A on Σ restricts to a flat connection on ([−1, 0]×T )∪Z. The definition
of f and Proposition 4.3 show that f(A), ∇f(A), and Hess f(A) depend only of
the restriction of A to the interior of Y .

The last result in this subsection determines an equation on meridinal and lon-
gitudinal holonomies that a connection A must satisfy in order for it to be (tf)-
perturbed flat.

Proposition 4.7. Suppose that A is a connection on D2×S1 which (tf)-perturbed
flat. Then there is a smooth gauge representative for [A]. Furthermore, if holλ(A) =
Φ(u, v), then the meridinal holonomy is given by

(4.5) holµ(A) = Φ
(
−t sinu sin v, t

3 (cosu cos v − 2 cos2 v + 1)
)
.

Proof. The smoothness property holds for all holonomy type perturbations, not
just the twisting perturbation we have defined here. This is claim (1) of Lemma
8.3 in [24].

The second claim is a generalization to SU(3) (and imaginary part of trace) of
a well-known fact for SU(2) perturbed flat connections, going back to Floer. Note
first that ∇(tf) = t∇f . Let A be a smooth tf -perturbed flat connection, gauge
transformed so that holλ(A) is diagonal.

Since the curvature FA = ⋆4π2t∇f(A) takes only diagonal matrix values, we
can find the meridinal holonomy by integrating FA over a disk that the meridian
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bounds, namely

holµ(A) = exp
(
−

∫
∂D2A

)

= exp
(
−

∫
D2dA

)

= exp
(
−

∫
D2F (A)

)

= exp
(
−

∫
D24π

2 ⋆∇(tf)(A)
)

= exp
(
t
∫

D2Πsu(3)(i holλ(A)) η(x) dx1 ∧ dx2

)

= exp
(
tΠsu(3) (i holλ(A))

)
.

The projection of a diagonal matrix B onto su(3) is given by taking the imaginary
part of B − 1

3 tr(B)I. Applying this to ti holλ(A) shows that

Πsu(3) (i holλ(A)) = Πsu(3)iΦ(u, v)

= ℑ
[
iΦ(u, v) − i

3 tr Φ(u, v)I
]

=



ia1 0 0
0 ia2 0
0 0 ia3


 ,

where

a1 = 1
3 (2 cos(u+ v) − cos(−u+ v) − cos(2v)) ,

a2 = 1
3 (− cos(u+ v) + 2 cos(−u+ v) − cos(2v)) ,

a3 = 1
3 (− cos(u+ v) − cos(−u+ v) + 2 cos(2v)) .

Setting ũ = a1−a2

2 and ṽ = a1+a2

2 and applying the angle addition formulas, we

see that ũ = − sinu sin v and ṽ = 1
3

(
cosu cos v − 2 cos2 v + 1

)
. These substitutions

simplify the formula for holµ(A) to give

holµ(A) = Φ
(
−t sinu sin v, t

3

(
cosu cos v − 2 cos2 v + 1

))
.

�

Remark 4.8. Assuming holλ(A) = Φ(u, 0) in this proposition (namely if v = 0),
then the conclusion is that holµ(A) = Φ(0, t

3 (cosu− 1)).

4.3. The effect of the twisting perturbation on a pointed 2-sphere. We
now consider twisting perturbations on Σ = Y ∪T Z supported on the solid torus
Y . In the last subsection we showed that any perturbed flat connection A on Σ is
indeed flat on Z (Proposition 4.6) and we obtained an equation that the meridinal
and longitudinal holonomies must satisfy to extend as a perturbed flat connection
on Y (Proposition 4.7). In this subsection, we use this equation to analyze the
topology of the perturbed flat moduli space. We are particularly interested in the
effect of the twisting perturbation on the pointed 2-spheres in M . We show that
the perturbed flat moduli space near a pointed 2-sphere resolves into two pieces: an
isolated gauge orbit of reducible connections and a smooth, nondegenerate 2-sphere
of gauge orbits of irreducible connections.

We identify the perturbed flat moduli space Mtf (Σ) as the subset of the flat
moduli space M (Z) of gauge orbits which extend as perturbed flat connections
over the solid torus. We explain the geometric picture before going into details.

The moduli space M (T ) is the quotient of the product of two copies of the
maximal torus of SU(3) modulo the diagonal action of Weyl group S3, the group
of symmetries on three letters. Thus M (T ) is 4-dimensional.
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With respect to the splitting Σ = Y ∪T Z, we have the three restriction maps

ζY : M (Y ) → M (T ), ζred

Z : M
red(Z) → M (T ), ζ∗Z : M

∗(Z) → M (T ),

defined by sending [A] to [A|T ]. Denote the images of these maps by ZY = im(ζY ),
Z red

Z = im(ζred

Z ) and Z ∗
Z = im(ζ∗Z). We also have the restriction maps rZ : M (Σ) →

M (Z) and rY : M (Σ) → M (Y ), a commutative diagram

(4.6)

M (Z)

M (Σ) M (T ),

M (Y )

Q
QQs

ζZ

�
��3

rZ

Q
QQsrY �

��3
ζY

and similar diagrams for the reducible and irreducible moduli spaces.
All three of ZY , Z red

Z and Z ∗
Z are codimension two submanifolds of M (T ). The

map rZ is injective. This is just the statement that the flat connections on Σ can be
identified with those flat connections on Z which extend flatly over the solid torus
Y . The crux of the matter is that the flat extension to the solid torus is uniquely
determined by A|T up to gauge transformation.

Thus the moduli space M red(Σ) can be identified with

rredZ (M red(Σ)) = (ζred

Z )−1(ZY ) = {[A] ∈ M
red(Z) | [A|T ] ∈ ZY ∩ Z

red

Z },

and likewise we can identify M ∗(Σ) as the subset of M ∗(Z) given by

r∗Z(M ∗(Σ)) = (ζ∗Z)−1(ZY ) = {[A] ∈ M
∗(Z) | [A|T ] ∈ ZY ∩ Z

∗
Z }.

If [A0] is the unique reducible gauge orbit on a pointed 2-sphere, then ζred

Z and ζ∗Z
are individually transverse to ZY at [A0|T ]. But ZY intersects both Z red

Z and Z ∗
Z

at [A0|T ], causing difficulties. The reducible part (ζred

Z )−1([A0|T ]) is simply [A0],
while the irreducible part (ζ∗Z)−1([A0|T ]) is the complement of [A0] in the pointed
2-sphere (and in particular is not compact).

To make M (Σ) non-degenerate, we apply a twisting perturbation which moves
ZY slightly. As with the flat moduli space, we have a restriction map ζY,tf : Mtf (Y ) →
M (T ) defined by sending [A] ∈ Mtf (Y ) to [A|T ]. (Recall that A|T is necessarily
flat.) Denote the image of this map by ZY,tf = im(ζY,tf ). As before, we can iden-
tify the strata of reducible and irreducible gauge orbits in the perturbed flat moduli
space Mtf as the subsets of M (Z) given by

M
red

tf (Σ) = (ζred

Z )−1(ZY,tf ) = {[A] ∈ M
red(Z) | [A|T ] ∈ ZY,tf ∩ Z

red

Z }

and

M
∗
tf (Σ) = (ζ∗Z)−1(ZY,tf ) = {[A] ∈ M

∗(Z) | [A|T ] ∈ ZY,tf ∩ Z
∗

Z }.

We will show that for small t > 0 ZY,tf intersects Z red

Z and Z ∗
Z at points

with nondegenerate preimages, namely that (ζred

Z )−1(ZY,tf ) is an isolated reducible
connection [A] with H1

A(Z; C2) = 0, and (ζ∗Z)−1(ZY,tf ) a smooth 2-sphere.
We will show this to be the case by determining, to first order in t, where this

intersection point lies. The idea is to pin down their meridinal and longitudinal
holonomies.

Throughout the remainder of this section, A0 will be a fixed reducible flat con-
nection whose gauge orbit [A0] lies on a 2-sphere component. Identify M red(Σ)
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with M ∗
S(U(2)×U(1))(Σ) and note that [A0] is a regular point of this latter moduli

space. This follows because [A0] can be represented by an SU(2)× {1} connection
A0 and Proposition 2.2 implies that

H1
A0

(Σ; s(u(2) × u(1))) = H1
A0

(Σ; su(2)) ⊕H1
A0

(Σ;u(1)) = 0.

Regularity of M red(Σ) near [A0] implies that, for 0 ≤ t ≤ ǫ, there is a family
of reducible (tf)-perturbed flat connections At which are deformations of A0. Our
first goal is to show that [At] is an isolated point in the perturbed flat moduli space
Mtf .

Proposition 4.9. Assume [A0] is a gauge orbit of reducible flat connections on Σ
that lies on a 2-sphere component. Choose a representative A0 in cylindrical form
whose holonomy on the torus T is diagonal. Equation (3.5) gives that

holxy(A0) = Φ
(

2πm
r , 0

)

for some integer m with 0 < m < r. For 0 ≤ |t| ≤ ǫ, let [At] be the family of
gauge orbits of reducible (tf)-perturbed flat connections near [A0]. As before, choose
representatives in cylindrical form. Since each At restricts to a flat connection on
Z, we can also arrange that At has diagonal holonomy on the torus T . Then the
holonomies satisfy:

holµ(At) = Φ
(
2πm, t

3

(
cos

(
2πm

r

)
− 1

))
,

holλ(At) = Φ
(

2πmpq
r , 0

)
.

Proof. The Implicit Function Theorem implies the path [At] is smooth. As with
single connections, the path of gauge representatives for [At] can be chosen to be
smooth, in cylindrical form, and with the property that holxy(At) and holh(At) are
diagonal. Note that by Proposition 4.6 these connections are flat on Z.

Equation (3.5) and the discussion immediately preceding it imply that

holxy(A0) = Φ(2πm
r , 0) and holh(A0) = I.

Therefore,
holxy(At) = Φ(ut, vt) and holh(At) = Φ(0, wt)

for some functions ut, vt, wt satisfying u0 = 2πm
r , v0 = 0 = w0. Here we know that

holh(At) has the form stated because it commutes with the nonabelian representa-
tion hol (At) : π1Z → S(U(2) × U(1)), so it is in the center of S(U(2) × U(1)).

It follows from equation (2.4) that

holµ(At) = Φ(rut, rvt + cwt) and holλ(At) = Φ(pqut, pqvt − (p+ q)awt).

Proposition 3.7 shows that the second argument in holλ(At), namely pqvt − (p +
q)awt, must equal zero. Proposition 4.5 (see Remark 4.8) now implies that

Φ(rut, rvt + cwt) = Φ(0, t
3 (cos(pqut) − 1)).

From this it follows that ut = 2πm
r , independent of t, and hence that rvt + cwt =

t
3

(
cos(2πpqm

r ) − 1
)
. �

Corollary 4.10. For sufficiently small |t| > 0, the representation αt : π1(Z) →
SU(3) induced by the reducible flat connection At is twisted (i.e. takes values in
S(U(2) × U(1)) but not in SU(2) × {1}) and satisfies H1(Z; C2

αt
) = 0.

Proof. Proposition 4.9 shows holµ(At) is twisted, and consequently that αt is
twisted. The cohomology claim then follows from Proposition 3.4. �

25



Corollary 4.10 will be used in Section 5 to show that, for small t, the orbit [At]
of reducible perturbed flat connections near [A0] is isolated in Mtf (Σ).

We now turn our attention to understanding the effect of the twisting pertur-
bation on the stratum of irreducible connections. We continue to assume that A0

is a reducible flat connection, in cylindrical form, with holxy(A0) diagonal, and
that [A0] lies on a pointed 2-sphere. As pointed out in the proof of Proposition
4.9, there is an integer m with 0 < m < r such that holxy(A0) = Φ(2πm

r , 0) and

holλ(A0) = Φ(2πpqm
r , 0).

Now consider an irreducible (tf)-perturbed flat connection A near A0. We as-
sume A is in cylindrical form on the neck and that the meridinal and longitudinal
holonomies of A are diagonal. Since holγ(A) is close to holγ(A0) for all γ ∈ π1(Z),
we can write

(4.7) holλ(A) = Φ(u, v) and holµ(A) = Φ(w, z)

for (u, v) near (2πpqm
r , 0) and (w, z) near (0, 0). Because the restriction of A to Z is

irreducible and flat, holh(A) = I. (To see this, note that h ∈ π1(Z) is central and
holh(A) is a priori near holh(A0) = I.) Equation (2.4) now implies that

(holµ(A))
pq

= (holλ(A))
r
,

and plugging this into equation (4.7) gives that

(4.8) w =
ru

pq
− 2πm and z =

rv

pq
.

On the other hand, if A extends as a (tf)-perturbed flat connection over Y, equation
(4.5) implies that

(4.9) w = −t sinu sin v and z = t(cosu cos v − 2 cos2 v + 1).

Combining equations (4.8) and (4.9), we obtain a pair of equations (depending on
the parameter t) which determine u and v.

We now solve for u and v to first order in t. To facilitate the argument, define
the function P : R3 → R2 given by

P (t, u, v) =
((

ru
pq

)
t sinu sin v, rv

pq − t
3

(
cosu cos v − 2 cos2 v + 1

))
.

The map (u, v) 7→ P (0, u, v) is clearly a submersion, and the Implicit Function
Theorem provides smooth functions u(t) and v(t) near t = 0 such that (t, u(t), v(t))
parameterizes the solutions of the equation P (t, u, v) = 0 near

(
0, 2πpqm

r , 0
)
. Dif-

ferentiating the equation P (t, u(t), v(t)) = 0 with respect to t at t = 0 yields

u′(0) = 0 and v′(0) = pq
3r

(
cos

(
2πpqm

r

)
− 1

)
.

Thus any irreducible (tf)-perturbed flat connection A near A0 satisfies:

holλ(A) = Φ
(

2πpqm
r , tpq

3r

(
cos

(
2πpqm

r

)
− 1

))
+O(t2),

holµ(A) = Φ
(
0, t

3 cos
(

2πpqm
r

)
− t

3

)
+O(t2).

(4.10)

This characterization of the longitudinal and meridinal holonomies of the per-
turbed flat irreducible connections near A0 allow us to prove the following theo-
rem, which describes the perturbed flat moduli space of Σ in a neighborhood of the
pointed 2-sphere.
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M ∗(Z) 2-sphere bundle

ZY 2 dimensionalZY,tf

M (T )

Z red
Z

Figure 3. The effect of a twisting perturbation on a pointed 2-
sphere. Here M ∗(Z) is 4-dimensional and the map ζ∗Z : M ∗(Z) →
M (T ) has 2-sphere fibers.

Theorem 4.11. Let S ⊂ M (Σ) be a pointed 2-sphere, and let [A0] ∈ S be the gauge
orbit of reducible connections. For a sufficiently small neighborhood U ⊂ B(Σ) of
S, and for sufficiently small |t| > 0, U ∩Mtf(Σ) consists of two components. The
first is an isolated gauge orbit of reducible connections, and the second is a smooth
2-sphere of gauge orbits of irreducible connections. See Figure 3.

Remark 4.12. In this theorem we do not claim that the reducible connection [At] ∈
Mtf(Σ) near [A0] satisfies the nondegeneracy condition H1

At,tf
(Σ; su(3)) = 0. This

will be proved in Proposition 5.4.

Proof. Choose a neighborhood UZ of [A0|Z ] in BZ with the following properties:

(i) UZ ∩ M ∗(Z) ⊂ C , where C is the 4-dimensional Type II component of

M ∗(Z) containing [A0|Z ], as in Theorem 3.9.
(ii) UZ ∩ M red(Z) ⊂ C red, where C red is the 2-dimensional component of

M red(Z) containing [A0|Z ], as in Theorem 3.8.
(iii) r−1(UZ) ∩ M (Σ) = S, where r : B(Σ) → B(Z) is the restriction map.
(iv) The restriction of ζred

Z to C red ∩ UZ is injective.

Set U = r−1(UZ). The intersection M red

tf (Σ) ∩ U is identified with

{[A] ∈ C
red ∩ UZ | [A|T ] ∈ Z

red

Z ∩ ZY,tf}.

This intersection is a single point, identified in Proposition 4.9 and the restriction
map ζred

Z maps C red ∩ UZ injectively into M (T ). Thus M red

tf (Σ) ∩ U is a single
point.

Now consider M ∗
tf (Σ) ∩ U , which is identified with

{[A] ∈ C ∩ UZ | [A|T ] ∈ Z
∗

Z ∩ ZY,tf}.

Equations (4.10) identify the unique point in ζZ(C ∩ UZ) ∩ ZY,tf . This point has
a 2-sphere preimage in C ∩ UZ for small t, because C is topologically a 2-sphere

27



bundle. This can be seen by observing that the map ζZ : C ∩UZ → M (T 2) factors
through ξ : C ∩ UZ → ∆, which sends α to [α(xy)], because α(h) = e2πiℓ/3I, λ =
(xy)pqh−(p+q)a and µ = (xy)rhc. Again by equations (4.10), the longitudinal ho-
lonomy does not have 1 as an eigenvalue, and hence the 2-sphere fiber does not
contain any reducibles, so by Theorem 3.14 it is a smooth 2-sphere of gauge orbits
of irreducible connections. �

5. Spectral flow arguments

In this section, we perform computations of the spectral flow of the odd signature
operator. These are necessary to calculate the contribution of the pointed 2-spheres
to the invariant τSU(3)(Σ). The main result here is that, given a path At of reducible

(tf)-perturbed connections on Σ where [A0] is flat and lies on a 2-sphere, the C2

spectral flow of the perturbed odd signature operator equals SFC2(At; Σ) = −2.
This is proved by splitting the spectral flow according to the manifold decomposition
Σ = Y ∪T Z (Theorem 5.6), and then computing the spectral flow on Z (Theorem
5.7).

5.1. The odd signature operator, spectral flow, and splittings. As in Sec-
tion 4 we assume that Σ = Σ(p, q, r) is endowed with a metric isometric to the
product metric on a bicollared neighborhood [−1, 1]× T , where Σ = Y ∪T Z.

The operator DA is a self-adjoint Dirac-type operator. Thus on the closed man-
ifold Σ(p, q, r), DA has a compact resolvent and hence the spectrum of DA is un-
bounded but discrete, and each of its eigenspaces is finite dimensional. Although
DA,h is not a Dirac-type operator, it is a compact perturbation of DA and also has
a compact resolvent.

Given a suitably continuous path Dt, 0 ≤ t ≤ 1, of self-adjoint operators with
discrete, real spectrum each of whose eigenspaces is finite dimensional, one can
define the spectral flow SF (Dt) ∈ Z to be the algebraic intersection in [0, 1]×R of
the track of the spectrum

{(t, λ) | t ∈ [0, 1], λ ∈ Spec(Dt)}

with the line segment from (0,−ε) to (1,−ε), where ε > 0 is chosen smaller than
the modulus of the largest negative eigenvalue of D0 and of D1 (this is called the
(−ε,−ε) convention).

If At is a continuous path of SU(3) connections on the closed 3-manifoldX and ht

a continuous path of perturbations, we denote by SF (DAt,ht
;X) or SF (At, ht;X)

the spectral flow of the family of odd signature operatorsDAt,ht
on Ω0+1(X ; su(3)).

(A proof that the family DAt
is suitably continuous and a careful definition of the

spectral flow can be found in [9] and [18].) The spectral flow is an invariant of
homotopy rel endpoints, and to emphasize this point we will occasionally write
SF (A0, A1;X) instead of SF (DAt,ht

;X) when the path of perturbations is under-
stood (the parameter space of pairs (A, h) is contractible).

If A is an S(U(2)×U(1)) connection onX , then DA,h respects the decomposition
on forms induced by the splitting of coefficients su(3) = s(u(2) × u(1)) ⊕ C2. In
particular, for a path At of S(U(2) × U(1)) connections and path of perturbations
ht, we denote by SFC2(At, ht;X) the spectral flow of the restriction of the path
DAt,ht

to Ω0+1(X ; C2). Similar notation applies to the other summand in this
decomposition of su(3).
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In computing the C2 spectral flow, we count eigenvalues with their real multi-
plicity and hence SFC2(At, ht;X) is always a multiple of two. Note that

SFsu(3)(At, ht;X) = SFs(u(2)×u(1))(At, ht;X) + SFC2(At, ht;X).

When X is compact but has nonempty boundary ∂X = W the constructions
must be refined in order to obtain suitable families of operators for which one can
define the spectral flow. We must draw on deeper results from the Calderón-Seeley
theory of boundary-value problems for Dirac operators. A good reference is the
book by Booss-Bavnbek and Wojciechowski [8].

Assume the metric onX is isometric to the product metric on a collarW×(−1, 0]
of the boundary ∂X = W × {0}. We work with connections A on X that are in
cylindrical form, namely we assume that the restriction ofA to the collarW×(−1, 0]
is the pullback of a connection a on W under the natural projection W × (−1, 0] →
W .

Given an su(3) connection a on W, define the de Rham operator

Sa : Ω0+1+2(W ; su(3)) −→ Ω0+1+2(W ; su(3))

Sa(α, β, γ) = (∗daβ,− ∗ daα− da ∗ γ, da ∗ β).

Here, ∗ : Ωi(W ; su(3)) → Ω2−i(W ; su(3)) denotes the Hodge star operator on W .
Define P±

a to be the positive and negative eigenspans of this operator on the space
of L2 forms L2(Ω0+1+2(W ; su(3))).

If a is a flat connection on W, then the Hodge and de Rham theorems identify
the kernel of Sa with the cohomology groups H0+1+2

a (W ; su(3)) with coefficients in
the local system su(3) twisted by a. Define the operator

J : Ω0+1+2(W ; su(3)) −→ Ω0+1+2(W ; su(3))

J(α, β, γ) = (− ∗ γ, ∗ β, ∗α).

Notice that J2 = −1. Setting w(x, y) = 〈x, Jy〉L2 defines a symplectic structure on
the Hilbert space L2(Ω0+1+2(W ; su(3))) of L2 forms. By restricting this also gives
a symplectic structure to kerSa.

If A is an SU(3) connection on X in cylindrical form, and a is its restriction to
the boundary ∂X = W, then along the collar W × [−1, 0], we have

(5.1) DA = J
(
Sa + ∂

∂s

)
,

where s denotes the collar coordinate. (See Lemma 2.4 of [5].) This holds more
generally for DA,h provided the perturbation is supported away from the collar.
Given a Lagrangian subspace L ⊂ kerSa, the operator DA,h taken with domain
those L2

1 sections φ ∈ Ω0+1(X ; su(3)) satisfying the APS boundary condition

φ|W ∈ L⊕ P+
a

is self-adjoint with compact resolvent and hence discrete spectrum. Given a family
(At, ht) and a choice of Lagrangian subspaces Lt ⊂ kerSat

so that Lt ⊕ P+
at

is
continuous, the spectral flow SF (DA,h, P

+
a ) ∈ Z is well defined (see e.g. [9]). In our

context below we will have kerSat
= 0 for all t and P+

at
continuous.

Given a connection A on X in cylindrical form,and h a perturbation of the type
we described above we define an (infinite-dimensional) Lagrangian subspace

ΛX,A,h ⊂ L2
(
Ω0+1+2(W ; su(3))

)
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as follows. The main result of [18] implies that there is a well-defined injective map

r : ker
(
DA,h : L2

1/2

(
Ω0+1(X ; su(3))

)
→ L2

−1/2

(
Ω0+1(X ; su(3))

))
−→

L2
(
Ω0+1+2(W ; su(3))

)

given by restriction whose image is a closed, infinite dimensional Lagrangian sub-
space called the Cauchy data space of the operatorDA,h onX and is denoted ΛX,A,h.
Since the restriction map r is injective, the kernel ofDA,h with P+

a (i.e. APS) bound-
ary conditions is isomorphic to ΛX,A,h ∩ P+

a . When the context is clear, we will
abbreviate ΛX,A,h to ΛX,A or even ΛX .

The space ΛX,A,h varies continuously (in the graph topology on closed subspaces)
with respect to A, h, and the metric on X . This result is well known in the case
of Dirac-type operators (such as DA), see e.g. [8]. The theorems of the article [18]
extend these standard results to the more general setting of small perturbations of
Dirac operators such as DA,h (which is not a differential or even a pseudodifferential
operator).

Remark 5.1. The previous remarks change slightly when the collar of ∂X is param-
eterized as [0, 1) ×W with ∂X = {0} ×W . The significant difference is that the
positive eigenspan P+

a of Sa is replaced by the negative eigenspan P−
a .

We will apply these observations to the decomposition Σ = Y ∪TZ. Parameterize
a collar of the separating torus T as (−1, 1) × T in Σ, with (−1, 0] × T a collar of
the boundary of the solid torus Y and [0, 1)× T a collar of the boundary of Z.

The fact that the operator DA,h on Σ is Fredholm is equivalent to the fact
that the pair (ΛY,A,h,ΛZ,A,h) form a Fredholm pair of (Lagrangian) subspaces,
and hence if (At, ht)t∈[0,1] is a path, the Maslov index Mas(ΛY,A,h,ΛZ,A,h) is well

defined. Similarly the restriction of DA,h to Y with P+
a boundary conditions is

Fredholm because the pair of subspaces (ΛY,A,h, P
+
a ) is Fredholm, and the restric-

tion of DA,h to Z with P−
a boundary conditions is Fredholm because the pair of

subspaces (P−
a ,ΛZ,A,h) is Fredholm. Proofs of these facts can be found e.g. [8, part

ii], [21], and [19, Section 2].

5.2. Some vanishing results. This subsection consists of an interlude to prove
some needed vanishing results for the perturbed flat cohomology groups. To begin
with, we note the following property of perturbed flat cohomology. The proof is the
same as the standard proof of the exactness of the Mayer-Vietoris sequence and is
left as an exercise. Note that the restriction of A to Z is flat and so H∗

A,tf(Z; C2) =

H∗
A(Z; C2) and similarly for T .

Lemma 5.2. If A is a (tf)-perturbed flat connection on Σ, the Mayer-Vietoris
sequence

· · · → H0
A(T ; C2) → H1

A,tf(Σ; C2) → H1
A,tf (Y ; C2) ⊕H1

A(Z; C2)

→ H1
A(T ; C2) → · · ·

is exact.

To use the Mayer-Vietoris sequence in the present context, we need to know the
perturbed flat cohomology of the perturbed flat connections on Y . This information
is provided by the following lemma.
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Lemma 5.3. For 0 < δ < π
2 , define the open rectangle

Rδ = {(u, v) | δ < u < 2π − δ, −δ/4 < v < δ/4}.

Given 0 < δ < π
2 , there exists an ǫ > 0 such that, if −ǫ < t < ǫ then H0

A(Y ; C2) =

0 and H1
A,tf (Y ; C2) = 0 for every (tf)-perturbed flat connection A on Y with

holλ(A) = Φ(u, v) for (u, v) ∈ Rδ.

Proof. Fix 0 < δ < π
2 and consider the subset Mδ(Y ) of M (Y ) consisting of gauge

orbits of flat connections A with holλ(A) conjugate to Φ(u, v) for (u, v) in the
closure of Rδ. Obviously Mδ is a compact subset of M . Moreover, the conditions
on (u, v) guarantee that holλ(A) acts nontrivially on C2 for all [A] ∈ Mδ. From
this, it follows that H0

A(Y ; C2) = 0 for all [A] ∈ Mδ. Poincaré duality on the circle
(a retract of Y ) then gives H1

A(Y ; C2) = 0 as well.
On the closed manifold Σ, if A is a flat connection, then one may identify the co-

homology Hp
A(Σ; su(3)) with the kernel of the operator dA⊕d∗A : L2

1Ω
p(Σ; su(3)) →

L2Ωp+1(Σ; su(3)) ⊕ L2Ωp−1(Σ; su(3)), which is elliptic and hence Fredholm. On
the manifold Y , with non-empty boundary, one must impose Neumann boundary
conditions for this to be an elliptic operator, namely replace the domain by

L2
1Ω

p
ν(Y ; su(3)) = L2

1{α ∈ Ωp(Σ; su(3)) | ⋆α|T = 0}.

The map DA is equivalent to the sum of the de Rham operator and its adjoint
from odd forms to even forms, except that we have used the Hodge star operator
to replace 3-forms by 0-forms and 2-forms by 1-forms. Hence the appropriate
Dirichlet/Neumann-type boundary conditions for DA are to restrict the domain to

L2
1Ω

0+1
τ,ν = {(α, β) ∈ L2

1Ω
0+1(Y ; su(3)) | α|T = 0, ⋆β|T = 0}.

If A is not flat, then this operator DA differs from that of a flat connection (for
example, the trivial connection) by a compact operator (see [24]). As pointed
out above, the operator DA,tf also differs from DA by a compact operator and
hence, with these boundary conditions, is still Fredholm. Again the (perturbed)
cohomology H0

A(Y ; su(3)) ⊕ H1
A,tf(Y ; su(3)) of a tf -perturbed flat connection is

identified with the kernel of this operator with the restricted domain.
For flat connections A, we have [A] ∈ Mδ, and the kernel of DA restricted to

L2
1Ω

0+1
τ,ν (Y ; su(3)) equals H0+1(Y ; C2), which vanishes for [A] ∈ Mδ by the previous

argument. Using upper semicontinuity of the dimension of the kernel of a continuous
family of Fredholm operators, the familyDA,tf , with the same boundary conditions,
must have trivial kernel neighborhood of ([A0], 0) for fixed [A0] ∈ Mδ. Using
compactness of Mδ, we obtain an ǫ > 0 such that if A is (tf)-perturbed flat for −ǫ <
t < ǫ and if holλ(A) = Φ(u, v) for (u, v) ∈ Rδ, then H0

A(Y ; C2) and H1
A,tf (Y ; C2)

vanish. �

As in Section 4, suppose A0 is a reducible flat connection on Σ whose gauge orbit
[A0] lies on a 2-sphere component. For 0 ≤ t ≤ ǫ, let At be the family constructed
in Subsection 4.3 of reducible (tf)-perturbed flat connections on Σ limiting to [A0]
as t→ 0.

Proposition 5.4. If t > 0 is sufficiently small, then we have that H1
At,tf

(Σ; su(3)) =
0.

Proof. We split the coefficients as su(3) = s(u(2) × u(1)) ⊕ C2 and argue the two
cases separately. The fact that H1

A0
(Σ; s(u(2) × u(1))) = 0 implies that the same
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holds true for the perturbed cohomology for small t. As far as the C2 cohomology
goes, we cannot make the same argument since H1

A0
(Σ; C2) = C2. Instead, we

combine Corollary 4.10 and Lemma 5.3, using the Mayer-Vietoris sequence, to
obtain the desired conclusion. �

5.3. The spectral flow to the reducible perturbed flat connection. We turn
now to an analysis of the spectral flow from the reducible flat connection whose
orbit lies on a pointed 2-sphere to the nearby reducible perturbed flat connection.
The set-up is as follows. We have a path At of reducible (tf)-perturbed flat con-
nections on Σ such that A0 is a flat connection whose gauge orbit lies on a 2-sphere
component. In Theorem 5.7 we compute the spectral flow

SFC2(At, tf ; Σ; 0 ≤ t ≤ ǫ)

of the path of perturbed odd signature operatorsDAt,tf : Ω0+1(Σ; C2) → Ω0+1(Σ; C2)
from t = 0 to t = ǫ. The strategy is to use the machinery of Cauchy data spaces to
prove a splitting result for spectral flow. This is accomplished in Theorem 5.6 which
which shows that the spectral flow is concentrated on Z. The path At restricts to a
path of flat connections on Z which allows us to compute the the resulting spectral
flow by topological methods. (For the remainder of this subsection, we restrict
DAt,tf to C2 valued forms and write SF for SFC2 without further reference.)

As before we let at denote the path of flat connections on the separating torus T
in the decomposition (4.1) and let Sat

be the corresponding path of of twisted de
Rham operators on Ω0+1+2(T ; C2). Since the twisting perturbation is supported on
the interior of the solid torus and vanishes on the neck, it follows that the operators
DAt,tf and DAt

coincide on ([−1, 0]×T )∪Z. Thus on the neck, equation (5.1) gives
that

(5.2) DAt,tf = J(Sat
+ ∂

∂s).

Let P±
t denote the positive and negative eigenspans of the operator Sat

. Denote
by ΛY (t) ⊂ L2(Ω0+1+2(T ; C2)) the Cauchy data space of the operator DAt,tf on Y
and by ΛZ(t) the Cauchy data space of DAt,tf on Z. Thus the kernel of DAt,tf is
isomorphic to the intersection ΛY (t) ∩ ΛZ(t).

Let Y R be Y with a collar of length R attached, namely

Y R = Y ∪ ([0, R] × T ).

Any connection A ∈ A (Y ) in cylindrical form extends in the obvious way to give
a connection on Y R in cylindrical form. Thus the family DAt,tf of perturbed odd
signature operators on Y extends (using (5.2)) to give a family of operators on Y R.
Let ΛR

Y (t) denote the Cauchy data space of the operator DAt,tf on Ω0+1(Y R; C2).
Similarly, set ZR = ([−R, 0]× T ) ∪ Z and denote by ΛR

Z(t) the Cauchy data space
of the operator DAt,tf on Ω0+1(ZR; C2).

Lemma 5.5. There exists an ǫ > 0 such that 0 ≤ t ≤ ǫ implies

(i) kerSat
= 0.

(ii) ΛR
Y (t) ∩ P+

t = 0 for all R > 0.
(iii) lim

R→∞
ΛR

Y (t) = P−
t .

(iv) ΛR
Z(ǫ) ∩ P−

ǫ = 0 for all R > 0.
(v) lim

R→∞
ΛR

Z(ǫ) = P+
ǫ .
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Proof. As in Subsection 4.3, the reducible flat connection A0 has longitudinal ho-
lonomy holλ(A0) = Φ(2πpqk

r , 0) for some 0 < k < r. The matrix Φ(2πpqk
r , 0) acts

nontrivially on C2, and it follows that H0
a0

(T ; C2) = 0. Poincaré duality implies

H2
a0

(T ; C2) = 0, and Euler characteristic considerations give that H1
a0

(T ; C2) = 0
as well. Hence

kerSa0 = H0+1+2
a0

(T ; C2) = 0.

By upper semicontinuity, kerSat
= 0 for small t. This proves (i).

Proposition 2.10 of [5] states that if A is a flat S(U(2) × U(1)) connection on a
3-manifold X with boundary, and if a = A|∂X , then ΛX,A ∩ P+

a is isomorphic to
the image of the relative cohomology in the absolute

Image
(
H1

A(X, ∂X ; C2) → H1
A(X ; C2)

)
.

The proof involves identifying the intersection with the space of L2 harmonic forms
on the infinite cylinder and applying Proposition 4.9 of [1]. If H0+1+2

a (∂X ; C2) = 0,
then the image of the relative cohomology in the absolute is exactly H1

A(X ; C2).
Apply this result to the case A = A0 and X = Y R. Lemma 5.3 tells us that

H1
A0

(Y R; C2) = 0, and we conclude that ΛR
Y (0)∩P+

0 = 0 for all R. This generalizes

to perturbed flat connections as follows. The proof of [1] that the space of L2

harmonic forms injects into H1
A(X ; C2) works just as easily to show that the space

of L2 solutions to DAt,tf(σ, τ) = 0 on Y∞ injects into H1
At,tf

(Y ; C2). Applying

Lemma 5.3 again, we see that H1
At,tf (Y ; C2) = 0. This proves (ii).

Assertion (iv) follows by applying the same argument to the case A = Aǫ

and X = Z. Note that Proposition 4.9 implies that, for ǫ > 0 small enough,
H1

Aǫ
(Z; C2) = 0.

Assertion (iii) follows from (i) and (ii) and a theorem of Nicolaescu ([21, Corollary
4.11]; see Theorem 2.7 of [5] for the result in the present context). Similarly,
Assertion (v) follows from (iv). �

The restriction of the operator DAt,tf to Z coincides with DAt
on Z. The

operator DA,tf restricted to those L2
1 sections whose restriction to the boundary lie

in P−
t is a well-posed elliptic boundary value problem which, furthermore, is self-

adjoint since kerSat
= 0. This implies that the spectral flow SF (DAt,tf ; Z; P−

t ) is
well-defined. (These are well-known facts, originating in [1], whose proofs can be
found in many places, e.g. [19].)

The next result is a splitting theorem which uses the vanishing of cohomology
on the solid torus Y to localize the spectral flow on the knot complement Z.

Theorem 5.6. For small ǫ > 0,

SF (DAt,tf ; Σ; 0 ≤ t ≤ ǫ) = SF (DAt
; Z; P−

t ; 0 ≤ t ≤ ǫ).

Proof. By part (i) of Lemma 5.5, we have H0+1+2
at

(T ; C2) = 0 for 0 ≤ t ≤ ǫ. A
theorem of Nicolaescu ([21]; see also [19]) states that

(5.3) SF (DAt,tf ; Σ) = Mas(ΛY (t),ΛZ(t)).

As in [5] and [10], we use homotopy invariance and additivity of the Maslov index
to complete the argument. (For a precise definition of the Maslov index in this
context, see [21, 19] and [5, Definition 2.13]).
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Consider the 2-parameter family

L(s, t) =

{
Λ

1/(1−s)
Y (t) for 0 ≤ s < 1

P−
t if s = 1

for 0 ≤ s ≤ 1, 0 ≤ t ≤ ǫ. Lemma 5.5(iii) and the appendix to [10] shows that for
each fixed t this is a continuous path. What we need is uniform continuity in the
t parameter. Such families are not always continuous (see [5] for a discontinuous
example) but in this case the family is continuous by [21, Corollary 4.12]. The
required nonresonance hypothesis is exactly what Lemma 5.5 (ii) asserts.

Since L(0, t) = ΛY (t) and L(1, t) = P−
t , additivity and homotopy invariance of

the Maslov index implies that

Mas(ΛY (t),ΛZ(t)) = Mas(L(s, 0),ΛZ(0)) + Mas(P−
t ,ΛZ(t))

− Mas(L(s, ǫ),ΛZ(ǫ)).
(5.4)

Since A0 is flat, Proposition 2.2 shows that, for 0 ≤ s < 1,

dim(L(s, 0) ∩ ΛZ(0)) = dim kerDA0 = dim(H0+1
A0

(Σ; C2)) = 4.

(Note, all dimensions computed here are real.) For s = 1,

L(1, 0) ∩ ΛZ(0) = P−
0 ∩ ΛZ(0) ∼= Image

(
H1

A0
(Z, T ; C2) → H1

A0
(Z; C2)

)
.

Since H0+1+2
a0

(T ; C2) = 0, the image of the relative cohomology in the absolute

is all of H1
A0

(Z; C2) which has complex dimension 2 by Proposition 3.1. Thus
dim(L(s, 0) ∩ ΛZ(0)) is constant in s and it follows that

(5.5) Mas(L(s, 0),ΛZ(0)) = 0.

By Lemma 5.5 (iv), L(1, ǫ) ∩ ΛZ(ǫ) = 0. For 0 ≤ s < 1, we have

dim (L(s, ǫ) ∩ ΛZ(ǫ)) = dimker
(
DAǫ,ǫf : Ω0+1(ΣR; C2) → Ω0+1(ΣR; C2)

)

= dimH0+1
Aǫ,ǫf(Σ; C2) = 0.

Here, ΣR = Y R∪T Z is the result of adding a collar of length R to the neck. The
computation that H0+1

Aǫ,ǫf (Σ; C2) = 0 follows by a Mayer-Vietoris argument, using
Lemma 5.3 and Proposition 3.10. Therefore

(5.6) Mas(L(s, ǫ),ΛZ(ǫ)) = 0.

Next,

(5.7) Mas(P−
t ,ΛZ(t)) = SF (At; Z; P−

t ; 0 ≤ t ≤ ǫ).

(This result is also due to Nicolaescu; see [19] and [5, Theorem 2.18] for proofs
in the present context.) Combining (5.3), (5.4), (5.5), (5.6), and (5.7) with the
observation that DAt,tf and DAt

agree on Z completes the argument. �

Theorem 5.6 reduces the problem of computing SFC2(DAt,tf ; Σ) from the flat
irreducible connection A0 and zero perturbation to the ǫf -perturbed flat reducible
connection Aǫ and perturbation ǫf to the problem of computing the spectral flow on
the knot complement, namely, SFC2(DAt

; Z; P−
t ). This is a much easier problem

for the following reason. The path of perturbed flat connections At restricts to a
path of flat connections on Z, and the kernel of DAt

acting on C2-valued forms with
boundary conditions P− is isomorphic to the image of H1(Z, T ; C2

αt
) → H1(Z; C2

αt
)

(see the proof of Lemma 5.5). Corollary 4.10 then implies that this kernel is 0 for
t > 0, and Proposition 3.2 shows that the kernel is C

2 ∼= R
4 for t = 0. We will
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prove that two zero-modes become positive and two become negative, so that the
spectral flow equals −2 (with our conventions). The homotopy will be a disk in the
cylinder S1 × R of Theorem 3.8.

Theorem 5.7. With ǫ > 0 as in Theorem 5.6, we have

SF (DAt
; Z; P−

t ; 0 ≤ t ≤ ǫ) = −2.

Proof. As mentioned above, for t = 0, the kernel of DA0 with P− boundary condi-
tions has real dimension 4, but for t > 0, the kernel is trivial.

In Subsection 3.2, we constructed 2-parameter families of reducible SU(3) rep-
resentations on Z. These results give 2-parameter families of based gauge orbits
of flat connections on Z. The based gauge group is the subgroup of G (Z) con-
sisting of those gauge transformations in the path component of the identity. The
point is that spectral flow is a well defined concept for connections modulo based
gauge transformations, so we can use the parameterization from Subsection 3.2 to
compute spectral flow.

If needed, gauge transform the path At so that its path of holonomy represen-
tations γt : π1(Z) → SU(3) takes values in S(U(2) × U(1)) and so that xy is sent
to a diagonal matrix. Notice that γ0 takes values in SU(2) × {1} since At is the
restriction of flat connection on Σ(p, q, r). Thus γ0 lies on an arc α (see Definition
3.6) for some k, ℓ, and ǫ. The precise values of k, ℓ, and ǫ are not needed for our
argument.

Suppose that γ0 = αs0 for some s0 ∈ (0, 1). Proposition 4.7 (in particular
(4.5)) shows that γt lies off the seam of SU(2) × 1 representations for t > 0,
and in particular γt is a S(U(2) × U(1) representation but not an SU(2) × {1}
representation for t > 0. Hence Theorem 3.8 implies that γt is of the form αst,θt

for paths st ∈ (0, 1) and θt ∈ [0, π]. (We assume ǫ is small so that θt is also small.)
Now the construction of Definition 3.6 gives a 2-parameter family of representa-

tions: namely the disk in the cylinder bounded by union of the 4 curves (see Figure
4):

(i) γt = αst,θt
, t ∈ [0, ǫ],

(ii) αsǫ,(1−u)θǫ
, u ∈ [0, 1],

(iii) α(1−u)sǫ,0, u ∈ [0, 1],
(iv) αu,0, u ∈ [0, s0].

This disk determines a 2-parameter family of reducible flat connections

{As,t | 0 ≤ s ≤ 1, 0 ≤ t ≤ ǫ}

such that:

(i) A0,t = At for 0 ≤ t ≤ ǫ.
(ii) As,ǫ is a flat S(U(2)×U(1)) connection with H1

As,ǫ
(Z; C2) = 0 for 0 ≤ s < 1

(see Lemma 5.3).
(iii) A1,t is a flat abelian connection for 0 ≤ t ≤ ǫ and H1

A1,t
(Z; C2) = 0 for

0 < t ≤ ǫ.
(iv) As,0 is a flat SU(2)×{1} connection with H1

As,0
(Z; C2) = C2 for 0 ≤ s ≤ 1.

The parameterization in s and t may be chosen so that, when s is near 1, the
t parameter is simply twisting, holγ(As,t) equals the twist of holγ(As,0) by the
U(1) representation sending µ to eit. This family parameterizes a thin strip on the
cylinder S1 ×R with the edge corresponding to (iii) in the abelian flat connections.
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A0,0

A0,ǫA1,ǫ

A1,0

Figure 4. The family As,t is the shaded rectangle within a cylin-
drical component of Rred(Z, SU(3)).

We assume that As,t is in cylindrical form and has diagonal holonomy on the
boundary.

Let as,t denote the restriction of As,t to the torus, and let P±
s,t be the positive

and negative eigenspans of Sas,t
. Since

ker(Sas,t
) = H0+1+2

as,t
(T ; C2) = 0

for 0 ≤ s ≤ 1 and 0 ≤ t ≤ ǫ, the Lagrangian spaces P−
s,t vary continuously. Thus the

odd signature operator DAs,t
acting on sections over Z with P−

s,t boundary condi-
tions is a continuous 2-parameter family of self-adjoint operators. This 2-parameter
family gives a homotopy from the path DA0,t

, 0 ≤ t ≤ ǫ, to the composition of the
three paths

(i) DAs,0 , 0 ≤ s ≤ 1,
(ii) DA1,t

, 0 ≤ t ≤ ǫ,
(iii) DA1−s,ǫ

, 0 ≤ s ≤ 1,

and hence

SF (DAt
) = SF (DAs,0)s∈[0,1] + SF (DA1,t

)t∈[0,ǫ] + SF (DA1−s,ǫ
)s∈[0,1].

The flat connections As,t act nontrivially on C2, hence H0
As,t

(Z; C2) = 0 for all

s, t. The path As,0, 0 ≤ s ≤ 1 runs along the seam of the cylinder and Propositions
3.2 and 3.5 show that H1

As,0
(Z; C2) = C2 for 0 ≤ s ≤ 1. By choosing ǫ sufficiently

small, we can arrange that H1
As,t

(Z; C2) = 0 for 0 ≤ s ≤ 1 and 0 < t ≤ ǫ. (For this

deduction, notice that As,t has been twisted out of the SU(2) × {1} stratum for
t > 0.)

Since the kernel of DAs,t
with P− boundary conditions is isomorphic to the

image of the restriction homomorphism H0+1
As,t

(Z, ∂Z; C2) → H0+1
As,t

(Z; C2) (see the

paragraph preceding the statement of Theorem 5.7), and this map is surjective by
Proposition 3.2, it follows that along the first path DAs,0 the kernel is constant (and
4-dimensional) and along the third path the kernel is trivial. Hence the spectral
flow along the first and third paths vanishes. Thus

SF (DA0,t
; Z; P−

0,t; 0 ≤ t ≤ ǫ) = SF (DA1,t
; Z; P−

1,t; 0 ≤ t ≤ ǫ).

We have reduced the proof to the problem of computing the spectral flow SF (DA1,t
; Z; P−

1,t; 0 ≤

t ≤ ǫ), along the path At,1 of abelian flat connections. We will show that the four
zero-modes bifurcate into two positive and two negative eigenvalues. The idea
of the argument is simple but the execution is a bit technical, so we outline the
argument first. We will embed the path At,1, t ∈ [0, ǫ] in a 2-parameter family
Bu,v, (u, v) ∈ R

2 so that At,1 corresponds to a short path starting at the origin
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moving along the positive v-axis. The operator DBu,v
with P− boundary condi-

tions will be seen to have kernel of dimension 2 along the two lines v = u/3 and
v = −u/3 (and hence 4-dimensional kernel at the origin). The spectral flow along
the u axis through the origin (i.e. SF (DBu,0 , P

−,−ǫ ≤ u ≤ ǫ)) equals 4 or −4.
Thus in the four cone shaped regions complementary to the two lines, the two re-
gions containing the positive and negative v axis must correspond to two of the
zero-modes becoming positive and two becoming negative.

Since A1,t is an abelian flat connection on Z, it is completely determined by its
meridinal holonomy. Suppose holµ(A1,0) = Φ(u0, 0) and let Bs,t be a 2-parameter
family of abelian flat connections with B0,t = A1,t and holµ(Bs,t) = Φ(u0 + s, t).
Notice that each Bs,0 is an SU(2) × {1} connection.

By [1], the kernel of DBs,t
with P− boundary conditions is isomorphic to the

image of the relative cohomology in the absolute

Image
(
H1

Bs,t
(Z, T ; C2) → H1

Bs,t
(Z; C2)

)
.

For s and t small, H∗
Bs,t

(T ; C2) = 0, so the latter image is simply H1
Bs,t

(Z; C2),

which is computed in Proposition 3.4. In the present context, this proposition
implies that, for small s and t, the kernel of DBs,t

with P− boundary conditions is

H1
Bs,t

(Z; C2) =





C2 if s = t = 0,

C if t = ± s
3 6= 0,

0 otherwise.

For paths of SU(2) × {1} connections, the odd signature operator respects the
quaternionic structure on C2, and for this reason, the spectral flow

SF (Bs,0; Z; P−; −ǫ ≤ s ≤ ǫ) = ±4

(cf. Theorem 6.12 in [5]). We assume this spectral flow equals +4. The argument
in the other case is similar and is left to the reader. Because there are only four
zero-modes, all at s = 0, we see that the spectral flow along the first half of this
path {(s, 0) | −ǫ ≤ s ≤ 0} must also equal +4 (by our spectral flow conventions).

Clearly, the straight line {(s, 0) | −ǫ ≤ s ≤ ǫ} is homotopic to the semicircle
{(−ǫ cos θ, ǫ sin θ) | 0 ≤ θ ≤ π}. The semicircle passes through the two diagonal lines
through (u0, 0) exactly once. Each time it crosses a diagonal line t = ± s

3 , exactly
one eigenvalue (of multiplicity two) of DBs,t

crosses zero from negative to positive
(since the total spectral flow is +4). Thus, the spectral flow along the quarter circle
{(−ǫ cos θ, ǫ sin θ) | 0 ≤ θ ≤ π/2} must equal +2. Of course, the quarter circle is
homotopic to the composition of the two straight lines {(s, 0) | −ǫ ≤ s ≤ 0} and
{(0, t) | 0 ≤ t ≤ ǫ}. We already concluded that the spectral flow along the first line
equals +4, hence the spectral flow along the second must equal −2. Thus

SF (B0,t; Z; P−; 0 ≤ t ≤ ǫ) = −2.

In other words, the behavior of the four zero-modes of DA1,t
as t increases from

t = 0 is that two go up, the other two go down. This completes the proof. �

6. Applications

In this section, we present computations of the integer valued SU(3) Casson
invariant τSU(3) for Brieskorn spheres Σ(p, q, r). As we know from Subsection 2.3,
there are exactly four types of path components, so our first task is to explain
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how each type contributes to τSU(3). This reduces the problem of computing
τSU(3)(Σ(p, q, r)) to an enumeration problem, which we then phrase and solve in
terms of counting lattice points in rational polytopes. From this, we deduce that
τSU(3) is a quadratic polynomial in n for 1/n-Dehn surgery on a (p, q) torus knot,and
more generally for the families Σn = Σ(p, q, pqn+m) for p, q,m > 0 fixed, relatively
prime integers with m < pq.

6.1. The integer valued SU(3) Casson invariant. In this subsection, we de-
termine how the different component types contribute to the integer valued SU(3)
Casson invariant defined in [6].

Theorem 6.1. Suppose Σ is a Brieskorn sphere. The contribution of a given path
component of R(Σ, SU(3)) to the integer valued SU(3) Casson invariant τSU(3)

depends only on the component type and is as follows.

(i) Type Ia components are isolated points of conjugacy class of irreducible
SU(3) representations and contribute +1 to τSU(3)(Σ).

(ii) Type IIa components are a smooth 2-spheres of conjugacy classes of irre-
ducible SU(3) representations and contribute +2 to τSU(3)(Σ).

(iii) Type Ib components are isolated points of conjugacy classes of reducible
SU(3) representations and do not contribute to τSU(3)(Σ).

(iv) Type IIb components are pointed 2-spheres containing one conjugacy class
of reducible SU(3) representations and contribute +2 to τSU(3)(Σ).

Proof. This theorem uses Proposition 5.1 from [2], which states that for any irre-
ducible flat SU(3) connection A on Σ, the adjoint su(3) spectral flow SF (Θ, A) is
even. Given a nondegenerate component C ⊂ R∗(Σ, SU(3)) and [A] ∈ C , Propo-
sition 8 of [4] states that C contributes (−1)SF (Θ,A)χ(C ) to λSU(3). But the only
difference between the invariants τSU(3) and λSU(3) is in their correction terms. In
other words, on the level of the irreducible stratum, these two invariants coincide.
Thus, since components of Types I and II are nondegenerate, we conclude that
components of Type Ia contribute +1 and components of Type IIa contribute +2
to τSU(3)(Σ).

Next, consider a component C of Type Ib. Thus C = {[A0]} for an isolated
reducible orbit [A0] ∈ M red. Proposition 2.2 implies that H1

A0
(Σ; C2) = 0. Given a

generic path ht of small perturbations, the path At of nearby reducible ht-perturbed
flat connections also have H1

At,ht
(Σ; C2) = 0. As a result, SFC2(At, ht; Σ) = 0 and

we conclude that components of Type Ib do not contribute to τSU(3).
Finally, consider a component C of Type IIb. So C is a pointed 2-sphere and

has two strata: C = C ∗ ∪ C red. Let tf be the path of twisting perturbations on
Σ as in Section 4. Denote by Ct ⊂ Mtf the part of the (tf)-perturbed flat moduli
space of Σ near C . As we have shown, for t small, Ct is a disjoint union of two
components

Ct = C
∗
t ∪ C

red

t .

Choose ǫ > 0 as in Theorem 5.6 and suppose [Bt] ∈ C ∗
t is a path of gauge

orbits of irreducible (tf)-perturbed flat connections on Σ for 0 ≤ t ≤ ǫ. Then
H1

Bt,tf
(Σ; su(3)) = R2 for 0 ≤ t ≤ ǫ, and hence

SF (Bt, tf ; Σ; 0 ≤ t ≤ ǫ) = 0.
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Since SF (Θ, B0; Σ) is even, another application of Proposition 8 of [4], together
with the fact that C ∗

ǫ is a nondegenerate 2-sphere, shows that C ∗
ǫ contributes +2

to τSU(3)(Σ).

Now suppose [At] ∈ C red
t is a path of gauge orbits of reducible (tf)-perturbed

flat connections on Σ. Corollary 5.4 shows {[At]} is isolated for 0 < t ≤ ǫ, and
Theorems 5.6 and 5.7 imply that SFC2(A0, Aǫ; Σ) = −2. In addition, Proposition
2.2 tells us that H1

A0
(Σ; C2) = C

2. Thus

2SFC2(A0, Aǫ; Σ) + dimH1
A0

(Σ; C2) = −4 + 4 = 0,

and the contribution of C red

ǫ to τSU(3)(Σ) is 0. Consequently, each component of
Type IIb contributes +2 to τSU(3)(Σ), and this completes the proof. �

6.2. SU(3) fusion rules. The set of SU(3) matrices modulo conjugation is pa-
rameterized by the 2-simplex

∆ := {(a1, a2, a3) ∈ R
3 | a1 + a2 + a3 = 0 and

a1 ≤ a2 ≤ a3 ≤ a1 + 1}.
(6.1)

Suppose Γ is a discrete group and α ∈ R(Γ, SU(3)). Define the map λα : Γ → ∆
by sending γ ∈ Γ to the unique (a1, a2, a3) ∈ ∆ such that α(γ) has eigenvalues
e2πia1 , e2πia2 , e2πia3 .

The fundamental group of a thrice-punctured 2-sphere has the presentation G =
〈x, y, z | xyz = 1〉, where x, y, z are represented by loops around the three punctures.
(Of course G is a free group on 2 generators.) Given any representation α : G →
SU(3), the assignment α 7→ (λα(x), λα(y), λα(z)) defines a map

Ψ: R(G,SU(3)) −→ ∆ × ∆ × ∆.

The following theorem, due to Hayashi (see Theorems 3.3 and 3.4 of [16]), describes
the image of this map as a convex 6-dimensional polytope P in ∆ × ∆ × ∆.

Given a, b, c ∈ ∆, let Mabc be the moduli space of flat connections on a thrice-
punctured 2-sphere with monodromies around the three punctures specified by
a, b, c. Clearly Mabc can be identified with the fiber of the map Ψ over (a, b, c).

Theorem 6.2. The moduli space Mabc is nonempty if and only if a = (a1, a2, a3),
b = (b1, b2, b3) and c = (c1, c2, c3) satisfy the 18 inequalities:

a1 + b2 + c2 ≤ 0 a1 + b3 + c3 ≥ 0 a2 + b3 + c3 ≤ 1

a2 + b1 + c2 ≤ 0 a3 + b1 + c3 ≥ 0 a3 + b2 + c3 ≤ 1

a2 + b2 + c1 ≤ 0 a3 + b3 + c1 ≥ 0 a3 + b3 + c2 ≤ 1

a2 + b2 + c3 ≥ 0 a1 + b1 + c3 ≤ 0 a1 + b1 + c2 ≥ −1

a2 + b3 + c2 ≥ 0 a1 + b3 + c1 ≤ 0 a1 + b2 + c1 ≥ −1

a3 + b2 + c2 ≥ 0 a3 + b1 + c1 ≤ 0 a2 + b1 + c1 ≥ −1.

(6.2)

Let P = {(a, b, c) | all 18 of the inequalities (6.2) are satisfied}. Then P = im(Ψ)
is convex and 6-dimensional. Moreover, Mabc is homeomorphic to a 2-sphere if
(a, b, c) lies in the interior of Pand a point if (a, b, c) lies on the boundary of P.

These equations can be used to describe the irreducible stratum R∗(Z, SU(3))
of the representation variety of π1Z as follows. Fix elements A,B ∈ SU(3) and
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Figure 5. Qℓ
ab

is a hexagon if C ℓ
ab

is Type I and a nonagon if C ℓ
ab

is Type II.

ℓ ∈ {0, 1, 2} as in Theorem 3.9 and let a, b ∈ ∆ be the conjugacy classes of A,B, re-
spectively. Recall the presentation (2.3) for π1Z and denote by C ℓ

ab
⊂ R(Z, SU(3))

the subset consisting of conjugacy classes of representations α : π1Z → SU(3) such
that λα(x) = a, λα(y) = b, and α(h) = e2πiℓ/3I. (This set was denoted C ℓ

AB in
Theorem 3.9.)

The assignment α 7→ λα((xy)−1) defines a map

ψℓ
ab : C

ℓ
ab −→ ∆.

Let Qℓ
ab

= im(ψℓ
ab

) be the image of this map, so Qℓ
ab

is the intersection of P

with the 2-dimensional slice obtained by fixing a and b. Solving equations (6.2) for
c1, c2, c3, we see that

Qℓ
ab

⊂ ∆ = {(c1, c2, c3) ∈ R
3 | c1 ≤ c2 ≤ c3 ≤ c1 + 1 and c1 + c2 + c3 = 0}

consists of triples (c1, c2, c3) satisfying the six inequalities:

Xℓ ≤ c1 ≤ Xu,

Yℓ ≤ c2 ≤ Yu,

Zℓ ≤ c3 ≤ Zu,

where

Xℓ = max{−1 − a1 − b2,−1 − a2 − b1,−a3 − b3},

Xu = min{−a1 − b3,−a3 − b1,−a2 − b2},

Yℓ = max{−1 − a1 − b1,−a2 − b3,−a3 − b2},

Yu = min{−a1 − b2,−a2 − b1, 1 − a3 − b3},

Zℓ = max{−a1 − b3,−a3 − b1,−a2 − b2},

Zu = min{−a1 − b1, 1 − a2 − b3, 1 − a3 − b2}.

Using these equations, one can determine that Qℓ
ab

is either a hexagon or a
nonagon, depending on whether C ℓ

ab
is a Type I or II component, respectively.

(Recall the definition of Type I and II in Theorem 3.9, see also Figure 5). With a
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little more work, one sees that the vertices of Qℓ
ab

are given by

V1 = (Xu,−Xu − Zℓ, Zℓ), V4 = (Xℓ,−Xℓ − Zu, Zu),

V2 = (−Yu − Zℓ, Yu, Zℓ), V5 = (−Yℓ − Zu, Yℓ, Zu),

V3 = (Xℓ, Yu,−Xℓ − Yu), V6 = (Xu, Yℓ,−Xu − Yℓ),

(6.3)

in the hexagonal case (i.e. when C ℓ
ab

is Type I), and by

V1 = (Xu,−Xu − Zℓ, Zℓ), V6 = (Zu − 1, 1 − 2Zu, Zu),

V2 = (−2Zℓ, Zℓ, Zℓ), V7 = (−Yℓ − Zu, Yℓ, Zu),

V3 = (−2Yu, Yu, Yu), V8 = (Yℓ, Yℓ,−2Yℓ),

V4 = (Xℓ, Yu,−Xℓ − Yu), V9 = (Xu, Xu,−2Xu),

V5 = (Xℓ,−1 − 2Xℓ, 1 +Xℓ),

(6.4)

in the nonagonal case (i.e. when C ℓ
ab

is Type II).

6.3. Lattice points in rational polytopes. In this subsection, we use Ehrhart’s
theorems on enumerating lattice points in rational polytopes to establish two re-
sults. The first, Theorem 6.3, is essential for the computations in Subsection 6.4.
It shows that the integer valued SU(3) Casson invariant on homology 3-spheres ob-
tained by 1/n surgery on a torus knot (or torus-like knot) is a quadratic polynomial
in the surgery coefficient n. The second result, Proposition 6.6, enumerates Type
I and II components in the SU(3) representation variety of knot complements Z
obtained by removing one of the singular fibers of Σ(p, q, r).

To begin, suppose Σ = Σ(p, q, r) is a Brieskorn sphere and Z is the complement
of a regular neighborhood of its singular r-fiber. Recall the presentations (2.2) and
(2.3) for the fundamental groups π1Σ and π1Z. Restriction from Σ to Z defines a
natural inclusion map R(Σ, SU(3)) →֒ R(Z, SU(3)), under which

(6.5) R(Σ, SU(3)) = {α : π1Z → SU(3) | α((xy)rhc) = I}/conj.

Any irreducible representation α : π1Z → SU(3) must send h to a central element,
thus α(h) = e2πiℓ/3I for some ℓ ∈ {0, 1, 2}. Hence α(x) and α(y) are p-th and
q-th roots of the central element α(h)a = e2πiℓa/3I, and the results in Subsection
3.2 imply that R∗(Z, SU(3)) is a union of components C ℓ

ab
over all a, b ∈ ∆ and

ℓ ∈ {0, 1, 2}, of the form

(6.6) a =
(

i1
3p ,

i2
3p ,

−i1−i2
3p

)
, b =

(
j1
3q ,

j2
3q ,

−j1−j2
3q

)
,

where i1, i2, j1, j2 are integers satisfying i1 ≡ i2 ≡ j1 ≡ j2 ≡ aℓ (mod 3).
A conjugacy class [α] ∈ C ℓ

ab
with representative α : π1Z → SU(3) extends to

a representation of π1Σ = π1Z/〈(xy)
rhc〉 if and only if α((xy)rhc) = I. Setting

c = λα((xy)−1) ∈ Qℓ
ab
, we see that α extends if and only if

(6.7) c =
(

k1

3r ,
k2

3r ,
−k1−k2

3r

)

for integers k1, k2 such that k1 ≡ k2 ≡ cℓ (mod 3).
In this way, we reduce the problem of computing τSU(3)(Σ) to one of counting

lattice points of the form (6.7) in the regions Qℓ
ab

, for all a, b, ℓ satisfying (6.6). Of
course, some lattice points contribute +1 and others contribute +2, depending on
the topology of the fiber of ψab (cf. Theorem 3.14). This is a routine matter, as
the topology of the fibers is constant within the interior of Qℓ

ab
.
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The same approach can be used to perform computations for the entire family
of Brieskorn spheres

Σn := Σ(p, q, pqn+m), n ≥ 0,

where p, q,m are fixed, pairwise relatively prime positive integers with m < pq. We
have described R(Σn, SU(3)) as a disjoint union of points and 2-spheres. Under the
identification (6.5), each point and 2-sphere corresponds to a lattice point in one
of the regions Qℓ

ab
. Observe that the regions Qℓ

ab
are themselves independent of n;

the dependence on n is entirely through the denominators of the lattice points via
equation (6.7) and r = pqn+m.

Theorem 6.3. Suppose p, q,m > 0 are pairwise relatively prime with m < pq. Set
Σn = Σ(p, q, pqn+m). Then τSU(3)(Σn) is a quadratic polynomial in n of the form

τSU(3)(Σn) = An2 +Bn+ C.

Obviously C = τSU(3)(Σ(p, q,m)) and vanishes for m = ±1.

Our proof uses Ehrhart’s results on counting lattice points in rational polytopes
[11], so we begin by introducing notation and defer the proof to the end of this
subsection.

A lattice polytope P in RN is a convex polytope whose vertices lie on the standard
integer lattice Λ = ZN , and a rational polytope Q in RN is one whose vertices have
rational coordinates. Equivalently, Q is rational if the dilated region dQ = {dx |
x ∈ Q} is a lattice polytope for some positive integer d. For example, the 2-simplex
∆ of equation (6.1) is a rational polytope which, when dilated by d = 3, is a lattice
polytope.

We are interested in counting lattice points in integral dilations nP of such
polytopes. Denote by fΛ(P, n) = # (nP ∩ Λ), the number of lattice points in
nP. Ehrhart showed that if P is a lattice polytope, then fΛ(P, n) is a polynomial
in n of degree dimP. Ehrhart also proved that if Q is a rational polytope such
that dP is a lattice polytope, then fΛ(Q, n) is a quasi-polynomial of degree dimQ

and periodicity d, where (see [11] or p.235 of [23]). Recall that a quasi-polynomial
f(n) of degree j and periodicity d is a function of the form

f(n) =

j∑

i=0

ai(n)ni

whose coefficient functions ai(n) are periodic in n of period d.
Fix p, q,m and set Σn := Σ(p, q, pqn + m) as in the theorem. Choose integers

an, cn satisfying

(6.8) an(pqn+m)(p+ q) + cnpq = 1

as in Proposition 2.1. Denote by Zn the complement of a regular neighborhood of
the (pqn + m)-fiber in Σn = Σ(p, q, pqn + m). The fundamental group π1Zn has
presentation 〈x, y, h | xp = yq = han , h central〉. We will see that the Type I and
II components C ℓ

ab
of R(Zn, SU(3)) are independent of n. (Here, as established

in Theorem 3.14, components of Types I and II have real dimension two and four,
respectively.)

We will identify components of R∗(Σn, SU(3)) with the union over all a, b of
certain lattice points in Qℓ

ab
⊂ R3, and a key point is that these regions depend

only on a, b and not on n.
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Lemma 6.4. The numbers an, cn can be chosen so their values modulo three are
independent of n. Moreover:

(i) If both p and q are relatively prime to 3, then we can choose an, cn so that
an ≡ 0 (mod 3) and cn ≡ pq 6≡ 0 (mod 3).

(ii) If either p or q is a multiple of 3, then we can choose an, cn so that an ≡
(p+ q)m 6≡ 0 (mod 3) and cn ≡ −m 6≡ 0 (mod 3).

Proof. We start with an, cn satisfying (6.8) and use the substitutions a′n = an +pqk
and c′n = cn − k(p + q)(pqn + m). For example, in case (i), we can choose k so
that a′n is a multiple of 3 since pq is relatively prime to 3. Reducing equation (6.8)
modulo 3 then implies that c′n ≡ pq (mod 3). In case (ii), the mod 3 reduction of
equation (6.8) gives that an ≡ (p+q)m before (and after) making any substitutions.
Now since (p + q)m is relatively prime to 3, so is (p + q)(pqn +m), and it follows
that we can substitute so that c′n ≡ −m (mod 3). �

Remark 6.5. In case (i), a consequence of Lemma 6.4 is that a has the form

( i1
p ,

i2
p ,

−i1−i2
p ) and b has the form ( j1

q ,
j2
q ,

−j1−j2
q ) when p, q are both relatively

prime to 3 (cf. equation (6.6)). In this case, the three components C 0
a,b,C

1
a,b,C

2
a,b

have the same values for a, b.
In case (ii), we see that ℓ is completely determined by a (or b) since an 6≡ 0

(mod 3) when p or q is a multiple of 3. In this case, different values of ℓ require
different values of a, b.

The next result gives an enumeration of the number of Type I and Type II
components in R(Zn, SU(3)).

Proposition 6.6. Suppose Zn is the complement of the (pqn + m)-singular fiber
in Σ(p, q, pqn+m). Then there are

NI =
(p− 1)(q − 1)(p+ q − 4)

2
and

NII =
(p− 1)(p− 2)(q − 1)(q − 2)

12

components of Type I and Type II in R(Zn, SU(3)), respectively.

The next lemma is the key to proving this proposition.

Lemma 6.7. Suppose p ∈ Z is a positive integer and ℓ ∈ {0, 1, 2}. Let fℓ(p) denote
the number of conjugacy classes of p-th roots of e2πiℓ/3I in SU(3) with three distinct
eigenvalues, and let gℓ(p) denote the number of conjugacy classes of p-th roots of
e2πiℓ/3I in SU(3) with two distinct eigenvalues. Then we have:

fℓ(p) =






1
6 (p2 − 3p+ 2) if p is relatively prime to 3,
1
6 (p2 − 3p+ 6) if p is multiple of 3 and ℓ = 0,
1
6 (p2 − 3p) if p is multiple of 3 and ℓ = 1, 2.

gℓ(p) =






p− 1 if p is relatively prime to 3,

p− 3 if p is multiple of 3 and ℓ = 0,

p if p is multiple of 3 and ℓ = 1, 2.

Observe that
∑2

ℓ=0 fℓ(p) = 1
2 (p− 1)(p− 2) and

∑2
ℓ=0 gℓ(p) = 3p− 3 hold for all

p.
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Proof. We begin by proving the stated formulas for fℓ(p) and gℓ(p) under the
assumption that p is relatively prime to 3.

Consider the analogous problems for U(3). Set ζ = e2πi/p and notice that every
p-th root of unity in U(3) has all its eigenvalues in the set {1, ζ, ζ2, . . . , ζp−1}.
Conjugacy classes in U(3) are uniquely determined by their eigenvalues, and it
follows that there are

(
p
3

)
conjugacy classes of p-th roots of unity in U(3) with three

distinct eigenvalues and that there are p(p − 1) conjugacy classes of p-th roots of
unity in U(3) with two distinct eigenvalues

Multiplication by ζ defines a Zp action on these conjugacy classes. Using that
det (ζA) = ζ3 detA, we see that with respect to the map det : U(3) → U(1), the
induced Zp action downstairs on U(1) has weight three. If (3, p) = 1, the action is
effective on the image det({A | Ap = I}) = {1, ζ, ζ2, . . . , ζp−1}.

Thus, if (3, p) = 1, the number of conjugacy classes of p-th roots of unity in any
fiber det−1(ζk) is independent of k. Taking k = 0, it follows that f0(p) = 1

p

(
p
3

)
=

(p− 1)(p− 2)/6 and g0(p) = p− 1 if (3, p) = 1. Now multiplication by e2πi/3 shows
that fℓ(p) = fℓ+p(p) and gℓ(p) = gℓ+p(p). Thus, if p is relatively prime to 3, it
follows that fℓ(p) and gℓ(p) are independent of ℓ ∈ {0, 1, 2} and are as stated in the
lemma.

Now suppose p is a multiple of 3 and notice that the Zp action is no longer
effective on the image det({A | Ap = I}) = {1, ζ, ζ2, . . . , ζp−1}. Since the action
has weight three, there are precisely three orbits of the Zp action, one for each
residue class of k (mod 3), where detA = ζk.

Claim 6.8. If p is a multiple of 3, then

(i) f0(p) = p2−3p+6
6 and

(ii) g0(p) = p− 3.

Establishing the claim proves the lemma, as we now explain. Taking matrix
inverses shows that f1(p) = f2(p) and g1(p) = g2(p). As argued before, the total
number of p-th roots of unity in U(3) with three distinct eigenvalues is

(
p
3

)
, and

total number of p-th roots of unity in U(3) with two distinct eigenvalues is p(p−1).
This gives the formulas

2∑

ℓ=0

fℓ(p) = 3
p

(
p
3

)
= (p−1)(p−2)

2 and

2∑

ℓ=0

gℓ(p) = 3
p (p2 − p) = 3(p− 1),

which can then be used to solve for f1(p), g1(p) in terms of f0(p), g0(p).
Part (ii) of Claim 6.8 can be proved directly. Every conjugacy class is uniquely

determined by its set of eigenvalues, which for a p-th root of unity in SU(3) with
a double eigenvalue is a set of the form {ζk, ζk, ζ−2k} for 1 < k ≤ p − 1 with
k 6= m, 2m. (Note: the conditions on k ensure that ζk 6= ζ−2k.) There are clearly
p− 3 such sets.

The direct argument for part (i) of Claim 6.8 is somewhat tedious, so we argue
indirectly as follows. Note that the total number of conjugacy classes of p-th roots
of unity in SU(3) includes the three central matrices I, e2πi/3I, e4πi/3I, as well as
the p− 3 conjugacy classes with two eigenvalues listed above. The set

{(ζa, ζb, ζ−a−b) | 1 ≤ a, b ≤ p}

of order p2 lists all possible eigenvalues of p-th roots of unity as ordered sets. Sub-
tracting 3 for the central roots and 3(p − 3) for the p-th roots of unity with two
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distinct eigenvalues (each one being listed 3 times as ordered sets), and dividing by
the order of the symmetric group S3, we get that

f0(p) = 1
6 (p2 − 3(p− 3) − 3) = p2−3p+6

6

as claimed. This completes the proof of the lemma. �

Proof of Proposition 6.6. We consider the following two cases:

Case 1: Both p and q are relatively prime to 3.
Case 2: One of p or q is a multiple of 3.

Assume 1 holds and choose an ≡ 0 (mod 3) as in Lemma 6.4. Given an ir-
reducible representation α : π1Zn → SU(3), we have α(h) = e2πiℓ/3 for some ℓ ∈
{0, 1, 2}. Then for each a, b ∈ ∆ with p ·a, q ·b ∈ Λ = Z3, there are three isomorphic
copies of C ℓ

ab
, one for each possible value of ℓ. Thus NI = 3(f0(p)g0(q)+g0(p)f0(q))

and NII = 3f0(p)f0(q), and the formulas for Lemma 6.7 complete the argument in
this case.

Now assume 2 holds, and note that an 6≡ 0 (mod 3) by Lemma 6.4. Without loss
of generality, we can assume that p is a multiple of 3 and that q is relatively prime to
3. The number of Type Ia components is given by summing over the possible values
for ℓ ∈ {0, 1, 2}, and similarly for the number of Type IIa components. Lemma 6.4
implies that fℓ(q) = 1

6 (q − 1)(q − 2) and gℓ(q) = q − 1 independent of ℓ. It also
gives that

2∑

ℓ=0

fℓ(p) = 1
2 (p− 1)(p− 2) and

2∑

ℓ=0

gℓ(p) = 3p− 3.

Using these formulas, one computes that

NI =

2∑

ℓ=0

fℓ(p)gℓ(q) + gℓ(p)fℓ(q) = 1
2 (p− 1)(q − 1)(p+ q − 4),

NII =

2∑

ℓ=0

fℓ(p)fℓ(q) = 1
12 (p− 1)(p− 2)(q − 1)(q − 2),

completing the proof of the proposition. �

Proof of Theorem 6.3. It is enough to show that the contribution of each compo-
nent C ℓ

ab
in R(Zn, SU(3)) to τSU(3)(Σn) is quadratic in n. As with the proposition,

there are two cases.

Case 1: Both p and q are relatively prime to 3.
Case 2: One of p or q is a multiple of 3.

In order to apply Ehrhart’s theorem, we consider translations of the standard
lattice and (in Case 2) of the rational polytopes Qℓ

ab
.

Assume 1 holds and choose an ≡ 0 (mod 3) and cn ≡ pq (mod 3) as in Lemma
6.4. As noted in Remark 6.5, the sets Qℓ

ab
are identical for the different ℓ ∈ {0, 1, 2}

corresponding to the different choices for α(h) = e2πiℓ/3I. It follows from equations
(6.3) and (6.4) that Qℓ

ab
is a rational polytope whose dilation by d = pq is a lattice

polytope.
When ℓ = 0, the component C 0

ab
contributes

fΛ(Q0
ab, pqn+m) = #

(
(pqn+m)Q0

ab ∩ Λ
)
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to τSU(3)(Σn), where Λ = Z3 is the standard integer lattice in R3. By [11], fΛ(Q0
ab
, k)

is a quasi-polynomial of periodicity d = pq, and we see that fΛ(Q0
ab
, pqn + m) is

polynomial in n simply because the residue class of pqn + m modulo d = pq is
constant.

This same idea should work for ℓ = 1, 2, but there are difficulties adapting
the argument to these cases individually. Instead, we combine the three cases
ℓ = 0, 1, 2 by superimposing the three sets of lattice points. This is possible here
since Q0

ab
= Q1

ab
= Q2

ab
. We denote this subset as Qab for the remainder of this

argument.
Let Λ′ be the 3-dimensional lattice in R

3 generated by the vectors (1, 0, 0),
(0, 1, 0), (1

3 ,
1
3 ,

1
3 ). As a set, Λ′ is the union Λ0 ∪ Λ1 ∪ Λ2, where

Λℓ = Λ +
(

ℓ
3 ,

ℓ
3 ,

ℓ
3

)

is the translate of the standard integer lattice Λ by the vector
(

ℓ
3 ,

ℓ
3 ,

ℓ
3

)
. Alterna-

tively, Λ′ is the lattice which intersects the unit cube [0, 1]3 at its vertices and at
the interior points

(
1
3 ,

1
3 ,

1
3

)
,
(

2
3 ,

2
3 ,

2
3

)
. It is evident that Λ′ contains the standard

integer lattice as a sublattice.
Given an arbitrary lattice Λ in RN , we call a convex polytope P a Λ-lattice poly-

tope if P has vertices on Λ; and we call Q a Λ-rational polytope if dQ is a Λ-lattice
polytope for some dilation by a positive integer d. Let fΛ(P, n) = # (nP ∩ Λ)
be the number of lattice points in the dilated region. Ehrhart’s theorems translate
immediately to this setting because the entire picture can be pulled back to the
standard situation by a linear map which takes Λ isomorphically to the standard
lattice.

Returning to our situation of the nonstandard lattice Λ′ in R3, for ℓ ∈ {0, 1, 2}
fixed, it follows from equation (6.7) with r = pqn+m that the contribution of the
component C ℓ

ab
to τSU(3)(Σn) is given by #

(
(pqn+m)Qℓ

ab
∩ Λℓ

)
. Summing over

ℓ, we compute that the contributions of the components
⋃2

ℓ=0 C ℓ
ab

to τSU(3)(Σn)
are given by fΛ′(Qab, pqn+m). Note that Qab is a Λ′-rational lattice with d = pq,
so fΛ′(Qab, k) is a quasi-polynomial of periodicity d = pq. Again, since the residue
class pqn + m modulo d = pq is constant, we conclude that fΛ′(Qab, pqn + m) is
actually polynomial in n, completing the proof of the theorem in this case.

Assume 2 holds and choose an ≡ (p + q)m (mod 3) and cn ≡ −m (mod 3) as
in Lemma 6.4. If ℓ = 0, then Q0

ab
is a rational polytope with d = pq and the

contribution of C 0
ab

to τSU(3)(Σn) is given by fΛ(Q0
ab
, pqn +m). Since fΛ(Q0

ab
, k)

is a quasi-polynomial of periodicity d = pq, and since the residue class of pqn+m
modulo pq is constant, it follows that the contribution of C 0

ab
to τSU(3)(Σn) is a

quadratic polynomial in n.
If ℓ = 1 or 2, then Qℓ

ab
is a rational polytope with d = 3pq, but that is not

sufficient for our needs. Notice from equations (6.3) and (6.4) that the dilation
pqQℓ

ab
has vertices on the translate

Λǫ = Λ +
(

ǫ
3 ,

ǫ
3 ,

ǫ
3

)

of the standard integer lattice Λ, where ǫ ∈ {0, 1, 2} is given by ǫ ≡ −mℓ (mod 3).
Further,the contribution of C ℓ

ab
to τSU(3)(Σn) is given by #

(
(pqn+m)Qℓ

ab
∩ Λǫ

)

(because ǫ ≡ −mℓ ≡ cnℓ (mod 3)). Although Λǫ is not really a lattice, we can
translate the entire situation by subtracting

(
ǫ
3 ,

ǫ
3 ,

ǫ
3

)
from Λǫ and subtracting(

ǫ
3pq ,

ǫ
3pq ,

ǫ
3pq

)
from Qℓ

ab
. The resulting region, denoted here Q̃ℓ

ab
, is a rational
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polytope with d = pq. Moreover,

fΛ(Q̃ℓ
ab, pqn+m) = #

(
(pqn+m)Q̃ℓ

ab ∩ Λ
)

= #
(
(pqn+m)Qℓ

ab ∩ Λǫ

)
,

the contribution of C ℓ
ab

to τSU(3)(Σn). Now since fΛ(Q̃ℓ
ab
, k) is a quasi-polynomial

of periodicity d = pq, we obtain the desired conclusion and this completes the proof.
�

6.4. Concluding remarks. Table 1 gives some computations of the integer valued
Casson invariant τSU(3) for Brieskorn spheres Σ(p, q, r). This extends the compu-
tations given in [6], where it was assumed that p = 2.

Σ τSU(3)(Σ)

Σ(2, 3, 6n± 1) 3n2 ± n

Σ(2, 5, 10n± 1) 33n2 ± 9n

Σ(2, 5, 10n± 3) 33n2 ± 19n+ 2

Σ(2, 7, 14n± 1) 138n2 ± 26n

Σ(2, 7, 14n± 3) 138n2 ± 62n+ 4

Σ(2, 7, 14n± 5) 138n2 ± 102n+ 16

Σ(2, 9, 18n± 1) 390n2 ± 58n

Σ(2, 9, 18n± 5) 390n2 ± 210n+ 24

Σ(2, 9, 18n± 7) 390n2 ± 298n+ 52

Σ(3, 4, 12n± 1) 105n2 ± 21n

Σ(3, 4, 12n± 5) 105n2 ± 87n+ 16

Σ(3, 5, 15n± 1) 276n2 ± 40n

Σ(3, 5, 15n± 2) 276n2 ± 74n+ 2

Σ(3, 5, 15n± 4) 276n2 ± 148n+ 16

Σ(3, 5, 15n± 7) 276n2 ± 254n+ 56

Table 1. Calculations of the integer valued SU(3) Cas-
son invariant for some Brieskorn spheres Σ(p, q, r).

Let Kp,q be the (p, q) torus knot and set Xn = 1/n Dehn surgery on Kp,q. Then
Xn = ±Σ(p, q, r) for r = |pqn−1|. Table 2 gives the value of τSU(3)(Xn) for various
p, q. These computations were performed using MAPLE.

For surgeries on torus knots, Theorem 6.3 asserts that

τSU(3)(Xn) = A(Kp,q)n
2 −B(Kp,q)n,

where A(Kp,q) and B(Kp,q) depend only on Kp,q. There is a pattern for the leading
coefficient A(Kp,q) present in Table 2. If ∆K(z) =

∑
i≥0 c2i(K)z2i denotes the

Conway polynomial of K, we conjecture generally that τSU(3)(Xn) has quadratic
growth in n with leading coefficient

(6.9) A(K) = 6c4(K) + 3c2(K)2.
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This is what one would expect from Frohman’s work [14] on SU(n) Casson knot
invariants in the case of n = 3, at least for fibered knots (cf. [15, 7]). It gives the
formula

A(Kp,q) =
(p2 − 1)(q2 − 1)(2p2q2 − 3p2 − 3q2 − 3)

240
,

which agrees with the data in Table 2.

p = 2 τSU(3)(Xn) p = 3 τSU(3)(Xn)

K2,3 3n2 − n K3,4 105n2 − 21n

K2,5 33n2 − 9n K3,5 276n2 − 40n

K2,7 138n2 − 26n K3,7 1128n2 − 124n

K2,9 390n2 − 58n K3,8 1953n2 − 179n

K2,11 885n2 − 107n K3,10 4851n2 − 367n

K2,13 1743n2 − 179n K3,11 7140n2 − 476n

K2,15 3108n2 − 276n K3,13 14 028n2 − 812n

K2,17 5148n2 − 404n K3,14 18 915n2 − 993n

K2,19 8055n2 − 565n K3,16 32 385n2 − 1517n

K2,21 12 045n2 − 765n K3,17 41 328n2 − 1788n

K2,23 17 358n2 − 1006n K3,19 64 620n2 − 2544n

K2,25 24 258n2 − 1294n K3,20 79 401n2 − 2923n

K2,27 33 033n2 − 1631n K3,22 116 403n2 − 3951n

p = 4 τSU(3)(Xn) p = 4 τSU(3)(Xn)

K4,5 1011n2 − 111n K4,7 4110n2 − 320n

K4,9 11 490n2 − 712n K4,11 25 935n2 − 1297n

K4,13 50 925n2 − 2171n K4,15 90 636n2 − 3320n

K4,17 149 940n2 − 4888n K4,19 234 405n2 − 6789n

K4,21 350 295n2 − 9231n K4,23 504 570n2 − 12 072n

K4,25 704 886n2 − 15 600n K4,27 959 595n2 − 19 569n

Table 2. Calculations of the integer valued SU(3) Cas-
son invariant for 3-manifolds Xn obtained by 1/n Dehn
surgery on torus knots Kp,q

The coefficient B(K) of the linear term is not as well-behaved. For example,
interpolating the data from Table 2, we get the formulas

B(K2,q) =

{
1
12 (q3 − 4q + 3) if q ≡ 1 (mod 4),
1
12 (q3 − 4q − 3) if q ≡ 3 (mod 4),

B(K3,q) =





1
54 (20q3 + 3q2 − 48q + 25) if q ≡ 1 (mod 6),
1
54 (20q3 − 3q2 − 48q + 2) if q ≡ 2 (mod 6),
1
54 (20q3 + 3q2 − 48q − 2) if q ≡ 4 (mod 6),
1
54 (20q3 − 3q2 − 48q − 25) if q ≡ 5 (mod 6),
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and

B(K4,q) =






1
16 (16q3 + q2 − 42q + 25) if q ≡ 1 (mod 8),
1
16 (16q3 − q2 − 42q + 39) if q ≡ 3 (mod 8),
1
16 (16q3 + q2 − 42q − 39) if q ≡ 5 (mod 8),
1
16 (16q3 − q2 − 42q − 25) if q ≡ 7 (mod 8).

The increasing complexity of these formulas makes it difficult to guess a general
formula for B(K) in terms of classical invariants of the knot. Nevertheless, it pro-
vides a negative answer to the question of whether τSU(3) is a finite type invariant.
For suppose τSU(3) were a finite type invariant. Then, as explained to us by Stavros
Garoufalidis, B(Kp,q) would necessarily be a polynomial in p and q. Since B(Kp,q)
is obviously not a polynomial in p and q, it follows that τSU(3) is not a finite type
invariant of any order.

Notice that τSU(3)(X) is even in all known computations. Further, a simple
argument using the involution on MSU(3) induced by complex conjugation proves

evenness of τSU(3)(X) under the hypothesis that H1
α(X ; su(3)) = 0 for every non-

trivial representation α : π1X → SU(3). We conjecture that τSU(3)(X) is even for
all homology 3-spheres.
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227 (1967) 25–49, MR0217010, Zbl 0155.37503.

[12] R. Fintushel and R. Stern, Instanton homology of Seifert fibred homology three spheres, Proc.
London Math. Soc. 61 (1990) 109–137, MR1051101, Zbl 0705.57009.

[13] A. Floer, An instanton invariant for 3-manifolds, Comm. Math. Phys. 118 (1989) 215–240,
MR0956166, Zbl 0684.53027.

[14] C. Frohman, Unitary representations of knot groups, Topology 32 (1993) 121–144,
MR1204411, Zbl 0791.57005.

[15] C. Frohman and A. Nicas, An intersection homology invariant for knots in a rational homol-
ogy 3-sphere, Topology 33 (1994) 123–158, MR1259519, Zbl 0822.57008.

[16] M. Hayashi, The moduli space of SU(3)-flat connections and the fusion rules, Proc. Amer.
Math. Soc. 127 (1999) 1545–1555, MR1476136, Zbl 0928.58013.

49



[17] C. Herald, Legendrian cobordism and Chern-Simons theory on 3-manifolds with boundary,
Comm. Anal. and Geom. 2 (1994) 337–413, MR1305710, Zbl 0854.58013.

[18] B. Himpel, P. Kirk, and M. Lesch Calderón projector for the Hessian of the perturbed Chern-
Simons function on a 3-manifold with boundary, Proc. London Math. Society (3) 89 (2004)
241–272, MR2063666.

[19] P. Kirk and M. Lesch, The eta-invariant, Maslov index, and spectral flow for Dirac-type
operators on manifolds with boundary, Forum Math., 16 (2004) 553–629, MR2044028.

[20] E. Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc. 326 (1991)
795–828, MR1008696, Zbl 0743.57003.

[21] L. Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds. Duke
Math. J. 80 (1995) no. 2, 485–533, MR1369400, Zbl 0849.58064.

[22] N. Saveliev, Lectures on the Topology of 3-Manifolds, An Introduction to the Casson Invari-
ant, de Gruyter, Berlin, 1999, MR1712769, Zbl 0932.57001.

[23] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Studies in Adv. Math. 49, Cam-
bridge Univ. Press 1997, MR1442260, Zbl 0945.05006.

[24] C. Taubes, Casson’s invariant and gauge theory, J. Diff. Geom. 31 (1990) 547–599,
MR1037415, Zbl 0702.53017.

Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario
L8S 4K1 Canada

E-mail address: boden@mcmaster.ca

Department of Mathematics & Statistics, University of Nevada, Reno Nevada 89557
E-mail address: herald@unr.edu

Department of Mathematics, Indiana University, Bloomington, Indiana 47405
E-mail address: pkirk@indiana.edu

50


