E-mail and e-mail merge from R

Ben Bolker
April 8, 2011

1 Introduction

The Rmail package is a tiny package designed for sending e-mail directly from
within R, and for mail merges. R is probably not the best platform, but it was
the one I knew.

It has the following properties (advantages/disadvantages):

e implemented entirely within R — this may be an advantage if you already
have R installed etc., as there is nothing else to install, no need to install
any additional software, etc..

e connects directly with SMTP server — efficient, and (as above) no need
for additional software

e allows authentication (but not encryption)

e purely command-line — no GUI interface (except for password prompt,
which works via Tcl/Tk)

e does not handle attachments

2 Example

Here is an extended example of Rmail’s use.

If you haven’t done it yet, install the package (R CMD INSTALL Rmail_1.0.tar.gz
from the command line or go to the Packages menu and “Install from local zip
file”) (to do: add Rmail to my local repository)

Now load the package:

> library(Rmail)
+
Read in data:
> csvfile <- system.file("doc","exl.csv",package="Rmail")
+
> gdat <- as.matrix(read.csv(csvfile))

read.csv reads a comma-separated file; as.matrix turns the resulting data
frame into a matrix of character strings.
Look at the first few lines:

> head(gdat)

+
Last.name First.name Co.authors

[1,] "Bloggs" "Joe" "Fred Smith"

[2,] "Roe" "Susan" "A. N. Other"

[3,] "Gladumovka" "Natalia" "Y. A. N. Other"
Title

[1,] "The evolution of cooperation by mutual regard"
,] "Chaos in a long-term experiment with a plankton community"
[3,] "Foraging-predation risk tradeoff governs evolution of inducible defenses"
Talk.Poster Session

[1,] "Talk" "New approaches to the evolution of social behavior"
[2,] "Talk" "Food Webs"
[3,] "Poster" "Life history theory"

Date Time Place e.mail
[1,] "2008/08/05" "10:00:00" "104B MAC" "bloggs@somewhere.com"
[2,] "2008/08/04" "13:30:00" "COS 6-1" "roe@somewhere.edu"
[3,] "2008/08/05" "5-6:30 PM" "MAC Exhibit hall" "bl@xy.ed.ac.uk"

judge jfirst jemail
[1,] "Karl Gauss" "Karl" "gauss@wherever"
[2,] "Alfred Lotka" "AL" "lotka@somewhere"

[3,] "Evelyn Hutchinson" "Evelyn" "hutch®@hutch.com"

The judge (judge’s full name), jfirst (judge’s first name), and jemail
(judge’s e-mail address) are the most important columns here.

Here’s our mail message, stored separately as a file in the current working
directory (use getwd() /setwd() to get or set the working directory, or use the
File menu on Windows): in this case it is stored as ex1-msg.txt.

Subject: competition judging
Reply-to: joe@joeshouse.com

Dear #jfirst#,
Thanks for agreeing to judge a presentation ...
Here's your assignment:
Presenter: #Last.name#, #First.name#
Co-authors: #Co.authors#

Title: #Title#
Presentation type: #Talk.Poster#

Sesssion: #Session#
Date: #Date#

Time: #Time#
Location: #Place#

The judging form is available at <http://...> ; I will also put some

copies in an envelope on the bulletin board at the meeting.

Please return completed forms
in the envelope, or e-mail me

Please feel free to contact
check your assignment and let

to me at the meeting, or put them back
electronic copies.

me with any questions -- especially,
me know if I made a mistake.

cheers
Joe

Run a fake mail-merge:

msgfile <- system.file("doc", "exl-msg.txt",package="Rmail")

>

+

> mailmerge (data=gdat,

+ msgfile=msgfile,

+ id="judge",

+ email="jemail",

+ mail=FALSE,

+ auth=FALSE, ## no authorization
+ user="bolker",

+ from="bolker@ufl.edu",

+ host="bolker-laptop@ufl.edu",
+ server="smtp.somewhere.edu",
+ port=587,

+ fake=TRUE,

+ trace=2)

Karl Gauss
Alfred Lotka
Evelyn Hutchinson

e auth specifies whether you need authorization (i.e., a mail password) to
send e-mail via the specified route

e user is your username on your mail system

e port is 25 by default (typically works if you are sending mail to an “open
relay”, e.g. from work to a work e-mail), but 587 is commonly used as
a more secure option — if in doubt, check the “Port” option in the ac-
count/SMTP server settings in the e-mail client you use

e hostname: your machine name
e from: the e-mail address from which the mail will appear to originate

e server: the name of your SMTP server (check the configuration file for
your regular mail client)

e mail=FALSE and fake=FALSE both say not to send real mail (probably
redundant, but I’'m paranoid about sending out e-mail by accident!)

Here’s what the message to Karl Gauss (our first judge) looks like:

Subject: competition judging
Reply-to: joe@joeshouse.com

Dear Karl,
Thanks for agreeing to judge a presentation ...
Here's your assignment:

Presenter: Bloggs, Joe

Co-authors: Fred Smith

Title: The evolution of cooperation by mutual regard
Presentation type: Talk

Sesssion: New approaches to the evolution of social behavior
Date: 2008/08/05

Time: 10:00:00

Location: 104B MAC

The judging form is available at <http://...> ; I will also put some
copies in an envelope on the bulletin board at the meeting.

Please return completed forms to me at the meeting, or put them back
in the envelope, or e-mail me electronic copies.

Please feel free to contact me with any questions -- especially,
check your assignment and let me know if I made a mistake.

cheers
Joe

If we wanted to get rid of these test files we could run

> unlink("mmerge.*")
+

Once you are happy that you're sending out the right e-mail, you can do it
for real.

> mailmerge (data=gdat,

+ msgfile="ex1l-msg.txt",

+ id="judge",

+ email="jemail",

+ auth=TRUE,

+ user="bolker",

+ from="bolker@ufl.edu",

+ host="bolker-laptopQufl.edu",
+ server="smtp.somewhere.edu",
+ port=587,

+ trace=2)

A text box will pop up that asks you to enter your password.

Dealing with attachments: using mutt and ssmtp

Alas, the Rmail package does not (currently) handle attachments.
Possible solutions:

e Write code, from scratch, to encode attachments in proper MIME format.
(Advantage: maintains entirely self-contained system. Disadvantage: lots
of work, reinventing the wheel.)

e Write some bits of Perl code that use the existing MIME-tools Perl module
(see for example http://search.cpan.org/~doneill/MIME-tools-5.423/
1ib/MIME/Entity.pm); then use either system() or RSPerl to have R call
the Perl code appropriately. (Advantage: uses existing code. Disadvan-
tage: users need to have Perl, and the MIME-tools module, installed.

e Call the mutt command-line mail program. (Advantage: easiest. Dis-
advantage: users need to have mutt, and a mail transfer agent such as
sendmail, postfix, or ssmtp, installed.)

In this case I am using mutt. On my Ubuntu system, all I had to do to set this
up was (1) apt-get install mutt; (2) apt-get install ssmtp; (3) configure
/etc/ssmtp/ssmtp.conf appropriately. Here’s what I used for ssmtp.conf:

http://search.cpan.org/~doneill/MIME-tools-5.428/lib/MIME/Entity.pm
http://search.cpan.org/~doneill/MIME-tools-5.428/lib/MIME/Entity.pm

The person who gets all mail for userids < 1000
Make this empty to disable rewriting.
root=bolker@mcmaster.ca

The place where the mail goes. The actual machine name is required no
MX records are consulted. Commonly mailhosts are named mail.domain.com
mailhub=smtp.googlemail.com:465

The full hostname
hostname=collywobbles.math.mcmaster.ca

AuthUser=bbolkerQgmail.com
AuthPass=XXXXX

UseTLS=YES

Define some helper functions:

> stripwhite <- function(s) {

+ gsub(""[[:space:]]+","",

+ gsub("[[:space:]]+$","",s))

+}

> capwords <- function(s, strict = TRUE) {

+ cap <- function(s) paste(toupper(substring(s,1,1)),

+ {s <- substring(s,2); if(strict) tolower(s) else s},
+ sep = "", collapse = " ")

+ sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null (names(s)))

+ }

First gather information from the class list:

library(gdata) ## for read.xls()

cfile <- system.file("doc","master_classlist.xls",package="Rmail")
classlist <- read.xls(cfile,skip=1,as.is=TRUE)

macid <- stripwhite(classlist$MacID)

e_mail <- paste(macid, "mcmaster.ca",sep="@")

subject <- "'HW 1'"

V VVVV + YV

In this case I don’t have anything interesting to say to the students, but they
might be alarmed to get an e-mail with no text in the body.

> bodyfile <- tempfile()
+
> writeLines("Please find comments on your homework attached.",con=bodyfile)

I have put marked-up versions of the student’s homework in files called
BMB_<Surname>_<First_initial>.R (I use paste here to assemble the name
of the attachment file; sprintf might be useful too).

> attachfile <- with(classlist,paste("BMB_",stripwhite (capwords (Surname)),
+ "_",substr(Initials,1,1),".R",sep=""))

Check for existence of attachments:

> f_OK <- file.exists(attachfile)
+

Put together a list of information and subset to only students with attach-
ments (to do/exercise for the reader: for students with missing homework, skip
the attachment but insert body text stating that “I haven’t received your home-
work” ...)

\

mailframe <- subset(data.frame(attach=attachfile,subject=subject,
+ e_mail=e_mail),f_OK)

Synthesize system appropriate system commands:

v

mailtxt <- with(mailframe,
paste("mutt","-a",attach, "-s",subject,"--",e_mail, "<",bodyfile))

+

Execute system commands one at time:

fake <- TRUE

for (i in seq_along(mailtxt)) {
cat (mailframe$Surname[i] ,mailframe$Initials[i],"\n")
if (fake) {
cat(mailtxt[i],"\n")
} else {
system(mailtxt[i])
}

+ + + + + + +V +V

}

Clean up:

v

unlink(bodyfile)

	Introduction
	Example

