
CPC/back-projection error propagation

Ben Bolker

April 8, 2011

This vignette is a technical overview: see the cpc-intro vignette for a more
basic introduction to how to use the package.

The problem here is to figure out how the error in estimating the common
principal components of a set of data from multiple treatments propagates, and
should be considered, when testing the differences between groups.

Specifically: suppose we have two groups of individuals (e.g. prey exposed
to predators and prey not exposed to predators) and a (multivariate) set of
morphological measurements on each individual. We assume that there is some
underlying allometry by which individuals that change in size will also change
in shape as a result (assume some appropriate transformations, i.e. log trans-
formation of all traits). We aim to separate out changes in shape caused by
phenotypic plasticity from changes that are simply due to changes in size.

We’ll do this by calculating common principal components (CPC) for within-
group variation, back-projecting to eliminate the effects of the first CPC, and
doing univariate or multivariate analyses of the resulting size-standardized traits
separated by group. A number of assumptions we’ll make here are (1) within-
group allometric variation in size-related traits is a good proxy for between-
group variation; (2) the first CPC characterizes effects of size (e.g. it would
help our case here if the first CPC had positive loadings for all traits); (3) it
makes sense to remove the first CPC even if only the two variance-covariance
matrices only have one PC in common. Generally, we’ll use Phillips’ program
to calculate CPC even though in the special case of equal variance-covariance
matrices we should get very similar (but not identical [??]) results by subtracting
the within-group means of all traits from each trait, pooling the data, and
calculating ordinary principal components (which is what I’ll do here since I’m
simply doing examples with known equal underlying VC matrices).

Some of these concepts make more sense with > 2 traits (e.g. some but
not all PC in common), but I’m going to illustrate with two-trait examples for
simplicity.

> library(MASS)

> library(ellipse)

> library(cpcbp)

1



Now plot some pictures. I’m going to draw this twice, once with automati-
cally scaled axes and once with equal-scaled axes, because automatically scaled
axes give a quite misleading picture of the actual geometry . . .

Our first example is a null case: an offset along the first common principal
component (size axis) only (only variables 1 and 2 are shown; we can also use
plot_multigrp to plot all pairs).

> set.seed(1001)

> X1 = simdata(offset = 6)

> T1 = sim.theor(offset = 6)

> op = par(pty = "s")

> plot_dat.theor(X1, vars = 1:2, xlim = c(-12, 12), ylim = c(-12,

+ 12), theor = T1)

> par(op)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x[, vars[1]]

x[
, v

ar
s[

2]
]

●

●

Or alternatively with a shape change — an offset perpendicular to the size
axis:

> X2 = simdata(offset = 15, offset2 = 10, vars = c(20, 20, 20))

> T2 = sim.theor(offset = 15, offset2 = 10, vars = c(20, 20, 20))

> op = par(pty = "s")

> plot_dat.theor(X2, vars = 1:2, xlim = c(-12, 35), ylim = c(-12,

+ 35), theor = T2)

> par(op)

2



●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●

●

●

● ●

●

●

● ●

●

●● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●
●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
● ●

●

●
●

● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

−10 0 10 20 30

−
10

0
10

20
30

x[, vars[1]]

x[
, v

ar
s[

2]
]

●
●

The back-projection equation is:

xb = (1− β1β
T
1 )x, (1)

where x is a data vector (measurements of all traits for a single individual);
β1 is the first principal direction (eigenvector), scaled so that β1 · β1 = 1. To
understand this formula, think about breaking up (β1β

T
1 )x. The first multipli-

cation (βT1 x) projects x onto the first principal direction (calculating a scalar
that is the score for the first principal component); the second (multiplying by
β1) translates this score back into the original coordinate system.

As we now know, the error in calculating the back-projection matrix en-
ters (or should enter) into the estimate of the error in the differences between
groups. How do we account for this extra error? In principle, we know how to
compute the errors on any element of the eigenvector matrix (see [1], p. 82–83).
Specifically, (4.6) of [1] tells us

θ̂
(i)
jh = r−1i

λ̂ij λ̂ih

(λ̂ij − λ̂ih)2
, (2)

where ri = ni/n (fraction of total data points in group i) and λ̂ij is the estimate

of the jth eigenvalue of group i’s variance-covariance matrix. Given θ̂
(i)
jh we can

3



calculate a harmonic mean

θ̂jh =

(
k∑
i=1

(
θ̂
(i)
jh

)−1)−1
(3)

and find the large-sample estimate of the standard error of β̂mh to be

s(β̂mh) =

 1

n

p∑
j=1,j 6=h

θ̂jhβ̂
2
mj

1/2

, (4)

or

Σ2(β̂) =
1

n

(
β̂2
)T
·Θ, (5)

where Θ is θij as above for i 6= j, 0 on the diagonal.
More generally (see (2.5) from [1]) we have that the variance-covariance

matrix of the elements in β1 is:

1

n

p∑
j=1,j 6=h

θ̂1hβhβ
′
h (6)

(eq. 2.5 provides a general variance-covariance expression for the elements of
any principal component with any other principal component, but p.c. 1 is the
only one we will be concerned with). Note that βhβ

′
h is the outer product (a

matrix) of βh with itself . . . there is probably some clever outer-product way to
combine this whole expression into a single matrix/tensor operation in terms
of Θ and βh, but it would just be more confusing. calc.cpcerr in the cpcbp

library calculates the result of (6).
Now suppose we have calculated the error variances σ2

β1j
for each component

of the first eigenvector. Then the (ij)th element of the outer-product matrix
β1β

T
1 is β1iβ1j . In general, the formula for combining the errors of two quantities

is (from [2])

V (f(a, b)) ≈ V (a)

(
∂f

∂a

)2

+ V (b)

(
∂f

∂b

)2

+ 2C(a, b)

(
∂f

∂a

∂f

∂b

)
, (7)

which equals

V (a)b2 + V (b)a2 + 2C(a, b)ab = a2b2
(
V (a)

a2
+
V (b)

b2

)
+ 2C(a, b)ab (8)

if f(a, b) = a · b. So the error variance of β1iβ1j is approximately

σ2
β1iβ1j

= (β1iβ1j)
2

(
σ2
β1i

β2
1i

+
σ2
β1j

β2
1j

)
+ 2C(β1i, β1j)β1iβ1j (9)

4



We can write this in matrix formulation as well: Gentle, eq. 1.40 gives

V (R) ≈ Jg(θ)V (T )((Jg(θ))
T , (10)

where J is the Jacobian (∂gi/∂θj) and V represents the variance-covariance
matrix. The Jacobian of (β1iβ1j) is . . .

We also have to compute the covariances of the elements of the back-
projection matrix bij = β1iβ1j with each other — but we actually will only
need to multiply bij by bik, so we only need (σbij ,bik) 1

Cbij ,bjk =2
(
β1iβ1jσβ1i,β1k

+ β1iβ1kσβ1i,β1j

)
+ β1i

2σβ1j ,β1k
+ β1jβ1kσ

2
β1i

(12)

Call the back-projection matrix for variable i bi.
Denote by Mi the matrix with σ2

b1i
on the diagonal and Cbij ,bjk as the

off-diagonal elements — this is the variance-covariance matrix of the back-
projection vector for variable i. Then if Xg is the vector of the back-projected
means of the variables for a group, the back-projection variance for this group is
σ2
ig,bp = XT

g MiXg. If there are ng samples in group g, then the back-projection

sum of squares for is n2gσ
2
ig,bp; the total back-projection sum of squares is∑Ng

g=1 n
2
gσ

2
ig,bp; and the total error sum of squares is the sum of the within-

group sums of squares (the within-group variance for each group, assumed to
be equal, times the number of individuals in the group — also assumed to be

equal) and the BP sum of squares:
∑Ng

g=1 ngσ
2
xig

+ n2gσ
2ig, bp.

References

[1] Bernard Flury. Common principal components and related multivariate mod-
els. Wiley, New York, 1988.

[2] Louis Lyons. A practical guide to data analysis for physical science students.
Cambridge University Press, Cambridge, England, 1991.

1derivation: We want σbij ,bik = E[bijbik] − E[bij ]E[bik].

=E[β1iβ1j · β1iβ1k] − E[β1iβ1j ] · E[β1iβ1k]

=(β̄2
1iβ̄1j β̄1k + 2(β̄1iβ̄1jσβ1i,β1k + β̄1iβ̄1kσβ1i,β1j )

+ β̄2
1iσβ1j ,β1k + β̄1j β̄1kσ

2
β1i

)

− (β̄1iβ̄1j + σβ1i,β1j ) × (β̄1iβ̄1k + σβ1i,β1k )

=2(β̄1iβ̄1jσβ1i,β1k + β̄1iβ̄1kσβ1i,β1j ) + β̄2
1iσβ1j ,β1k + β̄1j β̄1kσ

2
β1i

− β̄1iβ̄1jσβ1i,β1k − β̄1iβ̄1kσβ1i,β1j − σβ1i,β1jσβ1i,β1k

(11)

(the last three cross terms were left out of the previous derivation).

5


