
Logit-Normal GLMM Examples

Yun Ju Sung Charles J. Geyer

January 6, 2005

1 Examples

1.1 Logit-Normal GLMM

In a Logit-Normal generalized linear mixed model (GLMM), the observed
data is a vector y whose components are conditionally independent Bernoulli
random variables given the missing data vector b, which is unconditionally
jointly mean-zero multivariate normal. The model specification is completed
by the specification of the linear predictor

η = Xβ + Zb (1)

and the link function. In (1) X and Z are known matrices (the “design” or
“model” matrices for fixed and random effects, respectively), β is a vector of
unknown parameters (“fixed effects”), b is the vector of missing data (“random
effects”), and the conditional expectation of y given η is logit−1(η).

The unknown parameters to be estimated are β and any unknown parameters
determining the variance matrix of b. Usually this variance matrix has simple
structure and involves only a few unknown parameters. For this paper we have
written an R package bernor that implements the methods of this paper for a
class of Logit-Normal GLMM. The class of models our package handles is more
easily described in R than in mathematical notation. The linear predictor has
the form

eta = X %*% beta + Z %*% (sigma[i] * b) (2)

where X and Z are the matrices X and Z in (1) and X %*% beta is the ma-
trix multiplication Xβ so the only way in which (1) differs from (2) other than
notationally is that b in (1) is replaced by (sigma[i] * b) in (2), which, for
readers not familiar with R, has the following interpretation: sigma is a vector
of unknown parameters, i is a vector of the same length as b and having values
that are possible indices for sigma, so sigma[i] is the vector (σi1 , . . . , σim

) in
ordinary mathematical notation and * in (2) denotes coordinatewise multiplica-
tion, so if zjk are the components of the matrix Z the second term on the right
hand side of (2) has j-th component

m∑
k=1

zjkσik
bk

1

written in conventional mathematical notation.
We also change assumptions; in (1) b is general multivariate normal, but in

(2) b is standard multivariate normal (mean vector zero, variance matrix the
identity). Thus the only unknown parameters in our model are the vectors beta
and sigma. Thus our package only deals with the simple situation in which the
random effects are (unconditionally) independent.

We also allow for independent and identically distributed (IID) data, in
which case the data y is a matrix with IID columns, each column of y modeled
as described above.

1.2 McCulloch’s Toy Data

We start with a simple toy model taken from McCulloch (1997) and also
used by Booth and Hobert (1999) in which the log likelihood can be calculated
exactly by numerical integration.

These data have the form

yij = βxi + σbj

where xi = i/d, where d is the number of rows of y. A simulated data set of
this form was given by Booth and Hobert (1999, Table 2). This is the data
set booth in our bernor package (note that our y is the transpose of their y to
agree with our convention that columns of y are independent).

1.2.1 Monte Carlo Maximum Likelihood

Our package provides no optimization capabilities, only evaluation of the log
likelihood, its derivatives, and related quantities. Use either nlm or optim for
optimization. Here we demonstrate optim.

First we attach the data.

> library(bernor)

> data(booth)

> attach(booth)

Then we create functions that calculate the objective function (the Monte
Carlo log likelihood approximation) and its gradient (the gradient is optional,
optim can use numerical differentiation instead, but supplying the gradient
makes for more efficient optimization).

> moo <- model("gaussian", length(i), 1)

> nparm <- length(theta0)

> nfix <- length(mu0)

> objfun <- function(theta) {

+ if (!is.numeric(theta))

+ stop("objfun: theta not numeric")

+ if (length(theta) != nparm)

+ stop("objfun: theta wrong length")

2

+ mu <- theta[seq(1, nfix)]

+ sigma <- theta[-seq(1, nfix)]

+ .Random.seed <<- .save.Random.seed

+ bnlogl(y, mu, sigma, nmiss, x, z, i, moo)$value

+ }

> objgrd <- function(theta) {

+ if (!is.numeric(theta))

+ stop("objfun: theta not numeric")

+ if (length(theta) != nparm)

+ stop("objfun: theta wrong length")

+ mu <- theta[seq(1, nfix)]

+ sigma <- theta[-seq(1, nfix)]

+ .Random.seed <<- .save.Random.seed

+ bnlogl(y, mu, sigma, nmiss, x, z, i, moo, deriv = 1)$gradient

+ }

Our functions always use the same random seed (the seed is always restored
to .save.Random.seed just before any function evaluation). This follows the
principle of “common random numbers” and assures that the function we are
evaluating remains the same throughout the optimization. (We can later try
different random seeds if we chose.)

Then we are ready to try it out.

> set.seed(42)

> .save.Random.seed <- .Random.seed

> nmiss <- 100

> totalelapsed <- 0

> theta.start <- theta0

> lower <- c(-Inf, 0)

> control <- list(fnscale = -10)

> tout <- system.time(out <- optim(theta.start, objfun, objgrd,

+ method = "L-BFGS-B", lower = lower, control = control))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 0.36 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(out)

$par
[1] 5.899792 1.244591

$value
[1] -44.4799

$counts
function gradient

3

8 8

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

The result does not agree closely with the exact maximum likelihood estimate
(MLE), which is

> print(theta.hat.exact)

[1] 6.132472 1.329156

from the booth dataset (which we attached above) and agrees with the exact
MLE (6.132, 1.766) reported by Booth and Hobert (1999, p. 278) when one takes
into consideration that that their second parameter is σ2 and ours is σ.

It is hard to know what lessons one is supposed to draw from a toy problem.
In real life we would not, in general, have an exact MLE for comparison. We
would have for guidance Monte Carlo standard errors (Section 1.2.2 below), but
rather than calculate them for such a small Monte Carlo sample size nmiss, let
us increase nmiss and redo

> nmiss <- 10000

> theta.start <- out$par

> lower <- c(-Inf, 0)

> control <- list(fnscale = out$value)

> tout <- system.time(out <- optim(theta.start, objfun, objgrd,

+ method = "L-BFGS-B", lower = lower, control = control))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 23.72 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(out)

$par
[1] 6.149948 1.308710

$value
[1] -44.04912

$counts
function gradient

8 8

$convergence

4

[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

And we are now much closer

> theta.hat <- out$par

> theta.hat - theta.hat.exact

[1] 0.01747602 -0.02044572

1.2.2 Monte Carlo Standard Errors

Standard errors for our method involve the matrices J , V , and W that are
estimated as follows.

> .Random.seed <<- .save.Random.seed

> tout <- system.time(out <- bnlogl(y, theta.hat[1], theta.hat[2],

+ nmiss, x, z, i, moo, deriv = 3))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 1.93 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(out)

$value
[1] -44.04912

$gradient
[1] -3.533342e-07 1.955566e-06

$hessian
[,1] [,2]

[1,] -0.7659795 0.9184943
[2,] 0.9184943 -4.0043407

$bigv
[,1] [,2]

[1,] 0.04293644 -0.01618877
[2,] -0.01618877 0.17062809

> tout <- system.time(wout <- bnbigw(y, theta.hat[1], theta.hat[2],

+ nmiss, x, z, i, moo))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 157.36 seconds

5

> totalelapsed <- totalelapsed + tout[1]

> print(wout)

[,1] [,2]
[1,] 0.03901216 -0.09747692
[2,] -0.09747692 0.32719879

> nobs <- ncol(y)

> bigJ <- (-out$hessian/nobs)

> eigen(bigJ, symmetric = TRUE, only.values = TRUE)$values

[1] 0.42467125 0.05236076

> bigV <- out$bigv

> bigW <- wout

> bigS <- solve(bigJ) %*% (bigV/nobs + bigW/nmiss) %*% solve(bigJ)

> print(bigS)

[,1] [,2]
[1,] 1.4430803 0.4341112
[2,] 0.4341112 0.2298393

If we write a function to draw ellipses,

> doellipse <- function(m, v, Rsq = qchisq(0.95, 2), npoint = 250,

+ plot = TRUE, add = FALSE, ...) {

+ if (!is.numeric(m))

+ stop("m not numeric")

+ if (!is.numeric(v))

+ stop("v not numeric")

+ if (!is.matrix(v))

+ stop("v not matrix")

+ if (length(m) != 2)

+ stop("m not 2-vector")

+ if (any(dim(v) != 2))

+ stop("v not 2x2-matrix")

+ phi <- seq(0, 2 * pi, length = npoint)

+ foo <- rbind(cos(phi), sin(phi))

+ rsq <- Rsq/diag(t(foo) %*% solve(v) %*% foo)

+ bar1 <- sqrt(rsq) * foo[1,] + m[1]

+ bar2 <- sqrt(rsq) * foo[2,] + m[2]

+ if (plot) {

+ if (!add)

+ plot(bar1, bar2, type = "l", ...)

+ else lines(bar1, bar2, ...)

+ }

+ return(invisible(list(x = bar1, y = bar2)))

+ }

6

3 4 5 6 7 8 9

0.
5

1.
0

1.
5

2.
0

2.
5

µ

σ

●

Figure 1: Nominal 95% confidence ellipse for our analysis of the Booth and
Hobert data using nmiss = 104 (solid line). The solid dot is the “simulation
truth” parameter value (see text). Dotted ellipse uses “true” Fisher information
and “big W .”

we can use it to produce confidence regions. Figure 1 shows a nominal 95%
confidence ellipse.

> doellipse(theta.hat, bigS, xlab = expression(mu), ylab = expression(sigma))

> points(theta0[1], theta0[2], pch = 19)

> bigS0 <- solve(info0) %*% (info0/nobs + bigw0/nmiss) %*% solve(info0)

> doellipse(theta.hat, bigS0, add = TRUE, lty = 3)

Note that a nominal 95% confidence ellipse is very large. The“simulation truth”
parameter value reported by Booth and Hobert (1999, p. 275) is (5,

√
0.5). It

is found in the booth dataset. So the simulation truth is in a nominal 95%
confidence ellipse based on the assumption that nobs and nmiss are both“large”
(which nmiss is and nobs isn’t).

We compare our estimated “big J ,” “big V ,” and “big W” matrices with
their theoretical counterparts. Both “big J” and “big V ” estimate expected
Fisher information (since this model is correctly specified). The exact Fisher

7

information at the “simulation truth” parameter value is found in the booth
data as info0

> info0

[,1] [,2]
[1,] 0.1363007 -0.1126909
[2,] -0.1126909 0.6180557

> bigJ

[,1] [,2]
[1,] 0.07659795 -0.09184943
[2,] -0.09184943 0.40043407

> bigV

[,1] [,2]
[1,] 0.04293644 -0.01618877
[2,] -0.01618877 0.17062809

The exact “big W” is found in the booth data as bigw0

> bigw0

[,1] [,2]
[1,] 0.03301172 -0.04689475
[2,] -0.04689475 0.14047082

> bigW

[,1] [,2]
[1,] 0.03901216 -0.09747692
[2,] -0.09747692 0.32719879

Our estimates are not close, but then nobs = 10 is hardly “large” so this is no
surprise. Another indication that nobs is quite small is that the nominal 95%
confidence ellipse shown in Figure 1 is so large that we have zero significant
figure accuracy, so, pretending for a moment that this is not just toy data, our
estimates are scientifically worthless.

1.3 A Simulation Study

We would like to have some idea how well our method works, but the analysis
above gives not a hint because the toy data is “scientifically worthless” and nobs
is far to small to apply asymptotics.

Hence we do a simulation study with the same model but larger nobs. Let
us try

8

> nobs <- 50

Now we want the two contributions to the error info0 / nobs + bigw / nmiss
to be roughly the same size so we can see both sampling and Monte Carlo
variability. Thus we should set

> foo <- eigen(info0, symmetric = TRUE, only.values = TRUE)$values

> bar <- eigen(bigw0, symmetric = TRUE, only.values = TRUE)$values

> nmiss <- bar/(foo/nobs)

> print(nmiss)

[1] 12.28846 6.93307

Looks like we want about nmiss = 10, but that is far too small. Let us try

> nobs <- 500

> nmiss <- 100

> nboot <- 100

> nparm <- length(theta0)

> theta.hat <- array(NA, c(nboot, nparm))

> tstart <- proc.time()[1]

> for (iboot in 1:nboot) {

+ y <- matrix(NA, nrow(y), nobs)

+ for (k in 1:nobs) {

+ b <- rnorm(length(i))

+ eta <- x %*% mu0 + z %*% (sigma0[i] * b)

+ p <- 1/(1 + exp(-eta))

+ y[, k] <- as.numeric(runif(length(p)) < p)

+ }

+ .save.Random.seed <- .Random.seed

+ nout <- optim(theta.start, objfun, objgrd, method = "L-BFGS-B",

+ lower = lower, control = control)

+ if (nout$convergence != 0)

+ stop("convergence failure")

+ theta.hat[iboot,] <- nout$par

+ }

> tstop <- proc.time()[1]

> cat("elapsed time", tstop - tstart, "seconds\n")

elapsed time 1349.3 seconds

> totalelapsed <- totalelapsed + (tstop - tstart)

Figure 2 gives the scatter plot of Monte Carlo MLE with these sample sizes
(nobs = 500 and nmiss = 100). The solid ellipse in the figure is an asymptotic
95% coverage ellipse using the theoretical expected Fisher information and “big
W” (info0 and bigw0). The dashed ellipse is what we would have if we had
very large Monte Carlo sample size nmiss, leaving nobs the same.

9

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

4.6 4.8 5.0 5.2 5.4 5.6

0.
5

0.
6

0.
7

0.
8

0.
9

µ

σ

●

Figure 2: Simulated MLE with asymptotic 95% coverage ellipse (solid curve).
The solid dot is the “simulation truth” parameter value (see text). Hollow dots
are the Monte Carlo MLE’s for nboot = 100 simulated data sets. The observed
and missing data sample sizes are nobs = 500 and nmiss = 100. The dashed
curve is what the 95% coverage ellipse would be if we set nmiss to infinity.

> bigS0 <- solve(info0) %*% (info0/nobs + bigw0/nmiss) %*% solve(info0)

> bigS0part <- solve(nobs * info0)

> foo <- doellipse(theta0, bigS0, plot = FALSE)

> plot(theta.hat[, 1], theta.hat[, 2], xlab = expression(mu), ylab = expression(sigma),

+ xlim = range(theta.hat[, 1], foo$x), ylim = range(theta.hat[,

+ 2], foo$y))

> doellipse(theta0, bigS0, add = TRUE)

> doellipse(theta0, bigS0part, add = TRUE, lty = 2)

> points(theta0[1], theta0[2], pch = 19)

As can be seen, the asymptotics appear to work well at these sample sizes.
However, as the dashed curve shows, even if we use a Monte Carlo sample size
nmiss so large that the Monte Carlo error is negligible, the (non–Monte Carlo)
sampling variability of the estimator is still large, even at nobs = 500. The
estimator of the fixed effect µ is fairly precise (about one and a half significant

10

figure accuracy), but the estimator of the random effect scale parameter σ is
sloppy with zero significant figure accuracy. This analysis casts some doubt on
the scientific usefulness of GLMM. It appears that very large sample sizes are
necessary for scientifically useful inference.

1.4 The Salamander Data

McCullagh and Nelder (1989, Section 14.5) discuss a “salamander mating
experiment” whose data has been used by several groups of statisticians as an
example of data appropriately analyzed by Logistic-Normal GLMM (see Booth
and Hobert, 1999, for one analysis and citations of others), although McCullagh
and Nelder (1989) did not use a GLMM and it is not clear that GLMM anal-
yses address any of the questions of scientific interest for which the data were
collected. Thus in the GLMM context these data are also “toy data” albeit not
especially constructed to be such.

These data are the dataset salam in our bernor package. We are using what
Booth and Hobert (1999) call “Model A” of Karim and Zeger (1992).

> detach(booth)

> rmexcept <- function(l, all.names = FALSE) {

+ foo <- ls(.GlobalEnv, all.names = all.names)

+ bar <- match(foo, l)

+ rm(list = foo[is.na(bar)], envir = .GlobalEnv)

+ }

> rmexcept(c("rmexcept", "objfun", "objgrd", "totalelapsed"))

> ls(all.names = TRUE)

[1] ".Random.seed" ".Traceback" ".save.Random.seed"
[4] "objfun" "objgrd" "rmexcept"
[7] "totalelapsed"

> data(salam)

> attach(salam)

> nparm <- ncol(x) + length(unique(i))

> nfix <- ncol(x)

> moo <- model("gaussian", length(i), 1)

> .save.Random.seed <- .Random.seed

> nobs <- ncol(y)

> nmiss <- 100

> theta.start <- rep(0, nparm)

> names(theta.start) <- c(dimnames(x)[[2]], paste("sigma", c("f",

+ "m"), sep = "_"))

> lower <- rep(0, nparm)

> lower[1:ncol(x)] <- (-Inf)

> trust <- 1

> lowert <- pmax(lower, theta.start - trust)

> uppert <- theta.start + trust

11

> control <- list(fnscale = -10)

> tout <- system.time(out <- optim(theta.start, objfun, objgrd,

+ method = "L-BFGS-B", lower = lowert, upper = uppert, control = control))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 1.13 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(out)

$par
R/R R/W W/R W/W sigma_f sigma_m

0.8966498 0.1585898 -1.0000000 0.7685329 0.3863437 0.5483293

$value
[1] -217.4654

$counts
function gradient

14 14

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

For this dataset we have introduced a new trick: trust regions. This is a
well known procedure in optimization (Nocedal and Wright, 1999, Chapter 4),
although one little known to statisticians. Although the approximation of the
log likelihood provided by the bnlogl function is global in the sense that the
function provides a result for any valid parameter values, the approximation is
by no means uniformly accurate, and expecially when the sample sizes nobs
and nmiss are small, can have spurious local maxima “at infinity.” Thus one
constrains the optimization algorithm to stay within a bounded region, called
the trust region. Although, not the most commonly used shape, we use “box”
trust regions because they are the only shape easily implemented in R. Our trust
region is the box centered at theta.start and having L∞ radius trust.

As we can see, the trust region has constrained the value of theta.hat[4],
the W/R fixed effect. Since, the computing time was so small, we repeat with
the same trust radius but larger nmiss. Of course we use the current best
estimate as the starting point and center the trust region there.

> nmiss <- 10000

> theta.start <- out$par

> lowert <- pmax(lower, theta.start - trust)

> uppert <- theta.start + trust

12

> control <- list(fnscale = signif(out$value, 1))

> tout <- system.time(out <- optim(theta.start, objfun, objgrd,

+ method = "L-BFGS-B", lower = lowert, upper = uppert, control = control))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 99.95 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(out, digits = 4)

$par
R/R R/W W/R W/W sigma_f sigma_m

0.9817 0.1888 -1.9035 0.4869 0.8374 0.8618

$value
[1] -208.5

$counts
function gradient

13 13

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Now the result is unconstrained by the trust region and presumably it would
be safe to dispense with it, although it does no harm and provides some safety
if retained. Our results agree qualitatively but not quantatitively with those
of Booth and Hobert (1999, Table 5). We fear our nmiss is still too small.
In real life with non-toy data we would have no other analyses to compare
with—Booth and Hobert (1999) compared with Karim and Zeger (1992) and
perhaps others—we would have to use our estimates of J , V , and W as guides.
Unfortunately, these data have little replication. The “model A” we are using
does have some replication with nobs = 3, but this “replication” is questionable.
The other models considered by Karim and Zeger (1992) have no replication
(no parts of the observed data are IID). In any event, nobs = 3 is too small to
get non-singular estimates of V . So we must avoid “sandwich estimators” and
assume J = V , as occurs, with a correctly specified model.

> theta.hat <- out$par

> mu.hat <- theta.hat[1:nfix]

> sigma.hat <- theta.hat[-(1:nfix)]

> .Random.seed <<- .save.Random.seed

> tout <- system.time(lout <- bnlogl(y, mu.hat, sigma.hat, nmiss,

+ x, z, i, moo, deriv = 2))

> cat("elapsed time", tout[1], "seconds\n")

13

elapsed time 36.62 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(lout, digits = 4)

$value
[1] -208.5

$gradient
[1] 0.0001628 0.0005018 -0.0002971 0.0005181 -0.0011572 0.0004140

$hessian
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -14.0303 1.850 -0.1283 0.4900 5.952 1.420
[2,] 1.8504 -12.122 -1.1270 2.3749 3.497 -4.329
[3,] -0.1283 -1.127 -11.4603 -0.2394 -7.224 -5.261
[4,] 0.4900 2.375 -0.2394 -13.8738 -1.525 -1.615
[5,] 5.9523 3.497 -7.2241 -1.5247 -59.742 3.864
[6,] 1.4196 -4.329 -5.2606 -1.6150 3.864 -40.015

> tout <- system.time(wout <- bnbigw(y, mu.hat, sigma.hat, nmiss,

+ x, z, i, moo))

> cat("elapsed time", tout[1], "seconds\n")

elapsed time 465.81 seconds

> totalelapsed <- totalelapsed + tout[1]

> print(wout)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1384.0356 292.9156 256.29510 -905.426864 1370.2050 -588.288631
[2,] 292.9156 604.2178 -106.11965 89.213999 480.1464 -1237.969602
[3,] 256.2951 -106.1196 298.46574 -66.803358 665.0191 149.097686
[4,] -905.4269 89.2140 -66.80336 980.971962 -607.6077 2.235224
[5,] 1370.2050 480.1464 665.01915 -607.607740 4523.1707 -3156.327582
[6,] -588.2886 -1237.9696 149.09769 2.235224 -3156.3276 4912.381178

> nobs <- ncol(y)

> bigV <- bigJ <- (-lout$hessian/nobs)

> eigen(bigJ, symmetric = TRUE, only.values = TRUE)$values

[1] 20.744145 13.825826 5.229588 4.627625 3.329065 2.658096

> bigW <- wout

> bigS <- solve(bigJ) %*% (bigV/nobs + bigW/nmiss) %*% solve(bigJ)

> print(bigS, digits = 4)

14

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.0874797 0.020222 -0.01045 0.0004722 0.013375 0.001712
[2,] 0.0202221 0.103778 -0.01148 0.0196109 0.009759 -0.013144
[3,] -0.0104511 -0.011485 0.10587 -0.0002100 -0.015018 -0.014216
[4,] 0.0004722 0.019611 -0.00021 0.0810990 -0.001589 -0.006500
[5,] 0.0133749 0.009759 -0.01502 -0.0015886 0.021965 0.002142
[6,] 0.0017124 -0.013144 -0.01422 -0.0065000 0.002142 0.031838

> foo <- eigen(bigS, symmetric = TRUE, only.values = TRUE)$values

> print(foo)

[1] 0.13551035 0.10641407 0.08240492 0.06470890 0.02594531 0.01705063

> max(foo)/min(foo)

[1] 7.947529

> foo <- rbind(theta.hat, sqrt(diag(bigS)))

> dimnames(foo) <- list(c("estimate", "std. err."), names(theta.hat))

> print(foo, digits = 4)

R/R R/W W/R W/W sigma_f sigma_m
estimate 0.9817 0.1888 -1.9035 0.4869 0.8374 0.8618
std. err. 0.2958 0.3221 0.3254 0.2848 0.1482 0.1784

The “standard errors” here are to be taken with a grain of salt. Neither nobs
nor nmiss is large enough for the asymptotics to be believed. We produce them
only because they are the best we have to offer except for a simulation study
like that of the preceding section, which would be very time consuming and
presumably only show that we have very little accuracy.

Increasing nmiss is easily done. It is just a matter of patience. Our code
does not store all the missing data (at some cost in computer time regenerating
it when needed) so that arbitrarily large nmiss can be used, if one is willing to
wait for an answer.

> load("sally/doit.RData")

> load("sally/doit2.RData")

We ran, off-line because it took so long, a calculation with nmiss = 107. The
results were

> print(theta.hat)

R/R R/W W/R W/W sigma_f sigma_m
1.0044002 0.5336607 -1.7829325 1.2675500 1.0987277 1.1668347

> print(lout, digits = 4)

15

$value
[1] -207.6

$gradient
[1] -8.974e-04 7.709e-04 6.443e-05 -3.278e-04 1.892e-03 -8.830e-04

$hessian
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -9.3975 1.0967 0.4885 -2.155 3.2250 -0.3368
[2,] 1.0967 -11.8051 -0.5604 2.012 -0.2736 3.6332
[3,] 0.4885 -0.5604 -8.3937 1.579 -2.8468 -3.0186
[4,] -2.1553 2.0120 1.5788 -7.780 0.3730 8.8591
[5,] 3.2250 -0.2736 -2.8468 0.373 -27.2373 3.5403
[6,] -0.3368 3.6332 -3.0186 8.859 3.5403 -27.0202

> print(wout, digits = 4)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 419107 -82372 3407 -394115 144641 -594245
[2,] -82372 258374 -16787 385075 -236443 203519
[3,] 3407 -16787 114685 112801 -102996 209484
[4,] -394115 385075 112801 999341 -731241 991409
[5,] 144641 -236443 -102996 -731241 1151232 -837833
[6,] -594245 203519 209484 991409 -837833 1850253

> bigV <- bigJ <- (-lout$hessian/nobs)

> eigen(bigJ, symmetric = TRUE, only.values = TRUE)$values

[1] 10.9682334 8.9913024 4.4604707 2.8738201 2.3546466 0.8962727

> bigW <- wout

> bigS <- solve(bigJ) %*% (bigV/nobs + bigW/nmiss) %*% solve(bigJ)

> print(bigS, digits = 4)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.1441873 -0.023665 -0.0002369 -0.114015 0.012686 -0.046520
[2,] -0.0236650 0.132901 -0.0098016 0.137257 0.004344 0.070456
[3,] -0.0002369 -0.009802 0.1338423 0.007242 -0.016461 -0.015652
[4,] -0.1140148 0.137257 0.0072424 0.461826 0.004899 0.188363
[5,] 0.0126863 0.004344 -0.0164612 0.004899 0.042218 0.008949
[6,] -0.0465202 0.070456 -0.0156520 0.188363 0.008949 0.120399

> foo <- eigen(bigS, symmetric = TRUE, only.values = TRUE)$values

> print(foo)

[1] 0.62850038 0.14370194 0.11882461 0.07508027 0.03792843 0.03133870

> max(foo)/min(foo)

16

[1] 20.05509

> foo <- rbind(theta.hat, sqrt(diag(bigS)))

> dimnames(foo) <- list(c("estimate", "std. err."), names(theta.hat))

> print(foo, digits = 4)

R/R R/W W/R W/W sigma_f sigma_m
estimate 1.0044 0.5337 -1.7829 1.2675 1.0987 1.167
std. err. 0.3797 0.3646 0.3658 0.6796 0.2055 0.347

For comparison, Booth and Hobert (1999) give the following MLE

> mu <- c(1.03, 0.32, -1.95, 0.99)

> sigmasq <- c(1.4, 1.25)

> theta.hat.booth <- c(mu, sqrt(sigmasq))

> names(theta.hat.booth) <- names(theta.hat)

> print(theta.hat, digits = 4)

R/R R/W W/R W/W sigma_f sigma_m
1.0044 0.5337 -1.7829 1.2675 1.0987 1.1668

> print(theta.hat.booth, digits = 4)

R/R R/W W/R W/W sigma_f sigma_m
1.030 0.320 -1.950 0.990 1.183 1.118

(We have independently verified using MCMC that the latter appear to be
correct to three significant figures).

References

Booth, J. G. and Hobert, J. P. (1999) Maximizing generalized linear mixed
model likelihoods with an automated Monte Carlo EM algorithm. Journal of
the Royal Statistical Society Series B (Statistical Methodology) 61, 265–285.

Ihaka R and Gentleman R. (1996) R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5, 299–314.

Karim, M. R. and Zeger, S. L. (1992) Generalized Linear Models with Random
Effects: Salamander Mating Revisited. Biometrics, 48, 631–644.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed.
London: Chapman & Hall.

McCulloch, C. E. (1997) Maximum likelihood algorithms for generalized linear
mixed models. Journal of the American Statistical Association 92, 162–170.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. New York:
Springer-Verlag.

17

