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Abstract. Given a knot K in an integral homology sphere Σ with exterior NK ,
there is a natural action of the cyclic group Z/n on the space of SL(n,C) repre-
sentations of the knot group π1(NK), and this induces an action on the SL(n,C)
character variety. We identify the fixed points of this action in terms of characters of
metabelian representations, and we apply this to show that the twisted Alexander
polynomial ∆α

K,1(t) associated to an irreducible metabelian SL(n,C) representation
α is actually a polynomial in tn.

1. Introduction

Suppose K is a knot. Throughout this paper we will always understand this to
mean that K is an oriented simple closed curve in an integral homology 3-sphere Σ.
We write NK = Σ3r τ(K), where τ(K) denotes an open tubular neighborhood of K.

The study of metabelian representations and metabelian quotients of knot groups
goes back to the pioneering work of Neuwirth [Ne65], de Rham [dRh68], Burde [Bu67]
and Fox [Fo70] (see also [BZ03, Section 14]). The theory was further developed by
many authors, including Hartley [Ha79, Ha83], Livingston [Li95], Letsche [Le00],
Lin [Lin01], Nagasato [Na07] and Jebali [Je08]. In [BF08] we proved a classification
theorem for irreducible metabelian representations, and in this paper we continue our
study of metabelian representations of knot groups.

We begin by introducing some terminology. Given a topological space M , let
Rn(M) be the space of SL(n,C) representations of π1(M) and Xn(M) the asso-
ciated character variety. We use ξα to denote the character of the representation
α : π1(M) → SL(n,C). We will often make use of the important fact that two irre-
ducible representations determine the same character if and only if they are conjugate
(see [LM85, Corollary 1.33]).

Now suppose K is a knot. There is an action of the group Z/n on the representation
variety Rn(NK) given by twisting by the n–th roots of unity ωk = e2πik/n ∈ U(1).
(This is a special case of the more general twisting operation described in [LM85,
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Ch. 5].) More precisely, we write Z/n = 〈σ | σn = 1〉 and set (σ · α)(g) = ωε(g)α(g)
for each g ∈ π1(NK), where ε : π1(NK) → H1(NK) = Z is determined by the given
orientation of the knot.

This constructs an action of Z/n on Rn(NK) which, in turn, descends to an action
on the character variety Xn(NK). Our main result identifies the fixed points of Z/n in
X∗

n(NK), the irreducible characters, as those associated to metabelian representations.

Theorem 1. The character ξα of an irreducible representation α : π1(NK) → SL(n,C)
is fixed under the Z/n action if and only if α is metabelian.

In proving this result, we actually characterize the entire fixed point set Xn(NK)
Z/n

in terms of characters ξα of the metabelian representations α = α(n,χ) described in
Subsection 2.3 (see Theorem 4). When n = 2, it turns out that every metabelian
SL(2,C) representation is dihedral and in this case Theorem 1 was first proved by F.
Nagasato and Y. Yamaguchi (cf. [NY08, Proposition 4.8]).

As an application of Theorem 1, we prove a result about the twisted Alexander
polynomials associated to metabelian representations. This result was first shown by
C. Herald, P. Kirk and C. Livingston in [HKL08] using completely different methods.
Our approach is elementary and quite natural, and it is explained in Section 3.2,
where we apply it to give an answer to a question raised by Hirasawa and Murasugi
in [HM09].

Acknowledgments. The authors would like to thank Steven Boyer, Christopher
Herald, Michael Heusener, Paul Kirk, Charles Livingston, Andrew Nicas and Adam
Sikora for generously sharing their knowledge, wisdom, and insight. We would also
like to thank Fumikazu Nagasato and Yoshikazu Yamaguchi for communicating the
results of their paper to us.

2. The classification of metabelian representations of knot groups

In this section we recall some results from [BF08] regarding the classification of
metabelian representations of knot groups.

2.1. Preliminaries. Given a group π, we shall write π(n) for the n–th term of the
derived series of π. These subgroups are defined inductively by setting π(0) = π and
π(i+1) = [π(i), π(i)]. The group π is called metabelian if π(2) = {e}.

Suppose V is a finite dimensional vector space over C. A representation ̺ : π →
Aut(V ) is called metabelian if ̺ factors through π/π(2). The representation ̺ is
called reducible if there exists a proper subspace U ⊂ V invariant under ̺(γ) for all
γ ∈ π. Otherwise ̺ is called irreducible or simple. If ̺ is the direct sum of simple
representations, then ̺ is called semisimple.

Two representations ̺1 : π → Aut(V ) and ̺2 : π → Aut(W ) are called isomorphic
if there exists an isomorphism φ : V → W such that φ−1 ◦ ̺1(g) ◦ φ = ̺2(g) for all
g ∈ π.
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2.2. Metabelian quotients of knot groups. Let K ⊂ Σ3 be a knot in an integral

homology 3-sphere. In the following we denote by ÑK the infinite cyclic cover of NK

corresponding to the abelianization π1(NK) → H1(NK) ∼= Z. Therefore π1(ÑK) =
π1(NK)

(1) and

H1(NK ;Z[t
±1]) = H1(ÑK) ∼= π1(NK)

(1)/π1(NK)
(2).

The Z[t±1]–module structure is given on the right hand side by tn · g := µ−ngµn,
where µ is a meridian of K.

For a knot K, we set π := π1(NK) and consider the short exact sequence

1 → π(1)/π(2) → π/π(2) → π/π(1) → 1.

Since π/π(1) = H1(NK) ∼= Z, this sequence splits and we get isomorphisms

π/π(2) ∼= π/π(1) ⋉ π(1)/π(2) ∼= Z ⋉ π(1)/π(2) ∼= Z ⋉H1(NK ;Z[t
±1])

g 7→ (µε(g), µ−ε(g)g) 7→ (ε(g), µ−ε(g)g),

where the semidirect products are taken with respect to the Z actions defined by
letting n ∈ Z act by conjugation by µn on π(1)/π(2) and by multiplication by tn on
H1(NK ;Z[t

±1]).

2.3. Irreducible metabelian SL(n,C) representations of knot groups. Let K
be a knot. We write H = H1(NK ;Z[t

±1]). The discussion of the previous section
shows that irreducible metabelian SL(n,C) representations of π1(NK) correspond
precisely to the irreducible SL(n,C) representations of Z ⋉H .

Let χ : H → C∗ be a character which factors throughH/(tn−1) and suppose z ∈ S1

with zn = (−1)n+1. Then it follows from [BF08, Section 3] that, for (j, h) ∈ Z ⋉H,
setting

α(χ,z)(j, h) =




0 . . . z
z 0 . . . 0
...

. . .
. . .

...
0 . . . z 0




j 


χ(h) 0 . . . 0
0 χ(th) . . . 0
...

. . .
...

0 0 . . . χ(tn−1h)




defines an SL(n,C) representation whose isomorphism type of this representation
does not depend on the choice of z. In our notation we will not normally distinguish
between metabelian representations of π1(NK) and representations of Z ⋉H .

In the following we say that a character χ : H → C∗ has order n if it factors through
H/(tn−1), but not through H/(tℓ−1) for any ℓ < n. Given a character χ : H → C∗,
let tiχ be the character defined by (tiχ)(h) = χ(tih). Any character χ : H → C

∗

which factors through H/(tn − 1) must have order k for some divisor k of n. The
following is a combination of [BF08, Lemma 2.2] and [BF08, Theorem 3.3].

Theorem 2. Suppose χ : H → C∗ is a character that factors through H/(tn − 1).

(i) α(n,χ) : Z ⋉ H → SL(n,C) is irreducible if and only if the character χ has
order n.
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(ii) Given two characters χ, χ′ : H → C∗ of order n, the representations α(n,χ)

and α(n,χ′) are conjugate if and only if χ = tkχ′ for some k.
(iii) For any irreducible representation α : Z ⋉H → SL(n,C) there exists a char-

acter χ : H → C∗ of order n such that α is conjugate to α(n,χ).

3. Main results

3.1. Metabelian characters as fixed points. Set ω = e2πi/n and recall the action
of the cyclic group Z/n = 〈σ | σn = 1〉 on representations α : π1(NK) → SL(n,C)
obtained by setting (σ · α)(g) = ωε(g)α(g) for all g ∈ π1(NK), where ε : π1(NK) →
H1(NK) = Z.

We begin with the following lemma.

Lemma 3. Suppose α : π1(NK) → SL(n,C) is a representation whose associated
character ξα ∈ Xn(NK) is a fixed point of the Z/n action. Then up to conjugation,
we have

(1) α(µ) =




0 . . . z
z 0 . . . 0
...

. . .
. . .

...
0 . . . z 0


 ,

for some (in fact any) z ∈ U(1) such that zn = (−1)n+1.

Proof. Let c(t) = det(α(µ)− tI) denote the characteristic polynomial of α(µ), which
we can write as

c(t) = (−1)ntn + cn−1t
n−1 + · · ·+ c1t+ 1.

Note that c(t) is determined by the character ξα ∈ Xn(NK), and so assuming ξα is
a fixed point of the Z/n action, we conclude that α(µ) and ωkα(µ) have the same
characteristic polynomials for all k. In particular,

c(t) = det(α(µ)− tI)

= det(ω−1α(µ)− tI)

= det(ω−1α(µ)− (ω−1ω)tI)

= det(ω−1I) det(α(µ)− ωtI)

= det(α(µ)− tωI) = c(ωt).

However, ωk 6= 1 unless n|k, and this implies 0 = cn−1 = cn−2 = · · · = c1 and
c(t) = (−1)ntn+1. In particular the matrix α(µ) and the matrix appearing in Equation
(1) have the same set of n distinct eigenvalues. This implies that the two matrices
are conjugate. �

In order to prove Theorem 1, we establish the following more general result.
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Theorem 4. The fixed point set of the Z/n action on Xn(NK) consists of characters
ξα of the metabelian representations α = α(n,χ) described in Section 2.3. In other
words,

Xn(NK)
Z/n = {ξα | α = α(n,χ) for χ : H1(NK ;Z[t

±1]) → C
∗}.

Notice that Theorem 1 can be viewed as the special case of Theorem 4 where α
is irreducible. (Recall that irreducible representations are conjugate if and only if
they define the same character.) Notice further that not every reducible metabelian
representation is of the form α(n,χ).

Proof. We first show that if α : π1(NK) → SL(n,C) is given as α = α(n,χ), then σ · α
is conjugate to α. This of course implies that ξα = ξσ·α.

Assume then that α = α(n,χ). Then we have

α(µ) =




0 . . . z
z 0 . . . 0
...

. . .
. . .

...
0 . . . z 0


 ,

where z satisfies zn = (−1)n+1. Further, α(g) is diagonal for all g ∈ [π1(NK), π1(NK)].
By definition of σ · α, we see that

(σ · α)(µ) = ωα(µ) =




0 . . . ωz
ωz 0 . . . 0
...

. . .
. . .

...
0 . . . ωz 0




and that (σ ·α)(g) = α(g) for all g ∈ [π1(NK), π1(NK)]. It follows easily from Theorem
2 (2) that σ · α and α(n,χ) are conjugate; however it is easy to see this directly too.
Simply take

P =




1 0
ω

. . .
0 ωn−1


 ,

and compute that σ · α = PαP−1 as claimed.
We now show the other implication, namely that each point ξ ∈ Xn(NK)

Z/n in the
fixed point set can be represented as the character ξ = ξα of a metabelian represen-
tation α = α(n,χ), where χ : H1(NK ;Z[t

±1]) → C∗ is a character that factors through
H1(NK ;Z[t

±1])/(tn−1), hence has order k for some k dividing n. (Note that Theorem
2 (1) tells us that α(n,χ) is irreducible if and only if χ has order n.)

By the general results on representation spaces and character varieties (see [LM85]),
it follows that every point in the character variety Xn(NK) can be represented as ξα
for some semisimple representation α : π1(NK) → SL(n,C). Further, two semisimple
representations α1 and α2 determine the same character if and only if α1 is conjugate
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to α2. (This is evident from the fact that the orbits of the semisimple representations
under conjugation are closed.)

Given ξ ∈ Xn(NK)
Z/n, we can therefore suppose that ξ = ξα for some semisimple

representation α. Clearly σ · α is also semisimple, and since ξα = ξσ·α, we conclude
from the above that α and σ · α are conjugate representations. This means that
there exists a matrix A ∈ SL(n,C) such that AαA−1 = σ · α, in other words, for all
g ∈ π1(NK), we have

(2) Aα(g)A−1 = ωε(g)α(g).

Lemma 3 implies α(µ) is conjugate to the matrix in Equation (1). It is convenient to
conjugate α so that α(µ) is diagonal, meaning that

α(µ) =




z 0
ωz

. . .
0 ωn−1z


 ,

where z satisfies zn = (−1)n+1.
We now apply Equation (2) to the meridian to conclude that

Aα(µ) = ωα(µ)A,

which implies A = (aij) satisfies aij = 0 unless j = i+ 1 mod (n). Thus, we see that

A =




0 λ1 0 . . . 0
0 0 λ2 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 λn−1

λn 0 . . . 0 0




for some λ1, . . . , λn satisfying λ1 · · ·λn = (−1)n+1.
It is completely straightforward to see that the characteristic polynomial of A is

given by

det(A− tI) = (−1)n(tn − (−1)n+1).

From this, we conclude that A has as its eigenvalues the n distinct n–th roots of
(−1)n+1. In particular, the subset of SL(n,C) of matrices that commute with A is
just a copy of the unique maximal torus TA

∼= (C∗)n−1 containing A.
For any g ∈ [π1(NK), π1(NK)], we have α(g) = (σ · α)(g). Thus it follows that

Aα(g)A−1 = α(g), and this implies that α(g) ∈ TA for all g ∈ [π1(NK), π1(NK)].
This shows that the restriction of α to the commutator subgroup [π1(NK), π1(NK)] is
abelian, and we conclude from this that α is indeed metabelian. Notice that this, and
an application of Theorem 2 (iii), completes the proof in the case α is irreducible.

In the general case, it follows from the discussion in Section 2.2 that α factors
through Z⋉H1(NK ;Z[t

±1]). Let H = H1(NK ;Z[t
±1]). Given a character χ : H → C

∗
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we define the associated weight space Vχ by setting

Vχ = {v ∈ C
n |χ(h) · v = α(h)v for all h ∈ H}.

Recall that A · α(h) · A−1 = α(h) for any h ∈ H . It is straightforward so show that
A restricts to an automorphism of Vχ. Since H is abelian there exists at least one
character χ : H → C∗ such that Vχ is non–trivial. For any i we denote by tiχ the
character given by (tiχ)(h) = χ(tih), h ∈ H .

Note that A has n distinct eigenvalues and therefore is diagonalizable. Since A
restricts to an automorphism of Vχ, there is an eigenvector v of A which lies in Vχ.
Let λ be the corresponding eigenvalue. By the proof of [BF08, Theorem 2.3], the map
α(µ) induces an isomorphism Vχ → Vtχ. We now calculate

A · α(µ)v = (Aα(µ)A−1) · Av = ωα(µ) · λv = λω · α(µ)v,

i.e. α(µ)v ∈ Vtχ is an eigenvector of A with eigenvalue ωλ.
Iterating this argument, we see that α(µ)iv lies in Vtiχ and is an eigenvector of

A with eigenvalue ωiλ. Since ω is a primitive n–th root of unity, the eigenvalues
λ, ωλ, . . . , ωn−1λ are all distinct, and this implies that the corresponding eigenvectors
v, α(µ)v, . . . , α(µ)n−1v form a basis for Cn.

Let m be the order of χ, i.e. m is the minimal number such that χ = tmχ. By
the above we see that Cn is generated by Vχ, Vtχ, . . . , Vtmχ. Since the characters
χ, tχ, . . . , tmχ are pairwise distinct, it follows that Cn is given as the direct sum
Vχ ⊕ Vtχ ⊕ · · · ⊕ Vtm−1χ.

We write k = dimC(Vχ) and note that n = km. We note further that α(µ)m has
eigenvalues given by the set

(3) {zm, zme2πi/k, . . . , zme2πi(k−1)/k},

and each eigenvalue has multiplicity m. Clearly α(µ)m restricts to an automorphism
of Vtiχ for i = 0, . . . , m − 1, and equally clearly we see that the restrictions all
give conjugate representations. This implies that the restriction of α(µ)m to Vχ has
eigenvalues in the set (3) above, each occurring with multiplicity 1. In particular we
can find a basis {v1, . . . , vk} for Vχ in which the matrix of α(µ)m has the form

α(µm) =




0 . . . zm

zm 0 . . . 0
...

. . .
. . .

...
0 . . . zm 0


 .

It is now straightforward to verify that with respect to the ordered basis




v1, z−1α(µ)v1, . . . , z−(m−1)α(µ)m−1v1,
v2, z−1α(µ)v2, . . . , z−(m−1)α(µ)m−1v2,
...

... . . .
...

vk, z−1α(µ)wk, . . . , z−(m−1)α(µ)m−1vk





,
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α is given by α(n, χ). �

3.2. Application to twisted Alexander polynomials. As an application, we now
prove the following result regarding twisted Alexander polynomials of knots corre-
sponding to metabelian representations. In the following, we use ∆α

K,i(t) to denote the
i–th twisted Alexander polynomial for a given representation α : π1(NK) → SL(n,C)
as presented in [FV09].

Proposition 5. Let α be a metabelian representation of the form α = α(n,χ) : π1(NK) →
SL(n,C). Then

∆α
K,0(t) =

{
1− tn, if χ is trivial,

1, otherwise.

Furthermore the twisted Alexander polynomial ∆α
K,1(t) is actually a polynomial in tn.

Remark 6. In their paper [HKL08], C. Herald, P. Kirk, and C. Livingston prove the
same result using an entirely different approach (cf. p. 10 of [HKL08]). We also point
out that Proposition 5 gives a positive answer to Conjecture A from a recent paper
by M. Hirasawa and K. Murasugi (see [HM09]).

Proof. The proof of the first statement is not difficult. It is immediate when χ is
trivial, and it follows by a direct calculation when χ is non–trivial.

We now turn to the proof of the second statement. For θ ∈ U(1) and any repre-
sentation β : π1(NK) → GL(n,C), define the θ-twist of β to be the representation
sending g ∈ π1(NK) to θε(g)β(g), where ε : π1(NK) → Z is determined by the orienta-
tion of K. We denote the newly obtained representation by βθ : π1(NK) → GL(n,C).
Note that in case α : π1(NK) → SL(n,C) and θ = e2πik/n is an n-th root of unity,
αθ is again an SL(n,C) representation. The proof of the proposition relies on the
formula

(4) ∆βθ

K,1(t) = ∆β
K,1(θt).

This formula is well-known and follows directly from the definition of the twisted
Alexander polynomial. Equation (4) combines with Theorem 1 to complete the proof,
as we now explain. Take ω = e2πi/n. If α = α(n,χ) is metabelian, then Theorem 1
shows that its conjugacy class is fixed under the Z/n action. In particular, since α
and αω are conjugate, Equation (4) shows that

∆α
K,1(t) = ∆αω

K,1(t) = ∆α
K,1(ωt).

Expanding ∆α
K,1(t) =

∑
ait

i and using the fact that tk = (ωt)k if and only if k is a
multiple of n, this shows that ak = 0 unless k is a multiple of n and this completes
the proof. �
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