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1 Monte Carlo Likelihood Approximation

Let fo(x,y) be the complete data density for a missing data model, the miss-
ing data being = and the observed data being y. Suppose we have observed data
Y1, - - -, Yn which are independent and identically distributed (IID) and simula-
tions 1, ..., £, which are IID from a known importance sampling distribution
with density h.

The (observed data) log likelihood for this model is

1(6) = 3 log fo(w,) 1)

where
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is the marginal for y.
The Monte Carlo likelihood approximation for (1) is

lnn(0) = Z log fm.0(y;) (2a)
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where

fem Z fa x:;’ . (2b)

The maximizer 6,,, of (2a) is the Monte Carlo (approximation to the) MLE
(the MCMLE).
Derivatives of (2a) are, of course,

n

Vol (0) = V¥1og frm0(y;)

j=1

where V denotes differentiation with respect to 6, and derivatives of (2b) are

vam Zleng T, ) Ua(ilfz’,y), (33)
=1
where
fa(xay)
vola,y) = (3b)
Zf@(mivy)
= @)
and

V2log fo,m(y) ZVZInga i, y) - vo(wi,y)

+ D (Vlog fo(i, ) (V1og fo(ai )" - vo(ii,v)
— (V10g fo.,m(v)) (V1og fom(y)) .

These derivative formulas are not obvious but are derived as equations (4.8),
(4.9), (4.12), and (4.13) in the first author’s thesis.
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2 Asymptotic Variance

The asymptotic variance of ém)n, including both the sampling variation in

Y1, ..., yn and the Monte Carlo variation in 1, ..., Ty is
a0 (Y B0 o) (@)
where
V(6) = var{V 1o fy(Y)) (50)
7(6) = B{-Vlog fy(Y)) (5b)
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where X and Y here have the same distribution as x; and y;, respectively. This
is the content of Theorem 3.3.1 in the first author’s thesis.
The first two of these quantities have obvious “plug-in” estimators
~ 1

n

T
Vinn(0) = — D (V108 fo.m(y7)) (V108 fo.m(y;)) (62)
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Jm,n(e) = n Zl v? log fe,m(yj) (6b)
=
Thus a natural plug-in estimator is
Wmm(G) o Zzzl Sm,n(ea IZ)Sm,n(ev xz) (60)
where
S (0.) = 2 37 (V108 fola,5) = V10w foum(y) - 222 (ga)
n 2 Tom () (@)

See equations (2.7) and (2.9) in the first author’s thesis.

Estimation of W using (6¢) and (6d) has the drawback that it either uses
O(mp) memory storing all the log fg (y;) and their derivatives, where p is the
dimension of the parameter vector  or it uses O(mnp) time recalculating these
quantities. Neither alternative is attractive when m and n are large.

Thus we use an alternative method of estimating W based on the method of
batch means, which is usually only used for time series. Let n = b-[, where b and
l are positive integers, called the batch number and batch length, respectively.
For k=1, ..., b calculate

kl

- 1 ~
Sm,n,k(e) = 7 Z Sm,n(ea xi) (7&)
i=(k—1)l+1
and use ,
_ l - ~ -
Winn(0) = ; S e (0) S (0)" (7b)

The factor ! in (7b) comes from the fact that the batch means (7a) have 1/1
times the variance of the individual items (6d).

Using the method of batch means we can estimate W using O(p) memory
and only O(bmp) in recalculation. Since the total time is necessarily at least
O(mnp) + O(bp?), this recalculation is negligible so long as b is much smaller
than n.

3 Bernoulli Regression with Random Effects

3.1 Normal Random Effects

The bernor package up through version 0.2 does only normal random effects.



3.1.1 Complete Data Density

The complete data density that for Bernoulli regression with normal random
effects: the response y is conditionally Bernoulli given the fixed effect vector 8
and the random effect vector b. For this model we change notation, denoting
the missing data by b rather =, which we used in the general discussion (to avoid
confusion with “big X” defined presently).

The “other data” for the problem consist of model matrices X and Z, both
having row dimension equal to the length of y, X having column dimension
equal to the length of 3, and Z having column dimension equal to the length of
b. Then the “linear predictor” is

n=XpB+ Z%b (8)

where 3 is a diagonal matrix that specifies the variance components. In R the
linear predictor can be specified by

eta <- X %*% beta + Z %% (sigma[i] * b)

where sigma[i] is the diagonal of ¥, sigma being a vector of scale parameters for
the random effects and i being an index vector that says which scale parameter
goes with which random effect (the lengths of i and b are equal, and each
element of i is an integer in seq(along = sigma)).

Then

p<-1/ (1 + exp(- eta))

is the vector of success probabilities. The complete data log density (or complete
data log likelihood) is then

log fo(y,b) = > _[ylog(p) + (1 —y)log(1 —p)] + Y log ¢(b)

where the first sum runs over elements of y and p (which are the same length),
the second sum runs over elements of b, and ¢ is the density of elements of
b, which are assumed to be IID mean zero normal. The parameter vector 6
combines 3 and o.

3.1.2 Gradient

There are two types of elements of the gradient vector (partials with respect
to @’s that are 3’s and partials with respect to 6’s that are o’s). The first are

Vlog fo(y,b) = (y — p)X. (9a)
The second are
o [y [b]
@ IOg f@(yv b) = Z(yj - pj) Z ijbm' (9b)
7j=1 m=1
im=Fk



For parallelism, we might as well rewrite (9a) to look more like (9b).
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3.1.3 Hessian

The hessian is fairly simple. First, note that

8pj
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So
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