Exploring mcmcsamp results

Ben Bolker
July 2, 2012

1 Introduction

This document is an attempt at a quick (??) exploration of the behavior of
mcmesamp, and a comparison against the results from the same model fitted in
MCMCglmm — which, except for the priors and any coding mistakes on my part,
should be fitting the same model For reference, the priors used in MCMCglmm
(based on the description in ?MCMCglmm are N(u = 0,02 = 10'°I) for the
fixed-effect parameters and Inv-Wishart(v = 0,% = I) for the random-effect
parameters.

In most of the cases below I would be surprised if the priors made a big
difference, because these examples are generally well-behaved /well-defined cases
where I would expect the data to be determining the variance components pretty
strongly ...

2 Code

Functions to extract variances for fitted and MCMC variances. The functions
will only work sensibly for problems with a single variance component per group-
ing factor, but these are also the only ones that mcmcsamp can handle, so we
should be safe ...7 These codes started out trying to be simple but ending up
getting more complicated as I tried to make them more general ...

get_pvars <- function(object) {
v <= c(unlist(VarCorr(object)) ,units=sigma(object) ~2)
names (v) <- c(names(getME(object,),)
v

}

get_mcvars <- function(object,mcmc,mcmcglmm=NULL) {
get pvars, convert to 1l-row data frame
pvars <- as.data.frame(rbind(get_pvars(object)))
get mcmc vars, drop fixed effects, rename
nfix <- length(fixef (object))
m0 <- as.data.frame(mcmc,type=)[,-(1:nfix)]
mmvars <- setNames(mO,names(pvars))
L <- list(fitted=pvars,mcmc=mmvars)
if ('is.null(mcmcglmm)) {

ml <- as.data.frame(mcmcglmm$VCV)
re-arrange column names to match lmer
regexstr <-

names (ml) <- gsub(regexstr, ,names (m1))
f1 <- rbind(colMeans(ml))
combine mcmc and lmer results
L$mcmc <- rbind(data.frame(method= s
step=seq(nrow(L$mcmc)),
L$mcmc, check.names=FALSE) ,
data.frame (method= s

step=seq(nrow(ml)) ,ml,check.names=FALSE))
L$fitted <- rbind(data.frame(method= s
L$fitted,check.names=FALSE),

data.frame (method= ,f1,check.names=FALSE))
}
L

While there certainly could be mistakes in these extraction functions, I
have kept them as simple as possible, and the results match those printed by
summary (), VarCorr (), etc., as well as the results of using getME(.,"theta")
to extract the raw parameters (Cholesky components, which have to be multi-
plied by sigma(.) and squared to get the RE variances).

Code for producing plots etc. is hidden; look at the original Rnw file if you
want the gory details.

3 Examples
3.1 sleepstudy

fml <- lmer(Reaction ~ Days + (1|Subject) + (O+Days|Subject),

sleepstudy)

ve(fml)

Groups Name Variance Std.Dev.
Subject (Intercept) 627.6 25.05
Subject Days 35.9 5.99
Residual 653.6 25.57

mml <- mcmcsamp(fml,1000)

fmlG <- MCMCglmm(Reaction ~ Days,
random=-idh(1+Days) :Subject, data=sleepstudy,
verbose=FALSE)

vl <- get_mcvars(fml,mml,fmi1G)

(The MCMCglmm expression could be written more simply as “Subject: in
general I am writing out the fully explicit random effects specification so that
the variable names MCMCglmm uses match those given by lmer.)

In these plots (and those to follow) the left-hand column shows the trace
plots, the right the posterior densities; the red vertical and horizontal lines are
the fitted values from the original model, the blue points (in all cases identical
to the red lines) show the starting points of the MCMC chains. (In the one
simulated example below, purple lines indicate the true variances.)

The results for this first (sleepstudy) example seem reasonable, although
the memcsamp results for the intercept term (first row) don’t match MCMCglmm
particularly well. (The fitted value from lmer does, so the problem seems to be
less with lmer in general than with what mcmcsamp is doing .. .)

(first row) is quite close to the edge of its putative posterior distribution.

ggl <- do_plots(vl)
grid.arrange(ggl[[1]],gg1[[2]],nco0l=2)

Subject.(Intercept) Subject.(Intercept)
3000 0.004
2500 0.003
2000
1500 0.002
1000
| | 0.001
0 I I I I I I 0.000 I I I I I I I
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000
Subject.Days Subject.Days
0.025 N\
0.020
3 g
= % 0.015
= S 0.010
0.005
0+ T T T T T 0.000 N T T T T T
0 200 400 600 800 1000 0 50 100 150 200 250
units units
0.005
1000
0.004 —
800 - 0.003
0.002
600 1 0.001
T T T T T T 0.000 T T T
0 200 400 600 800 1000 600 800 1000
step value
factor(method) MCMCglmm — mcmcsamp factor(method) Z MCMCgimm IZImcmcsam

We could produce a scatterplot matrix

splom(subset(vi$mcmec,select=-c(step,method)) ,pch=".")

but it’s not very informative in this case — and I haven’t yet gone to the
trouble of superimposing the fitted values.

(Hereafter the code is suppressed in the output, since it’s practically the
same.)

3.2 Dyestuff

fm2 <- Imer(Yield ~ 1|Batch, Dyestuff)
fm2M <- MCMCglmm(Yield ~ 1,random=-idh(1) :Batch,
data=Dyestuff,verbose=FALSE)

ve(fm2)

Groups Name Variance Std.Dev.
Batch (Intercept) 1764 42.0

Residual 2451 49.5

This one looks OK too (I'm still slightly puzzled that the fitted value doesn’t
align with the modes of the distribution, but maybe that’s a marginal vs. un-
conditional maximum value issue?)

(Note that T have thrown away extreme values (> 10000) of the batch vari-
ance in the density, for easier visualization.)

The MCMCglmm results for the batch variance actually look a little wonky —
is the problem more poorly constrained than I think?

Batch.(Intercept) Batch.(Intercept)
8e—-04 —
40000 —
6e—04 —
30000 —
20000 -| 4e-047
. - —-\K&
0- 0e+00 —
o T T T T T T > T T T T T T
= 0 200 400 600 800 1000 g 0 2000 4000 6000 8000 10000
[i -
> units g units
10000 - 4e-04
3e-04 —
™
2e-04 —
le—04 -
0e+00 —
T T T T T T T T T T T
0 200 400 600 800 1000 2000 4000 6000 8000 10000
step value
factor(method) —— MCMCglmm — mcmcsamp factor(method) MCMCglmm IZ, mcmcesanm

3.3 Penicillin

fm3 <- lmer(diameter ~ (1|plate) + (1|sample), Penicillin)

fm3M <- MCMCglmm(diameter ~ 1,random=~idh(1):plate+idh(1):sample,
data=Penicillin,verbose=FALSE)

vec(fm3)

Groups Name Variance Std.Dev.

plate (Intercept) 0.717 0.847

sample (Intercept) 3.731 1.932

Residual 0.302 0.550

Now it gets weird. I could very well be doing something dumb, but I have
checked things multiple times and can’t see it. It looks like the series for the
plate intercept and the residual variance could be switched (the mean of the
plate intercept term MCMC density shown here is about 0.25, which fits pretty
well with fitted residual variance; the MCMC density for the residual variance
is /& 0.6, which fits the fitted plate-intercept variance).

value

(Restricting sample-intercept variances to < 20 in the density.)

plate.(Intercept)
O Ut |
0.0 T T T T T
0 200 400 600 800 1000
sample.(Intercept)
60
50
40
30
20
10+
07 I I I I I I
0 200 400 600 800 1000
units
1.0
0.8 1
0.6 -
0.4+
0.2 T T T T T T
0 200 400 600 800 1000
step
factor(method) —— MCMCglmm — mcmcsamp

density

plate.(Intercept)

1
0.5

1 1 1
1.0 15 2.0 2.5

sample.(Intercept)

10
units

15 20

T T
0.2 0.4

T
0.6 0.8 1.0

value

factor(method) IZI MCMCgimm IZI mcmcsamp

If we switch the units and plate-intercept terms for the mcmcsamp things look
slightly more reasonable (the mcmcsamp gets run again, so it won’t be identical).

plate.(Intercept) plate.(Intercept)
4
3 -
2 -
1 -
o4 N
I I I I I I I I I I I
0 200 400 600 800 1000 0.5 1.0 1.5 2.0 2.5
sample.(Intercept) sample.(Intercept)
60 3
50
o 40— 2 5
3 30- 2
g @
20 T 14
10
O B T T T T T T 0 E T \\ T T T
0 200 400 600 800 1000 0 5 10 15 20
units units
1 10
8 -
6 -
4
2 -
0.1~ T T T T T T 0 T T T T T T T
0 200 400 600 800 1000 01 02 03 04 05 06 07
step value
factor(method) —— MCMCglmm — mcmcsamp factor(method) MCMCgImmIZ,mcmcsamp

Double-checking a relatively raw form with less possibility for accidental
switching:

summary (as.data.frame (mcmcsamp (fm3,1000) ,
type="varcov"))

(Intercept) V2 V3 V4

Min. :21.6 Min. :0.130 Min. :0.239 Min. :0.252
1st Qu.:22.7 1st Qu.:0.227 1st Qu.:0.436 1st Qu.:0.524
Median :22.9 Median :0.273 Median :0.513 Median :0.582
Mean :22.9 Mean :0.286 Mean :0.567 Mean 0.592
3rd Qu.:23.2 3rd Qu.:0.329 3rd Qu.:0.601 3rd Qu.:0.651
Max. :23.9 Max. :0.717 Max. :3.731 Max. :1.094

The other evidence that I haven’t gotten something backward is that the
MCMC chains do start from the correct value that matches the fitted result —
and what’s up with the sample intercept 777

3.4 Pastes

fm4 <- lmer(strength ~ (1|batch) + (1|sample), Pastes)

fm4M <- MCMCglmm(strength ~ 1,
random=-idh(1) :batch + idh(1) :sample,
data=Pastes,verbose=FALSE)

vc (fmé)

Groups Name Variance Std.Dev.

sample (Intercept) 8.434 2.904

Dbatch (Intercept) 1.657 1.287

Residual 0.678 0.823

Here, again, it seems as though the first and third components might be
switched. The MCMCglmm fit for the batch intercept isn’t mixing very well, so it’s
hard to see the density plot, but the horizontal line in the trace plot indicates
here that mcmesamp is actually doing a good job ...

sample.(Intercept) sample.(Intercept)

0.5
0.4
0.3
0.2
0.1
0.0

T T T T T
0 200 400 600 800 1000 5 10 15 20 25 30
batch.(Intercept) batch.(Intercept)

o

density

units

2.0

1.5

1.0

0.5

RV KOT PO RTINE WP abebuabiitna—

0.0
1 | I I

I I I I I
0 200 400 600 800 1000 0 5 10 15
step value

factor(method) |—— MCMCglmm — mcmcsamp factor(method) |Z|MCMCgImm|Z|mcmcsamp

Try it with variables #1 and #3 switched ...

sample.(Intercept) sample.(Intercept)
0.25

0.20
0.15
0.10
0.05

N

0.00

I I I I I I I I I I I I

0 200 400 600 800 1000 0 5 10 15 20 25 30
batch.(Intercept) batch.(Intercept)

density
w
|

T T T T
0 200 400 600 800 1000 0 5 10 15
units units

87 2.07
6 15+
4+ 1.0

2 0.5

0 0.0 ‘ ‘ ‘

T T T T T
0 200 400 600 800 1000 0 2 4 6 8
step value

factor(method) |—— MCMCglmm — mcmcsamp factor(method) IZIMCMCgImmIZ,mcmcsam[

Comparing direct calculation:

colMeans(as.data.frame (mcmcsamp (fm3,1000) ,
type="varcov")) [-1]

V2 V3 V4

0.2737 0.5953 0.5922

3.5 cake

cake <- transform(cake,rr=interaction(recipe,replicate))

fm5 <- lmer(angle ~ recipe * temperature + (1|rr), cake)

fmbM <- MCMCglmm(angle ~ recipe * temperature,
random=idh (1) :rr,
data=cake,verbose=FALSE)

vc (£fm5)
Groups Name Variance Std.Dev.
rr (Intercept) 41.8 6.47

Residual 20.5

100

I I I I I
0 200 400 600 800 1000

value

i

I I I I I
0O 200 400 600 800 1000
step

154

factor(method) IEl MCMCgimm IEl mcmcsamp

Way off again.

4.

density

52

0.15

0.10 4

0.05

0.00

0.15

0.10

0.05

0.00
1 1 1 1 1

I
15 20 25 30 35 40
value

factor(method) |Z| MCMCgimm IZI mcmcsamg

Switching variables doesn’t really fix it:

10

rr.(Intercept) rr.(Intercept)
100
0.10
1 0.05 +
W \‘ I\ . ‘
W bt R
0.00
o T T T T T T > T T T T
=] 0 200 400 600 800 1000 g 20 40 60 80 100
§ units [O) units
o°
40+
0.15 4
30
0.10
I '
!
ﬁ \ ‘ ﬂ 0.05
iy
0.00 AN
T T T T T T T T T T
0 200 400 600 800 1000 10 20 30 40
step value
factor(method) —— MCMCglmm — mcmcsamp factor(method) IZIMCMCgImmIchmcsam[

3.6 A constructed example
From Laurent Stephane:

set.seed(666)

sims <- function(I, J, sigmabO, sigmaw0){
Mu <- rnorm(I, mean=0, sd=sigmabO)
y <- c(sapply(Mu, function(mu) rnorm(J, mu, sigmaw0)))
data.frame(y=y, group=gl(I,J))

I <- 20 # number of groups

J <- 20 # number of repeats per group
sigmab0 <- 1 # between standard deviation
sigmawO <- 2 # within standard deviation
dat <- sims(I, J, sigmabO, sigmaw0)

How typical is this example/how much among-realization variability is there?

11

Trying another example ...

fm5 <- lmer(y~(1|group),data=dat)
fm5M <- MCMCglmm(y~1,
random=-idh(1) :group,
data=dat,
verbose=FALSE)

vc(£fm5)

Groups Name Variance Std.Dev.
group (Intercept) 2.17 1.47

Residual 4.17 2.04

In this case the results look not-too-unreasonable — although who knows
what would happen if I used two random effects?

tvals <- data.frame(variable=factor(names(get_pvars(fm5))),
value=c(1,4),
method=rep(,2),
stringsAsFactors=FALSE)
do_all(fm5,MCMCglmmfit=fmb5M,
truevals=tvals)

12

value

group.(Intercept)

|

1 Al | (') M (i
’ \‘ "‘LI".‘ Jlu.nrﬁ LJ ..“'.ﬁ 1 “.*Im‘m‘lhl.w‘l
6 260 460 660 860 10‘00
units
5.5

1
0 200

factor(method)

1 1 1 1
400 600 800 1000

step

~—— MCMCglmm — mcmcsamp

13

density

group.(Intercept)

0.8

0.6

0.4

0.2

0.0

N -

0 -

1.24

1.0

0.8

0.6

0.4

0.2

0.0

AN

T
35

T
45
value

4.0

T
5.0

factor(method) IZ, MCMCgimm IZ mcmcsamp

group.(Intercept) group.(Intercept)
3.0

1.5+
1.0 \
0.5
0.0

o T T T T T T > T T T T T

= 0 200 400 600 800 1000 g 0.5 1.0 1.5 2.0 2.5 3.0

§ units [O) units

o°
1.2+
1.0+
0.8
0.6
0.4
0.2 /
0.0
T T T T T T T T T
0 200 400 600 800 1000 3.5 4.0 4.5 5.0 55
step value

factor(method) —— MCMCglmm — mcmcsamp factor(method) MCMCgImmIchmcsamp

To follow this up I should really run a large number of simulations and
show the distribution of point estimates/distribution of HPD intervals or quan-
tiles/coverage . ..

4 The bottom line

It’s still not clear to me whether the apparent differences between the fitted
values from lmer and (1) the mcmcsamp results and (2) the MCMCglmm results are
due to (a combination of):

¢ a bug in the mcmcsamp code that switches the order of the theta (random
effects) parameters in some cases?

e differences in priors between lmer and MCMCglmm

e differences in the Bayesian answer (mean/HPD interval of marginal pos-
terior distribution) and MLE answer

e per-realization variability (i.e. for the real data, the answer might look

14

different for a different realization of the same system; for simulations, we

can do this precisely

5 Session info

sessionInfo()

R Under development (unstable) (2012-05-12 r59340)

Platform: i686-pc-linux-gnu (32-bit)

##

locale:

[1] LC_CTYPE=en_CA.utf8 LC_NUMERIC=C

[3] LC_TIME=en_CA.utf8 LC_COLLATE=en_CA.utf8

[5] LC_MONETARY=en_CA.utf8 LC_MESSAGES=en_CA.utf8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_CA.utf8 LC_IDENTIFICATION=C

#it

attached base packages:

[1] grid stats graphics grDevices utils datasets
[8] base

#it

other attached packages:

[1] MCMCglmm_2.16 corpcor_1.6.3 ape_3.0-3

[4] coda_0.14-7 tensorA_0.36 gridExtra_0.9
[7] 1me4.0_.0.999999-1 Matrix_1.0-6 lattice_0.20-6
[10] knitr_0.5.10 RColorBrewer_1.0-5 igraph_0.5.5-4
[13] ggplot2_0.9.1 reshape2_1.2.1 plyr_1.7.1

#i#

loaded via a namespace (and not attached):

[1] codetools_0.2-8 colorspace_1.2-0 dichromat_1.2-4
[4] digest_0.5.2 evaluate_0.4.2 formatR_0.4

[7] gee_4.13-18 highlight_0.3.2 labeling 0.2

[10] 1me4_0.99999911-0 MASS_7.3-18 memoise_0.1

[13] minga_1.2.1 munsell_0.3 nlme_3.1-103

[16] parser_0.0-14 proto_0.3-9.2 Rcpp_0.9.10

[19] scales_0.2.1 splines_2.16.0 stats4_2.16.0
[22] stringr 0.6 tools_2.16.0

15

methods

