
Exploring mcmcsamp results

Ben Bolker

July 2, 2012

1 Introduction
This document is an attempt at a quick (??) exploration of the behavior of
mcmcsamp, and a comparison against the results from the same model fitted in
MCMCglmm — which, except for the priors and any coding mistakes on my part,
should be fitting the same model For reference, the priors used in MCMCglmm

(based on the description in ?MCMCglmm are N(µ = 0, σ2 = 1010I) for the
fixed-effect parameters and Inv-Wishart(ν = 0,Σ = I) for the random-effect
parameters.

In most of the cases below I would be surprised if the priors made a big
difference, because these examples are generally well-behaved/well-defined cases
where I would expect the data to be determining the variance components pretty
strongly . . .

2 Code
Functions to extract variances for fitted and MCMC variances. The functions
will only work sensibly for problems with a single variance component per group-
ing factor, but these are also the only ones that mcmcsamp can handle, so we
should be safe . . . ? These codes started out trying to be simple but ending up
getting more complicated as I tried to make them more general . . .

get_pvars <- function(object) {

v <- c(unlist(VarCorr(object)),units=sigma(object)^2)

names(v) <- c(names(getME(object,"theta")),"units")

v

}

get_mcvars <- function(object,mcmc,mcmcglmm=NULL) {

get pvars, convert to 1-row data frame

pvars <- as.data.frame(rbind(get_pvars(object)))

get mcmc vars, drop fixed effects, rename

nfix <- length(fixef(object))

m0 <- as.data.frame(mcmc,type="varcov")[,-(1:nfix)]

mmvars <- setNames(m0,names(pvars))

L <- list(fitted=pvars,mcmc=mmvars)

if (!is.null(mcmcglmm)) {

1

m1 <- as.data.frame(mcmcglmm$VCV)

re-arrange column names to match lmer

regexstr <-

"([[:alpha:]_\\(\\)]+)\\.([[:alpha:]_\\(\\)]+)"

names(m1) <- gsub(regexstr,"\\2.\\1",names(m1))

f1 <- rbind(colMeans(m1))

combine mcmc and lmer results

L$mcmc <- rbind(data.frame(method="mcmcsamp",

step=seq(nrow(L$mcmc)),

L$mcmc,check.names=FALSE),

data.frame(method="MCMCglmm",

step=seq(nrow(m1)),m1,check.names=FALSE))

L$fitted <- rbind(data.frame(method="mcmcsamp",

L$fitted,check.names=FALSE),

data.frame(method="MCMCglmm",f1,check.names=FALSE))

}

L

}

While there certainly could be mistakes in these extraction functions, I
have kept them as simple as possible, and the results match those printed by
summary(), VarCorr(), etc., as well as the results of using getME(.,"theta")

to extract the raw parameters (Cholesky components, which have to be multi-
plied by sigma(.) and squared to get the RE variances).

Code for producing plots etc. is hidden; look at the original Rnw file if you
want the gory details.

3 Examples
3.1 sleepstudy

fm1 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject),

sleepstudy)

vc(fm1)

Groups Name Variance Std.Dev.

Subject (Intercept) 627.6 25.05

Subject Days 35.9 5.99

Residual 653.6 25.57

mm1 <- mcmcsamp(fm1,1000)

fm1G <- MCMCglmm(Reaction ~ Days,

random=~idh(1+Days):Subject, data=sleepstudy,

verbose=FALSE)

v1 <- get_mcvars(fm1,mm1,fm1G)

2

(The MCMCglmm expression could be written more simply as ~Subject: in
general I am writing out the fully explicit random effects specification so that
the variable names MCMCglmm uses match those given by lmer.)

In these plots (and those to follow) the left-hand column shows the trace
plots, the right the posterior densities; the red vertical and horizontal lines are
the fitted values from the original model, the blue points (in all cases identical
to the red lines) show the starting points of the MCMC chains. (In the one
simulated example below, purple lines indicate the true variances.)

The results for this first (sleepstudy) example seem reasonable, although
the mcmcsamp results for the intercept term (first row) don’t match MCMCglmm

particularly well. (The fitted value from lmer does, so the problem seems to be
less with lmer in general than with what mcmcsamp is doing . . .)

(first row) is quite close to the edge of its putative posterior distribution.

gg1 <- do_plots(v1)

grid.arrange(gg1[[1]],gg1[[2]],ncol=2)

Subject.(Intercept)

Subject.Days

units

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

600

800

1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

●●

● ●

●●

Subject.(Intercept)

Subject.Days

units

0.000

0.001

0.002

0.003

0.004

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.001

0.002

0.003

0.004

0.005

0 500 1000 1500 2000 2500 3000

0 50 100 150 200 250

600 800 1000
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

We could produce a scatterplot matrix

3

splom(subset(v1$mcmc,select=-c(step,method)),pch=".")

but it’s not very informative in this case — and I haven’t yet gone to the
trouble of superimposing the fitted values.

(Hereafter the code is suppressed in the output, since it’s practically the
same.)

3.2 Dyestuff

fm2 <- lmer(Yield ~ 1|Batch, Dyestuff)

fm2M <- MCMCglmm(Yield ~ 1,random=~idh(1):Batch,

data=Dyestuff,verbose=FALSE)

vc(fm2)

Groups Name Variance Std.Dev.

Batch (Intercept) 1764 42.0

Residual 2451 49.5

This one looks OK too (I’m still slightly puzzled that the fitted value doesn’t
align with the modes of the distribution, but maybe that’s a marginal vs. un-
conditional maximum value issue?)

(Note that I have thrown away extreme values (> 10000) of the batch vari-
ance in the density, for easier visualization.)

The MCMCglmm results for the batch variance actually look a little wonky —
is the problem more poorly constrained than I think?

4

Batch.(Intercept)

units

0

10000

20000

30000

40000

2000

4000

6000

8000

10000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

●●

●●

Batch.(Intercept)

units

0e+00

2e−04

4e−04

6e−04

8e−04

0e+00

1e−04

2e−04

3e−04

4e−04

0 2000 4000 6000 8000 10000

2000 4000 6000 8000 10000
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

3.3 Penicillin

fm3 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin)

fm3M <- MCMCglmm(diameter ~ 1,random=~idh(1):plate+idh(1):sample,

data=Penicillin,verbose=FALSE)

vc(fm3)

Groups Name Variance Std.Dev.

plate (Intercept) 0.717 0.847

sample (Intercept) 3.731 1.932

Residual 0.302 0.550

Now it gets weird. I could very well be doing something dumb, but I have
checked things multiple times and can’t see it. It looks like the series for the
plate intercept and the residual variance could be switched (the mean of the
plate intercept term MCMC density shown here is about 0.25, which fits pretty
well with fitted residual variance; the MCMC density for the residual variance
is ≈ 0.6, which fits the fitted plate-intercept variance).

5

(Restricting sample-intercept variances to < 20 in the density.)

plate.(Intercept)

sample.(Intercept)

units

0.0

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

● ●

● ●

plate.(Intercept)

sample.(Intercept)

units

0

1

2

3

4

5

0

1

2

3

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5

0 5 10 15 20

0.2 0.4 0.6 0.8 1.0
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

If we switch the units and plate-intercept terms for the mcmcsamp things look
slightly more reasonable (the mcmcsamp gets run again, so it won’t be identical).

6

plate.(Intercept)

sample.(Intercept)

units

0.5

1.0

1.5

2.0

2.5

0

10

20

30

40

50

60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

● ●

●●

plate.(Intercept)

sample.(Intercept)

units

0

1

2

3

4

0

1

2

3

0

2

4

6

8

10

0.5 1.0 1.5 2.0 2.5

0 5 10 15 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

Double-checking a relatively raw form with less possibility for accidental
switching:

summary(as.data.frame(mcmcsamp(fm3,1000),

type="varcov"))

(Intercept) V2 V3 V4

Min. :21.6 Min. :0.130 Min. :0.239 Min. :0.252

1st Qu.:22.7 1st Qu.:0.227 1st Qu.:0.436 1st Qu.:0.524

Median :22.9 Median :0.273 Median :0.513 Median :0.582

Mean :22.9 Mean :0.286 Mean :0.567 Mean :0.592

3rd Qu.:23.2 3rd Qu.:0.329 3rd Qu.:0.601 3rd Qu.:0.651

Max. :23.9 Max. :0.717 Max. :3.731 Max. :1.094

The other evidence that I haven’t gotten something backward is that the
MCMC chains do start from the correct value that matches the fitted result —
and what’s up with the sample intercept ???

3.4 Pastes

7

fm4 <- lmer(strength ~ (1|batch) + (1|sample), Pastes)

fm4M <- MCMCglmm(strength ~ 1,

random=~idh(1):batch + idh(1):sample,

data=Pastes,verbose=FALSE)

vc(fm4)

Groups Name Variance Std.Dev.

sample (Intercept) 8.434 2.904

batch (Intercept) 1.657 1.287

Residual 0.678 0.823

Here, again, it seems as though the first and third components might be
switched. The MCMCglmm fit for the batch intercept isn’t mixing very well, so it’s
hard to see the density plot, but the horizontal line in the trace plot indicates
here that mcmcsamp is actually doing a good job . . .

sample.(Intercept)

batch.(Intercept)

units

0

5

10

15

20

25

30

0

5

10

15

20

0

5

10

15

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

●●

●●

●●

sample.(Intercept)

batch.(Intercept)

units

0.0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

0 5 10 15 20

0 5 10 15
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

Try it with variables #1 and #3 switched . . .

8

sample.(Intercept)

batch.(Intercept)

units

0

5

10

15

20

25

30

0

5

10

15

0

2

4

6

8

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

●●

●●

sample.(Intercept)

batch.(Intercept)

units

0.00

0.05

0.10

0.15

0.20

0.25

0

1

2

3

4

5

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

0 5 10 15

0 2 4 6 8
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

Comparing direct calculation:

colMeans(as.data.frame(mcmcsamp(fm3,1000),

type="varcov"))[-1]

V2 V3 V4

0.2737 0.5953 0.5922

3.5 cake

cake <- transform(cake,rr=interaction(recipe,replicate))

fm5 <- lmer(angle ~ recipe * temperature + (1|rr), cake)

fm5M <- MCMCglmm(angle ~ recipe * temperature,

random=~idh(1):rr,

data=cake,verbose=FALSE)

vc(fm5)

Groups Name Variance Std.Dev.

rr (Intercept) 41.8 6.47

9

Residual 20.5 4.52

rr.(Intercept)

units

20

40

60

80

100

15

20

25

30

35

40

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

●●

● ●

rr.(Intercept)

units

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

20 40 60 80 100

15 20 25 30 35 40
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

Way off again.
Switching variables doesn’t really fix it:

10

rr.(Intercept)

units

20

40

60

80

100

10

20

30

40

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

●●

rr.(Intercept)

units

0.00

0.05

0.10

0.00

0.05

0.10

0.15

20 40 60 80 100

10 20 30 40
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

3.6 A constructed example
From Laurent Stephane:

set.seed(666)

sims <- function(I, J, sigmab0, sigmaw0){

Mu <- rnorm(I, mean=0, sd=sigmab0)

y <- c(sapply(Mu, function(mu) rnorm(J, mu, sigmaw0)))

data.frame(y=y, group=gl(I,J))

}

I <- 20 # number of groups

J <- 20 # number of repeats per group

sigmab0 <- 1 # between standard deviation

sigmaw0 <- 2 # within standard deviation

dat <- sims(I, J, sigmab0, sigmaw0)

How typical is this example/how much among-realization variability is there?

11

Trying another example . . .

fm5 <- lmer(y~(1|group),data=dat)

fm5M <- MCMCglmm(y~1,

random=~idh(1):group,

data=dat,

verbose=FALSE)

vc(fm5)

Groups Name Variance Std.Dev.

group (Intercept) 2.17 1.47

Residual 4.17 2.04

In this case the results look not-too-unreasonable — although who knows
what would happen if I used two random effects?

tvals <- data.frame(variable=factor(names(get_pvars(fm5))),

value=c(1,4),

method=rep("mcmcsamp",2),

stringsAsFactors=FALSE)

do_all(fm5,MCMCglmmfit=fm5M,

truevals=tvals)

12

group.(Intercept)

units

2

4

6

8

3.5

4.0

4.5

5.0

5.5

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

● ●

group.(Intercept)

units

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6 8

3.5 4.0 4.5 5.0 5.5
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

13

group.(Intercept)

units

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0 200 400 600 800 1000

0 200 400 600 800 1000
step

va
lu

e

factor(method) MCMCglmm mcmcsamp

● ●

●●

group.(Intercept)

units

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 1.0 1.5 2.0 2.5 3.0

3.5 4.0 4.5 5.0 5.5
value

de
ns

ity

factor(method) ● ●MCMCglmm mcmcsamp

To follow this up I should really run a large number of simulations and
show the distribution of point estimates/distribution of HPD intervals or quan-
tiles/coverage . . .

4 The bottom line
It’s still not clear to me whether the apparent differences between the fitted
values from lmer and (1) the mcmcsamp results and (2) the MCMCglmm results are
due to (a combination of):

� a bug in the mcmcsamp code that switches the order of the theta (random
effects) parameters in some cases?

� differences in priors between lmer and MCMCglmm

� differences in the Bayesian answer (mean/HPD interval of marginal pos-
terior distribution) and MLE answer

� per-realization variability (i.e. for the real data, the answer might look

14

different for a different realization of the same system; for simulations, we
can do this precisely

5 Session info

sessionInfo()

R Under development (unstable) (2012-05-12 r59340)

Platform: i686-pc-linux-gnu (32-bit)

##

locale:

[1] LC_CTYPE=en_CA.utf8 LC_NUMERIC=C

[3] LC_TIME=en_CA.utf8 LC_COLLATE=en_CA.utf8

[5] LC_MONETARY=en_CA.utf8 LC_MESSAGES=en_CA.utf8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_CA.utf8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

##

other attached packages:

[1] MCMCglmm_2.16 corpcor_1.6.3 ape_3.0-3

[4] coda_0.14-7 tensorA_0.36 gridExtra_0.9

[7] lme4.0_0.999999-1 Matrix_1.0-6 lattice_0.20-6

[10] knitr_0.5.10 RColorBrewer_1.0-5 igraph_0.5.5-4

[13] ggplot2_0.9.1 reshape2_1.2.1 plyr_1.7.1

##

loaded via a namespace (and not attached):

[1] codetools_0.2-8 colorspace_1.2-0 dichromat_1.2-4

[4] digest_0.5.2 evaluate_0.4.2 formatR_0.4

[7] gee_4.13-18 highlight_0.3.2 labeling_0.2

[10] lme4_0.99999911-0 MASS_7.3-18 memoise_0.1

[13] minqa_1.2.1 munsell_0.3 nlme_3.1-103

[16] parser_0.0-14 proto_0.3-9.2 Rcpp_0.9.10

[19] scales_0.2.1 splines_2.16.0 stats4_2.16.0

[22] stringr_0.6 tools_2.16.0

15

