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Abstract. We study concordance of virtual knots. Our main result is that

a classical knot K is virtually slice if and only if it is classically slice. From

this we deduce that the concordance group of classical knots embeds into the
concordance group of long virtual knots.

1. Introduction

Virtual knot theory, discovered by Kauffman [Ka99], is a nontrivial extension of
classical knot theory. Indeed, Goussarov, Polyak, and Viro proved that any two
classical knots are equivalent as virtual knots if and only if they are equivalent
as classical knots [GPV00, Theorem 1.B]. Their result served to motivate many
subsequent developments, because it predicted that many classical knot and link
invariants can be extended to virtual knots and links.

This result from [GPV00] was originally deduced from the classical Waldhausen’s
theorem [Wa68, Corollary 6.5], but it can also be derived from Kuperberg’s theo-
rem [Ku03]. In the latter formulation, one represents virtual knots geometrically
as knots in thickened surfaces up to stable equivalence, and Kuperberg’s theorem
tells us that the minimal genus representative is unique up to diffeomorphism.

Concordance of virtual knots has recently become an area of active interest, and
many basic questions are still open. One important question, which was raised both
by Turaev [Tu08, Section 2.2] and by Kauffman [Ka15, p. 336], is the following: If
two classical knots are concordant as virtual ones, are they concordant in the usual
sense? Our main result gives an affirmative answer to this question.

Theorem. If two classical knots are concordant as virtual knots, then they are also
concordant as classical knots.

This result can be viewed as the analogue in concordance of the earlier result of
Goussarov, Polyak, and Viro [GPV00], and consequently we hope that it will stim-
ulate further research on the problem of extending concordance invariants from the
classical to the virtual setting. In fact, there are already exciting new developments
along these lines, for instance the extension of the Rasmussen s-invariant to virtual
knots given by Dye, Kaestner, and Kauffman [DKK14].

We give a brief overview of the rest of the paper. In Section 2, we introduce
virtual knots as knots in thickened surfaces up to stable equivalence. We recall
Turaev’s definition of virtual knot concordance in Subsection 2.2, and we state and
prove our main result in Subsection 2.3. In Section 3, we introduce long virtual
knots and construct the virtual knot concordance group VC . We show that a long
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virtual knot K is virtually slice if and only if its closure K is, and we use it to
deduce injectivity of the natural homomorphism ψ : C → VC from the classical
concordance group to the virtual concordance group.

Conventions. All manifolds are assumed smooth and all knots are assumed oriented.
Throughout the paper, we work with smooth concordance.

2. Virtual knots and concordance

In this section, we introduce stable equivalence of knots in thickened surfaces
and use them to define virtual knots. This gives rise to a natural notion of concor-
dance for virtual knots, which allows for a bordism between the two surfaces whose
thickenings contain representatives of the two virtual knots, and requires also an
embedded annulus cobounding the two knots.

2.1. Diagrams and stable equivalence. It will be convenient for us to regard
virtual knots geometrically as knots in thickened surfaces, and we take a moment
to explain this point of view.

Definition 2.1. A thickened surface Σ × I is a product of a closed, connected,
oriented surface Σ with the interval I = [−1, 1]. A knot K in a thickened surface Σ×
I is a 1-dimensional submanifold K in the interior of Σ× I which is diffeomorphic
to a circle.

Just as classical knots in S3 are considered up to ambient isotopy, we consider
knots in thickened surfaces up to stable equivalence [CKS02]. We take a moment
to recall this carefully.

Definition 2.2. Stable equivalence on knots in thickened surfaces is generated by
the following operations, which transform a given knot K in a thickened surface
Σ× I into a new knot K ′ in a possibly different thickened surface Σ′ × I.

(1) Let f : Σ×I → Σ′×I be an orientation-preserving diffeomorphism sending
the orientation class of Σ to that of Σ′. (Notice that this implies that
f(Σ×{1}) = Σ′×{1} and f(Σ×{−1}) = Σ′×{−1}.) The knot K ′ = f(K)
in Σ′ × I is said to be obtained from K in Σ× I by a diffeomorphism.

(2) Let h : S0 ×D2 → Σ be the attaching region for a 1-handle that is disjoint
from the image of K under projection Σ × I → Σ, then 0-surgery on Σ
along h is the surface

Σ′ := Σ r h(S0 ×D2) ∪S0×S1 D1 × S1.

The knot K ′ is the image of the knot K in Σ′× I, and we say that it is the
knot obtained from K by stabilisation.

(3) Destabilisation is the inverse operation, and it involves cutting Σ×I along a
vertical annulus A and attaching two copies of D2×I along the two annuli.
If the resulting thickened surface is disconnected, then we keep only the
component containing K.

Note that in (3), an annulus A in Σ × I is called vertical if there is an embedded
circle γ ⊂ Σ such that A = γ×I ⊂ Σ×I. An equivalence class under the equivalence
relation generated by (1), (2), and (3) above is called a virtual knot.

Virtual links admit a similar description as links in Σ× I, though Σ need not be
connected. We abuse notation slightly and use K for the virtual knot, so K refers
to an equivalence class of knots in thickened surfaces.
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Given a virtual knot K, then any knot in its equivalence class will be called a
representative for K. A representative is therefore a knot in a thickened surface
Σ× I.

Definition 2.3. The virtual genus of a virtual knot K is the minimum

vg(K) := min{g(Σ) | Σ× I contains a representative for K},

where g(Σ) denotes the genus of the surface Σ.

A classical knotK ⊂ S3 can be isotoped to be disjoint from the two points {0,∞}.
Thus, we can view it as a knot in the thickened surface S2× I. The associated vir-
tual knot is independent of the choice of isotopy, and we call such a knot classical.
Therefore a virtual knot is classical if and only if its virtual genus is zero.

Kuperberg [Ku03, Theorem 1] proved a strong uniqueness result for minimal
genus representatives. Namely, he showed that if (K,Σ × I) and (K ′,Σ′ × I) are
two minimal genus representatives for the same virtual knot, then K ′ = f(K) for
some diffeomorphism f : Σ× I → Σ′ × I as in (1) of Definition 2.2 above.

For the sake of completeness, we relate the geometric definition of virtual knots
to the usual diagrammatic definition.

A virtual knot diagram is a regular immersion of the circle S1 in the plane R2

with double points that are either classical or virtual. Real crossings are drawn
with one arc over the other whereas virtual crossings are drawn with circles around
them.

Two virtual knot diagrams are equivalent if they are related by planar isotopies
and generalised Reidemeister moves. These consist of the three usual Reidemeister
moves together with three additional moves just like the usual Reidemeister moves
but with only virtual crossings, and one more move called the mixed move which
is depicted in Figure 1. A virtual knot is defined to be an equivalence class of
virtual knot diagrams, and virtual links are defined similarly as equivalence classes
of virtual link diagrams.

Figure 1. The mixed move.

Given a virtual knot diagram D of a virtual knot K, there is a canonical sur-
face Σ called the Carter surface constructed from D as follows [KK00]: attach two
intersecting bands at every classical crossing and two non-intersecting bands at
every virtual crossing as in Figure 2. Attaching non-intersecting and non-twisted
bands along the remaining arcs of D, and filling in all boundary components with
2-disks, we obtain a closed oriented surface Σ whose thickening Σ × I contains a
representative of K. Conversely, let K be a knot in a thickened surface Σ × I
and U ⊂ Σ a neighbourhood of the image of K under projection Σ × I → Σ. If
f : U → R2 is an orientation preserving immersion, then the image of K under f is
a virtual knot diagram D whose classical crossings correspond to those of K and
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whose virtual crossings, which are the rest of them, are the result of the immersion
f . This virtual knot diagram D depends on the choice of immersion f , but any two
such diagrams are equivalent via detour moves [Ka15].

This establishes a one-to-one correspondence between virtual knot diagrams
modulo the generalised Reidemeister moves and knots in thickened surfaces up
to stable equivalence [CKS02].

Figure 2. The bands for classical and virtual crossings.

2.2. Virtual concordance. In this section, we define concordance and sliceness
for virtual knots in terms of their representative knots in thickened surfaces. We
follow Turaev [Tu08, Section 2.1] in defining virtual knot concordance.

If K is an oriented knot in a thickened surface Σ× I, its reverse is the knot Kr

obtained by changing the orientation of K, and its mirror image is the knot Km

obtained by changing the orientation of Σ×I. These operations commute with one
another, and we use −K = Krm to denote the knot obtained by taking the mirror
image of the reverse knot.

Definition 2.4. (1) Two given knots K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I in thick-
ened surfaces are virtually concordant if there exists a connected oriented
3-manifold W with ∂W ∼= −Σ0tΣ1 and an annulus A ⊂W ×I cobounding
−K0 and K1.

(2) A knot K ⊂ Σ× I is called virtually slice if it is concordant to the unknot.
Equivalently, the knot K is virtually slice if there exists a connected 3-
manifold W with ∂W ∼= Σ and a 2-disk ∆ ⊂ W × I cobounding K. We
call ∆ a slice disk for K.

Clearly, virtual concordance is an equivalence relation on knots in thickened
surfaces. For instance, transitivity follows by stacking the two concordances in the
usual way. The next result shows that two stably equivalent knots are virtually
concordant to one another. Thus, it follows that virtual concordance defines an
equivalence relation on virtual knots.

Lemma 2.5. Suppose K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I represent the same virtual
knot. Then K0 and K1 are virtually concordant.

Proof. It is enough to find a 3-manifold W and an annulus A ⊂ W × I realising a
concordance between knots in surfaces transformed into each other by one of the
operations generating stable equivalence, see Definition 2.2.

One can verify that this is possible in each case. �

Kauffman [Ka15] re-expressed concordance purely in terms of virtual knot dia-
grams. A concordance between two virtual knot diagrams K0 and K1 consists of a
series of generalised Reidemeister moves together with a collection of saddle moves,
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births, and deaths that transform K0 into K1. As usual, one requires that the total
number of births and deaths equals the number of saddle moves, see [Ka15, Sec-
tion 3]. This condition is equivalent to the requirement that the knots cobound an
annulus.

Example 2.6. To illustrate this, we recall from [Ka15] the argument that the Kishino
knot K is virtually slice. To see this, perform a saddle move along the dotted line
on the left of Figure 3. The result is a virtual link diagram on the right, which
is easily seen to be equivalent to the unlink with two components. Filling them
in with 2-disks gives a slice disk for K, showing that the Kishino knot is virtually
slice.

Figure 3. Slicing the Kishino knot.

Example 2.7. We now show that the virtual knot K = 5.890 in J. Green’s table
[Gr] is virtually slice. To see this, perform a saddle move along the dotted line on
the left of Figure 4. The resulting link is easily seen to be equivalent to the trivial
link with two components. Hence K is virtually slice. This virtual knot has trivial
knot group GK = 〈a〉, and its Wada W2-group, which is defined in [CS+09], where
they prove it is a virtual knot invariant, is given by

W2(K) = 〈x, y | y2x2y−1x−5, y−1x−1y2x−1y−2xyx3〉

If K were classical, then because its knot group GK = 〈a〉 is trivial, it would be
necessarily equivalent to the unknot. The Wada W2-group of the unknot is infinite
cyclic, and by considering the homomorphism W2(K)→ S5 to the symmetric group
sending x 7→ (1, 3, 4, 5) and y 7→ (1, 2, 3, 5), one verifies that W2(K) is not abelian.
(Alternatively, one can easily see that W2(K) has abelianisation Z/2Z, and this is
sufficient to show K is non-trivial.) We conclude that K is a non-classical, virtual
slice knot.

x
y

β β−1

Figure 4. The slice virtual knot K = 5.890 on left and a family
of slice virtual knots on right.
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More generally, given a virtual braid β ∈ VB2 on two strands whose associated
permutation β = (12) is nontrivial, the virtual knot depicted on the right of Figure 4
can be seen to be virtually slice. Let σ1, τ1 ∈ VB2 be the standard generators, where
σ1 denotes a real crossing and τ1 a virtual crossing. If β is the virtual braid given
by β = (σ1τ1)nσ1, then one can show that the resulting virtual knot has trivial
knot group and nontrivial Wada W2-group. Thus, we obtain an infinite family of
slice virtual knots.

Although it is not immediately obvious, Kauffman’s diagramatic notion of virtual
concordance is equivalent to Definition 2.4. Indeed, the equivalence of the two
definitions of virtual knot concordance had been established previously by Carter,
Kamada, and Saito [CKS02, Lemma 12]. We also refer to [CK15, Section 1.2] for
further discussion on this point, and we thank Micah Chrisman for sharing this
observation.

2.3. Virtual concordance of classical knots. Suppose K ⊂ S3 is a classical
knot and suppose that K is slice. As explained earlier, we can view K as a virtual
knot by arranging that K lies in a neighbourhood of the standard sphere S2 × I ⊂
S3. If ∆ ⊂ B4 is a slice disk for K, then we can further arrange that ∆ lies in
(S2×I)×I ⊂ B4. Thus, K is seen to be virtually slice in the sense of Definition 2.4.

The next theorem is our main result, and it gives a characterisation of virtual
sliceness for classical knots.

Theorem 2.8. A classical knot is virtually slice if and only if it is slice.

An immediate consequence of this theorem is that there are infinitely many
distinct virtual concordance classes of virtual knots. This fact had been noted by
Turaev using his polynomial invariants u±(K) [Tu08, Theorems 1.6.1 and 2.3.1],
but Theorem 2.8 gives infinitely many distinct virtual concordance classes for which
u±(K) all vanish.

Corollary 2.9. Two classical knots are virtually concordant if and only if they are
concordant as classical knots.

Proof. Given two classical knots K0 and K1, apply the Theorem 2.8 to the con-
nected sum K0#−K1, where −K1 denotes the mirror image of K1 with its orien-
tation reversed. �

Suppose the classical knot K ⊂ S2 × I is virtually slice, then we can find a
3-manifold W which is a filling of S2 and a slice disk ∆ ⊂ W × I cobounding
the knot K. To transfer the slice disk from W × I into D4, we construct an

embedding of the universal cover W̃ into D3. The universal cover W̃ will have

boundary ∂W̃ consisting of many copies of S2. A compression of W̃ is a smooth

embedding ϕ : W̃ → D3 which restricts to an orientation-preserving diffeomorphism
S → S2 on one of the boundary components S of ∂W .

We will construct compressions of W from compressions of the prime parts of
W .

Lemma 2.10. Let W be a connected, compact, oriented and prime 3-manifold with

boundary ∂W ∼= S2. Then its universal cover W̃ admits a compression.

Proof. We can fill the boundary component ofW with a 3-ball B and obtain a closed
3-manifold W ∪ B. The universal cover of W ∪ B is diffeomorphic to one of the
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manifolds S3, S2×R or R3. If W ∪B is a geometric piece in the sense of Thurston,
this can be deduced from geometrisation and checking each geometry [Sc83, Section
5]. If W contains an incompressible torus, its universal cover is diffeomorphic to
the space R3 [HRS89, Theorem 1].

As S2 × R and R3 embed into S3, we may assume that we have an embedding

of W̃ ∪B into S3. By post-composing with a diffeomorphism, we may assume that
a lift B′ of B is mapped to the standard 3-ball D3 ⊂ S3. Denote the boundary of
B′ by S. We have the following chain of embeddings

W̃ ⊂ W̃ ∪B rB′ ⊂ S3 rB′ = D3,

which gives a compression of W̃ ⊂ D3. �

Lemma 2.11. Let W be a connected, oriented, compact 3-manifold with bound-

ary ∂W ∼= S2. Then its universal cover W̃ admits a compression.

Proof. We fix a prime decomposition S := {Si} of the 3-manifold W . This is
a finite collection S of disjointly embedded separating 2-spheres Si such that 2-
surgery on these spheres gives a 3-manifold whose components W1, . . . ,Wk are all
prime 3-manifolds.

After relabeling, we may assume that W1 has boundary ∂W1
∼= S2. Take

π : W̃ → W to be a universal cover. The components of the preimages π−1(Si)

are again 2-spheres, which form the collection S̃. The spheres C ∈ S̃ are again

separating: each sphere C cuts W̃ into two half-spaces. Given an orientation σ on
the sphere C, there is a unique half-space Cσ whose boundary orientation on C is
σ. To any subset

I ⊆
{

(C, σ) | C ∈ S̃ and σ an orientation on C
}

we can associate the submanifold
⋂

(C,σ)∈IC
σ, which is an intersection of half-spaces

of W̃ . We call a submanifold B ⊆ W̃ chunked if B =
⋂

(C,σ)∈IC
σ for a subset I. If

B is chunked, then its boundary components are contained in S̃ or in the boundary

∂W̃ of W̃ itself. Note that if I is empty, then
⋂
I C

σ = W̃ , thus W̃ is chunked.

Given a chunked submanifold B and a boundary sphere C ∈ S̃ of B, there is a
unique smallest chunked submanifold B′ ⊃ B such that C is in the interior of B′.
It is of the form B′ = B ∪C P for a universal cover P of a prime 3-manifold. We
call B′ an elementary extension of B along C.

Fix a boundary component T ⊂ ∂W̃ . Consider the following set

Z :=
{
ϕ : B → D3 | T ⊂ B,ϕ(T ) = S2, B is chunked, and ϕ is a compression

}
.

We give Z the partial order of the poset of maps, i.e. for ϕ : B → D3 and ϕ′ : B′ →
D3, we declare ϕ′ ≥ ϕ if and only if B ⊂ B′ and ϕ′ restricts to ϕ.

By Lemma 2.10, the set Z is non-empty. Also totally ordered chains have a
maximal element, so Z has a maximal element. Let ϕ : B → D3 be maximal. We

claim B = W̃ , which proves the lemma.

Pick a boundary sphere C ∈ S̃ of B and denote by B′ = B ∪C P the elementary
extension of B along C. We construct a compression of B′ restricting to ϕ. Consider
ϕ(C) ⊂ D3. It is a smoothly embedded 2-sphere in D3. It separates the 3-ball D3

into two components: an annulus and another 3-ball D′. Consequently, the interior
of the 3-ball D′ is disjoint from the image of ϕ(B). By Lemma 2.10, we can embed
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ϕP : P → D′. As Diff+(S2) is path-connected, we can make ϕP agree with ϕ on C
and thus we obtain a compression

ϕ ∪C ϕP : B′ → D3

extending ϕ. �

Using the compression of Lemma 2.11, we show how to transfer a slice disk for
a virtually slice classical knot to the 4-ball.

Proof of Theorem 2.8. Let K be a classical knot which is virtually slice. By def-
inition, the knot K is embedded in a thickened 2-sphere and there is a filling W
of S2 together with a slice disk ∆ ⊂ W × I cobounding the knot K in the bound-
ary ∂W × I.

Let W̃ →W be a universal cover and ϕ : W̃ → D3 be a compression which exists

by Lemma 2.11. Let T ⊂ ∂W̃ be a boundary sphere which is mapped via ϕ to the

boundary of D3. The product map W̃ × I →W × I is also a covering map. As the

slice disk ∆ is contractible, it lifts to a disk ∆̃ ⊂ W̃ × I with boundary ∂∆̃ ⊂ T × I.

Note that ∂∆̃ is still the knot K.
Now ϕ(∆̃) ⊂ D3 × I ∼= D4 is a slice disk for K. �

Remark 2.12. The annulus A in Definition 2.4 is assumed to be smoothly embedded,
and relaxing this condition to require only that A is locally flat, one obtains the
definition of topological concordance for virtual knots. Since the proof of Theorem
2.8 does not make essential use of the assumption of smoothness, it generalizes
to shows that a classical knot is topologically virtually slice if and only if it is
topologically slice.

3. The virtual knot concordance group

In this section, we introduce concordance of long virtual knots and the virtual
knot concordance group VC . We then apply Theorem 2.8 to deduce injectivity of
the natural homomorphism C → VC , where C is the classical concordance group.

3.1. Long virtual knots. The group operation in C and VC is given by con-
nected sum. For round virtual knots, this operation is not well-defined because it
depends on the choice of diagram and on where the diagrams are connected. These
ambiguities disappear if one instead works with long virtual knots.

Recall that a long virtual knot diagram is a regular immersion of R in the plane
R2 which is identical with the x-axis outside a compact set, which we will principally
take to be the closed ball B0(R) of radius R centered at the origin. Double points
of the immersion can occur only inside B0(R), and each one is labelled either
classical or virtual, indicated as before with an over- or undercrossing if classical
or by encircling the crossing if virtual. Two such diagrams are equivalent if one
can be related to the other by a compactly supported planar isotopy and a finite
sequence of generalised Reidemeister moves. A long virtual knot K is defined to
be an equivalence class of long virtual knot diagrams. We call the long knot given
by the x-axis the long unknot. Note that by convention, all long virtual knots are
oriented from left to right.

The connected sum of two long virtual knots K0 and K1, denoted K0#K1, is
defined by concatenation with K0 on the left and K1 on the right. It is easy to
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verify that long virtual knots form a monoid under connected sum with identity
given by the long unknot.

Remark 3.1. The connected sum on long virtual knots is not a commutative oper-
ation [Ma08, Theorem 9].

3.2. The virtual knot concordance group. We now extend the notion of virtual
concordance to long virtual knots, following Kauffman [Ka15].

Definition 3.2. (1) Two long knots K0 and K1 are virtually concordant if one
can be obtained from the other by generalised Reidemeister moves and a
finite sequence of saddle moves, births, and deaths such that the number
of saddle moves equals the sum of births and deaths.

(2) A long virtual knot is virtually slice if it is virtually concordant to the long
unknot.

We will use [K] to denote the concordance class of a long virtual knot K and

VC = {[K] | K is a long virtual knot}
for the set of concordance classes of long virtual knots. It is immediate from the
definition that the concordance class of the connected sum K0#K1 depends only on
the concordance classes of K0 and K1. This shows that the operation of connected
sum descends to a well-defined operation on VC . Thus (VC ,#) is a monoid.

Turaev observes that (VC ,#) is actually a group [Tu08, Section 5.2]. Just as
with classical knots, the inverse of [K] is obtained by taking the mirror image and
reversing the orientation. Specifically, given a long virtual knot K, let Km be the
long virtual knot obtained by reflecting K through the vertical line x = R, and let
−K be the result of reversing the orientation of Km. Chrisman [Ch16, Theorem 1]
proves that K#−K is virtually slice, and thus it follows that [−K] is the inverse
of [K] in (VC ,#).

Given a long virtual knot K, let K denote its closure. Thus, K is the round
virtual knot obtained by discarding the parts of K outside the closed ball B0(R) and
joining the points (R, 0) to (−R, 0) on K with the semicircle (R cos(θ),−R sin(θ)) ⊂
R2 for 0 ≤ θ ≤ π.

Lemma 3.3. A long virtual knot K is virtually slice if and only if its closure K is
virtually slice.

Proof. Suppose K is virtually slice. Then there is a finite sequence of births, deaths,
and saddles and planar isotopies taking K to the trivial long knot. We can choose
R sufficiently large so that all births, deaths, and saddles take place in the ball
B0(R). Since planar isotopies are compactly supported, we can assume that K is
unchanged outside of B0(R). Thus, the same set of births, deaths, and saddle moves
and planar isotopies show that K is virtually concordant to the round unknot.

To see the other direction, represent K as a long virtual knot diagram which
coincides with the x-axis outside the open ball B0(R). Construct a new diagram for
K by translating the original diagram vertically and connecting the points (−R, 2R)
and (R, 2R) on the new diagram to the x-axis using vertical lines. Now perform
a saddle move and replace the vertical line segments from (−R, 0) to (−R,R) and
from (R,R) to (R, 0) with the horizontal line segments from (−R, 0) to (R, 0) and
from (R,R) to (−R,R). This saddle move transforms K into a 2-component link
with one component the trivial long knot and the other component the round virtual
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knot K, which by hypothesis bounds a slice disk ∆. Capping K off with ∆ gives a
virtual concordance from K to the trivial long knot. It follows that K is virtually
slice. �

If two long virtual knots K1 and K2 are concordant, then one can easily show
that their closures K1 and K2 are necessarily concordant. However, the converse
is not generally true. In other words, the concordance class of a long virtual knot
K is not determined by the concordance class of its closure K.

Recall that for classical knots, the map K 7→ K gives a one-to-one correspon-
dence between long knots and round knots. From the definition of virtual concor-
dance, one deduces that the natural inclusion map from classical knots to virtual
knots induces a well-defined homomorphism ψ : C → VC . The next result is then
an immediate consequence of Theorem 2.8 and Lemma 3.3.

Corollary 3.4. The homomorphism ψ : C → VC is injective.

It is an open question whether the concordance group VC of long virtual knots is
abelian, see [Tu08, Section 6.5]. Another interesting open problem is to determine
the structure of VC , for instance can one describe the cokernel of the map ψ? Does
it contain torsion elements?

Let K be a virtual knot, represented as a knot in a thickened surface Σ × I.
Then it is straightforward to show that K is virtually cobordant to the unknot, i.e.
that there exists a filling W of Σ and a properly embedded surface F ⊂W × I such
that

K = ∂F ⊂ Σ× I = ∂W × I.

The virtual slice genus, denoted vg4(K), is the minimal genus of F over all such
pairs (W,F ). By definition, this is a concordance invariant and so it is independent
of the representative K ⊂ Σ× I.

If K is a classical knot, then it is immediate that vg4(K) ≤ g4(K), where g4(K)
denotes the classical slice genus. In [DKK14, p. 54], Dye, Kaestner, and Kauffman
conjecture that these two quantities are equal for classical knots, and proving the
conjecture would be an interesting generalization of Theorem 2.8.

Turaev introduces many useful invariants of virtual knot concordance in [Tu08].
These include the polynomials u±(K) and the graded genus σ(T ) of the graded
matrix T = (G, s, b) associated to a virtual knot K. Any virtual knot K with
u+(K) 6= 0 or u−(K) 6= 0 will have infinite order in VC [Ch16, Proposition 2].
However, if K is classical, then these invariants vanish, and we view it as an inter-
esting challenge to derive new invariants of virtual knot concordance to shed light
on these questions.
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