
Getting started with the glmmADMB package

Ben Bolker, Hans Skaug, Arni Magnusson, Anders Nielsen

March 27, 2012

1 Introduction/quick start

glmmADMB is a package, built on the open source AD Model Builder nonlinear
fitting engine, for fitting generalized linear mixed models and extensions.

� response distributions: Poisson, binomial, negative binomial (NB1 and
NB2 parameterizations), Gamma, Beta, truncated Poisson and negative
binomial; Gaussian; logistic

� link functions: log, logit, probit, complementary log-log ("cloglog"), in-
verse, identity

� zero-inflation (models with a constant zero-inflation value only); hurdle
models via truncated Poisson/NB

� single or multiple (nested or crossed) random effects

� offsets

� post-fit MCMC chain for characterizing uncertainty

As of version 0.6.5, the package has been greatly revised to allow a wider
range of response and link functions and to allow models with multiple random
effects. For now, the resulting package is slower than the old (single-random-
effect version), but we hope to increase its speed in the future.

In order to use glmmADMB effectively you should already be reasonably fa-
miliar with generalized linear mixed models (GLMMs), which in turn requires
familiarity with (i) generalized linear models (e.g. the special cases of logistic,
binomial, and Poisson regression) and (ii) ‘modern’ mixed models (those work-
ing via maximization of the marginal likelihood rather than by manipulating
sums of squares).

In order to fit a model in glmmADMB you need to:

� specify a model for the fixed effects, in the standard R (Wilkinson-Rogers)
formula notation (see ?formula or Section 11.1 of the Introduction to R.
Formulae can also include offsets.

1

http://admb-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf

� specify a model for the random effects, in the notation that is common to
the nlme and lme4 packages. Random effects are specified as e|g, where
e is an effect and g is a grouping factor (which must be a factor variable,
or a nesting of/interaction among factor variables). For example, the
formula would be 1|block for a random-intercept model or time|block

for a model with random variation in slopes through time across groups
specified by block. A model of nested random effects (block within site)
would be 1|site/block; a model of crossed random effects (block and
year) would be (1|block)+(1|year).

Random effects can be specified either in a separate random argument (as
in nlme) or as part of the model formula (as in lme4).

� choose the error distribution by specifying the family (as a string: e.g.
"poisson" or "binomial")

� specify a link function (as a string: e.g. "logit" or "log".

� optionally specify that zero-inflation is present zeroInflation=TRUE. In
the current version, zero-inflation can only be specified as a single constant
term across the entire model — i.e. it cannot vary across groups or with
covariates.

This document was generated using R Under development (unstable) (2012-
03-04 r58577) and package versions:

bbmle coda coefplot2 ggplot2 glmmADMB

1.0.4.2 0.14-6 0.1.3 0.9.0 0.7.2.10

lme4 MASS scapeMCMC

0.999902344-0 7.3-17 1.1-3

> citation("glmmADMB")

To cite package 'glmmADMB' in publications use:

Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder M,

Nielsen A and Sibert J (2012). AD Model Builder: using automatic

differentiation for statistical inference of highly parameterized

complex nonlinear models. _Optim. Methods Softw._, *27*, pp. 233-249.

Skaug H, Fournier D, Nielsen A, Magnusson A and Bolker B ($ Date $).

Generalized Linear Mixed Models Using AD Model Builder. R package

version 0.7.2.10.

2 Owls data

These data, taken from [3] and ultimately from [2], quantify the number of
negotiations among owlets (owl chicks) in different nests prior to the arrival of

2

a provisioning parent as a function of food treatment (deprived or satiated), the
sex of the parent, and arrival time. The total number of calls from the nest is
recorded, along with the total brood size, which is used as an offset to allow the
use of a Poisson response.

Since the same nests are measured repeatedly, the nest is used as a random
effect. The model can be expressed as a zero-inflated generalized linear mixed
model (ZIGLMM).

First we draw some pictures (Figures 1, 2).
Load the glmmADMB package to get access to the Owls data set; load the

ggplot2 graphics package.

> library("glmmADMB")

> library("ggplot2")

Various small manipulations of the data set: (1) reorder nests by mean
negotiations per chick, for plotting purposes; (2) add log brood size variable
(for offset); (3) rename response variable.

> Owls <- transform(Owls,

Nest=reorder(Nest,NegPerChick),

NCalls=SiblingNegotiation)

(If you were really using this data set you should start with summary(Owls) to
see what columns are there and what their characteristics are.)

Now fit some models:
The basic glmmadmb fit — a zero-inflated Poisson model.

> fit_zipoiss <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(log(BroodSize))+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="poisson")

> summary(fit_zipoiss)

Call:

glmmadmb(formula = NCalls ~ (FoodTreatment + ArrivalTime) * SexParent +

offset(log(BroodSize)) + (1 | Nest), data = Owls, family = "poisson",

zeroInflation = TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.8562 0.3871 7.38 1.6e-13 ***

FoodTreatmentSatiated -0.3314 0.0635 -5.22 1.8e-07 ***

ArrivalTime -0.0807 0.0156 -5.18 2.3e-07 ***

SexParentMale 0.2882 0.3575 0.81 0.42

FoodTreatmentSatiated:SexParentMale 0.0740 0.0761 0.97 0.33

3

Female Male

Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV
Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist
Lully

ChEsard
Sevaz

Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV
Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist
Lully

ChEsard
Sevaz

D
eprived

S
atiated

0 2 4 6 8 0 2 4 6 8
Negotiations per chick

N
es

t

obs

1

3

5

7

9

Figure 1: Basic view of owl data (arrival time not shown).

4

0

2

4

6

8

22 24 26 28
Arrival time

N
eg

ot
ia

tio
ns

 p
er

 c
hi

ck

SexParent

Female

Male

obs

1

2

FoodTreatment

Deprived

Satiated

Figure 2: Basic view of owl data, #2 (nest identity not shown)

5

ArrivalTime:SexParentMale -0.0150 0.0143 -1.05 0.29

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: total=599, Nest=27

Random effect variance(s):

Group=Nest

Variance StdDev

(Intercept) 0.14 0.3742

Zero-inflation: 0.25833 (std. err.: 0.018107)

Log-likelihood: -1985.3

The coefplot2 package knows about glmmadmb fits:

> library("coefplot2")

> coefplot2(fit_zipoiss)

We can also try a standard zero-inflated negative binomial model; the default
is the “NB2” parameterization (variance = µ(1 + µ/k)).

> fit_zinbinom <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(log(BroodSize))+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom")

Alternatively, use an “NB1” fit (variance = φµ).

> fit_zinbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(log(BroodSize))+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Relax the assumption that total number of calls is strictly proportional to
brood size (i.e. using log(brood size) as an offset):

> fit_zinbinom1_bs <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Every change we have made so far improves the fit — changing distributions
improves it enormously, while changing the role of brood size makes only a
modest (-1 AIC unit) difference:

> library("bbmle")

> AICtab(fit_zipoiss,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs)

6

dAIC df

fit_zinbinom1_bs 0.0 10

fit_zinbinom1 1.2 9

fit_zinbinom 68.7 9

fit_zipoiss 637.0 8

Compare the parameter estimates:

> vn <- c("food","arrivaltime","sex","food:sex","arrival:sex","broodsize")

> coefplot2(list(ZIP=fit_zipoiss,

ZINB=fit_zinbinom,

ZINB1=fit_zinbinom1,

ZINB1_brood=fit_zinbinom1_bs),

varnames=vn,

legend=TRUE)

2.1 Hurdle models

In contrast to zero-inflated models, hurdle models treat zero-count and non-
zero outcomes as two completely separate categories, rather than treating the
zero-count outcomes as a mixture of structural and sampling zeros.

As of version 0.6.7.1, glmmADMB includes truncated Poisson and negative
binomial familes and hence can fit hurdle models. The two parts of the model
have to be fitted separately, however. First we fit a truncated distribution to
the non-zero outcomes:

> fit_hnbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=subset(Owls,NCalls>0),

family="truncnbinom1")

Then we fit a model to the binary part of the data (zero vs. non-zero). In
this case, I started by fitting a simple (intercept-only) model with intercept-
level random effects only. This comes a bit closer to matching the previous
(zero-inflation) models, which treated zero-inflation as a single constant level
across the entire data set (in fact, leaving out the random effects and just using
glmmADMB(nz~1,data=Owls,family="binomial"), or glm(nz~1,data=Owls,family="binomial"),
would be an even closer match). I then fitted a more complex binary model —
this is all a matter of judgment about how complex a model it’s worth trying
to fit to a given data set — but it does look as though the zero-inflation varies
with arrival time and satiation.

> Owls$nz <- as.numeric(Owls$NCalls>0)

> fit_count <- glmmadmb(nz~1+(1|Nest),

data=Owls,

family="binomial")

> fit_ccount <- glmmadmb(nz~(FoodTreatment+ArrivalTime)*SexParent+(1|Nest),

7

data=Owls,

family="binomial")

> AICtab(fit_count,fit_ccount)

dAIC df

fit_ccount 0.0 7

fit_count 84.1 2

> summary(fit_ccount)

Call:

glmmadmb(formula = nz ~ (FoodTreatment + ArrivalTime) * SexParent +

(1 | Nest), data = Owls, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.3108 2.1577 3.39 0.0007 ***

FoodTreatmentSatiated -1.8250 0.3479 -5.25 1.6e-07 ***

ArrivalTime -0.2171 0.0846 -2.57 0.0102 *

SexParentMale 2.7699 3.0248 0.92 0.3598

FoodTreatmentSatiated:SexParentMale -0.3646 0.4740 -0.77 0.4418

ArrivalTime:SexParentMale -0.0821 0.1175 -0.70 0.4849

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: total=599, Nest=27

Random effect variance(s):

Group=Nest

Variance StdDev

(Intercept) 1.423 1.193

Log-likelihood: -283.095

2.2 Testing and inference

(Sketchy: to be expanded.)
There are many challenging statistical issues surrounding tests of terms in

GLMMs. Most often people use minor variations of existing approaches (Wald
tests, likelihood ratio tests, etc.), either accounting for or sweeping under the rug
some of the differences that should be accounted for when moving either from
linear mixed models (LMMs) or generalized linear models (GLMs) to GLMMs.
See http://glmm.wikidot.com/faq, or a good book on GLMMs (!!), for a
discussion of these issues.

In the meantime, keeping the limitations in mind, you can

� use AIC to select models or generated weighted predictions (see example
above).

8

http://glmm.wikidot.com/faq

� use anova to perform a likelihood ratio test:

> anova(fit_zipoiss,fit_zinbinom)

Analysis of Deviance Table

Model 1: NCalls ~ (FoodTreatment + ArrivalTime) * SexParent + offset(log(BroodSize))

Model 2: NCalls ~ (FoodTreatment + ArrivalTime) * SexParent + offset(log(BroodSize))

NoPar LogLik Df Deviance Pr(>Chi)

1 8 -1985.3

2 9 -1700.1 1 570.32 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

� use Anova from the car package to generate Wald tests:

> car::Anova(fit_zinbinom)

Analysis of Deviance Table (Type II tests)

Response: NCalls

Df Chisq Pr(>Chisq)

FoodTreatment 1 8.8407 0.002946 **

ArrivalTime 1 8.5290 0.003495 **

SexParent 1 0.1450 0.703340

FoodTreatment:SexParent 1 0.9953 0.318442

ArrivalTime:SexParent 1 0.1112 0.738736

Residuals 590

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

� coefplot2

� drop1??,

� simulate??,

� parametric bootstrapping ??

2.3 Integration with lme4

> library("lme4")

> gm1_lme4 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)

> gm1_glmmADMB <- glmmadmb(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = "binomial")

> ## sessionInfo()

> fixef(gm1_lme4)

9

(Intercept) period2 period3 period4

-1.375833 -1.057875 -1.196262 -1.638262

> fixef(gm1_glmmADMB) ## or coef()

(Intercept) period2 period3 period4

-1.39850 -0.99233 -1.12870 -1.58030

> unlist(ranef(gm1_lme4))

herd.(Intercept)1 herd.(Intercept)2 herd.(Intercept)3 herd.(Intercept)4

0.67444277 -0.43998913 0.57431817 0.07101472

herd.(Intercept)5 herd.(Intercept)6 herd.(Intercept)7 herd.(Intercept)8

-0.56297767 -0.59995895 1.23827285 0.76489735

herd.(Intercept)9 herd.(Intercept)10 herd.(Intercept)11 herd.(Intercept)12

-0.36259804 -0.79481945 -0.09280176 -0.04105403

herd.(Intercept)13 herd.(Intercept)14 herd.(Intercept)15

-1.05820835 1.61319820 -0.94152085

> unlist(ranef(gm1_glmmADMB))

herd1 herd2 herd3 herd4 herd5 herd6

0.59113330 -0.29951639 0.40681651 0.03938333 -0.19037992 -0.40116575

herd7 herd8 herd9 herd10 herd11 herd12

0.89084943 0.60033432 -0.23844043 -0.54209341 -0.08476149 -0.06501281

herd13 herd14 herd15

-0.69149400 0.97261479 -0.53178414

> VarCorr(gm1_lme4)

Groups Name Variance Std.Dev.

herd (Intercept) 0.60406 0.77721

> detach("package:lme4") ## kluge!

> VarCorr(gm1_glmmADMB)

Group=herd

Variance StdDev

(Intercept) 0.4152 0.6443

2.3.1 Convert glmmADMB parameters to lme4

this section is UNDER CONSTRUCTION

> library("lme4") ## requires DEVELOPMENT version of lme4 ...

> new_lme4 <- packageVersion("lme4")>"0.999375.42"

> if (new_lme4) {

lme4fun <- update(gm1_lme4,devFunOnly=TRUE)

deviance(gm1_lme4)

10

lme4fun(c(0,fixef(gm1_lme4))) ## variance set to zero

v1 <- getME(gm1_lme4,"theta") ## log-Cholesky factor: equal in this case to standard dev

lme4fun(c(v1,fixef(gm1_lme4))) ## observed variance (*almost* identical)

v2 <- sqrt(gm1_glmmADMB$S[[1]])

lme4fun(c(v2,fixef(gm1_lme4))) ## ???

}

[1] 228.0689

> ## FIXME: figure out why this crashes knitr in non-interactive mode!!

> ## (then turn evaluation back on)

> glmmadmbfun <- function(pars,minval=exp(-9.5),verbose=FALSE) {

if (pars[1]==0) {

warning(sprintf("variance parameter set to min val (%f)",minval))

pars[1] <- minval

}

g0 <- glmmadmb(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = "binomial",

extra.args=c("-maxfn 1 -phase 6"),

verbose=verbose,

start=list(RE_sd=log(pars[1]), fixed=pars[-1]))

-logLik(g0)

}

> ## glmmadmbfun(c(0,fixef(gm1_lme4))) ## fails

> v2B <- glmmadmbfun(c(v2,fixef(gm1_lme4)))

> v1B <- glmmadmbfun(c(v1,fixef(gm1_lme4)))

> all.equal(v1B,v2B,-logLik(gm1_glmmADMB))

2.4 MCMC fitting

AD Model Builder has the capability to run a post hoc Markov chain to assess
variability — that is, it uses the MLE as a starting point and the estimated
sampling distribution (variance-covariance matrix) of the parameters as a can-
didate distribution, and “jumps around” the parameter space in a consistent
way (Metropolis-Hastings?) to generate a series of samples from a posterior
distribution of the parameter distribution (assuming flat priors: please see the
ADMB documentation, or [1], for more details).

This is very convenient, but tends to be a bit slow. In the example below, I
ran a chain of 50,000 MCMC iterations — on examination, the default chain of
1000 iterations was much too short — which took about 1.04 hours on a modern
(2012) desktop.

> OwlModel_nb1_bs_mcmc <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1",

11

mcmc=TRUE,

mcmc.opts=mcmcControl(mcmc=50000))

Convert the MCMC chain to an mcmc object which the coda package can
handle:

> library("coda")

> m <- as.mcmc(OwlModel_nb1_bs_mcmc$mcmc)

> mcmc_transform <- function(m,fit) {

if (missing(fit)) {

fit0 <- fit

m <- fit$mcmc

fit <- fit0

}

if (!is(m,"mcmc")) stop("m must be an 'mcmc' object")

if (!is(fit,"glmmadmb")) stop("fit must a 'glmmadmb' object")

zero-inflation

pz <- m[,"pz",drop=FALSE]

t_pz <- pz ## (not transformed)

fixed effects

fixed <- m[,grep("^beta",colnames(m)),drop=FALSE]

t_fixed <- as.mcmc(fixed %*% fit$phi)

colnames(t_fixed) <- names(fixef(fit))

variance parameters: log std dev

theta <- m[,grep("^tmpL",colnames(m)),drop=FALSE]

t_theta <- exp(theta)

corr parameters ("offdiagonal elements of cholesky-factor of correlation matrix")

corr <- m[,grep("^tmpL1",colnames(m)),drop=FALSE]

t_corr <- corr

scale/overdispersion parameter

logalpha <- m[,grep("^log_alpha",colnames(m)),drop=FALSE]

t_alpha <- matrix(exp(logalpha),dimnames=list(NULL,"alpha"))

random effects

re <- m[,grep("^u\\\\.[0-9]+",colnames(m)),drop=FALSE]

t_re <- re

mcmc(cbind(t_pz,t_fixed,t_theta,t_corr,t_alpha,t_re),

start=start(m),end=end(m),thin=frequency(m))

}

Look at the trace plots. (Something a bit odd happens at the end of the
chain, so we drop the last few values . . . there may be a bug in the import-
handling for MCMC for very long chains . . .)

> tm <- window(mcmc_transform(m,OwlModel_nb1_bs),1,320)

> library("scapeMCMC")

> plotTrace(tm)

12

pz (Intercept) FoodTreatmentSatiated ArrivalTime

SexParentMale BroodSizeFoodTreatmentSatiated:SexParentMaleArrivalTime:SexParentMale

tmpL alpha

The Geweke diagnostic gives Z scores for each variable for a comparison
between (by default) the first 10% and last 50% of the chain

> (gg <- geweke.diag(tm))

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

pz (Intercept)

0.7191 -0.0986

FoodTreatmentSatiated ArrivalTime

1.6912 0.0370

SexParentMale BroodSize

-0.3944 0.1543

FoodTreatmentSatiated:SexParentMale ArrivalTime:SexParentMale

-0.6721 0.3673

tmpL alpha

0.7926 -0.4671

> summary(2*pnorm(abs(gg$z),lower.tail=FALSE))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0908 0.4795 0.6669 0.6309 0.8364 0.9705

13

The most frequently used diagnostic, Gelman-Rubin (gelman.diag), re-
quires multiple chains. The full set of diagnostic functions available in coda

is:

[1] autocorr.diag gelman.diag geweke.diag heidel.diag raftery.diag

effectiveSize gives the effective length of the chain for each variable, i.e.
the number of samples corrected for autocorrelation:

> range(effectiveSize(tm))

[1] 233.0753 417.1391

HPDinterval gives the highest posterior density (credible interval):

> detach("package:lme4") ## kluge!!

> head(HPDinterval(tm))

lower upper

pz 0.04298075 0.14200879

(Intercept) 2.64801231 5.94767059

FoodTreatmentSatiated -1.19929429 -0.68661971

ArrivalTime -0.18632185 -0.06141591

SexParentMale -1.71678380 2.19172558

BroodSize 0.04600739 0.32411652

You might prefer inferences based on the quantiles instead:

> head(t(apply(tm,2,quantile,c(0.025,0.975))))

2.5% 97.5%

pz 0.04603193 0.1493516

(Intercept) 2.57678904 5.8787228

FoodTreatmentSatiated -1.19407645 -0.6697261

ArrivalTime -0.18398412 -0.0580883

SexParentMale -1.51901806 2.5242395

BroodSize 0.05040258 0.3493775

You can also look at density plots or pairwise scatterplots (“splom” in lat-

tice and scapeMCMC, for Scatterplot matrices), although these are not partic-
ularly useful for this large a set of parameters:

> plotDens(tm)

> plotSplom(tm,pch=".")

The MCMC output in glmmADMB is currently in a very raw form — in par-
ticular, the internal names and scales of the parameters are used:

pz zero-inflation parameter (raw)

14

beta fixed-effect parameter estimates: note that these are the versions of the
parameters fitted internally, using an orthogonalized version of the original
design matrix, not the original coefficients. These can be converted to the
original using the phi matrix as noted in the“Details”section of ?glmmadmb

tmpL variance-covariance parameters (log-standard-deviation scale)

tmpL1 correlation/off-diagonal elements of variance-covariance matrices (“off-
diagonal elements of the Cholesky factor of the correlation matrix’). (If
you need to transform these to correlations, you will need to construct the
relevant matrices with 1 on the diagonal and compute the cross-product,
CCT (see tcrossprod); if this makes no sense to you, contact the main-
tainers . . .)

log alpha log of overdispersion/scale parameter

u random effects (unscaled: these can be scaled using the estimated random-
effects standard deviations from VarCorr())

If you need to use the MCMC output and can’t figure out how, please contact
the maintainers and encourage them to work on them some more (!)

3 Other information

The standard set of accessors is available:

coef extract (fixed-effect) coefficients

fixef a synonym for coef, for consistency with nlme/lme4

ranef extract random effect coefficients (“BLUPs” or “conditional modes”)

residuals extract (Pearson) residuals

fitted fitted values

predict predicted values (based only on fixed effects, not on random effects),
possibly with standard errors (based only on uncertainty of fixed effects),
possibly for new data

logLik extract log-likelihood

AIC extract AIC

summary print summary

stdEr extract standard errors of coefficients

vcov extract estimated variance-covariance matrix of coefficients

VarCorr extract variance-covariance matrices of random effects

15

confint extract confidence intervals of fixed-effect coefficients

In case this list is out of date, you can try methods(class="glmmadmb") to tell
you what methods are currently available.

4 To do/road map

4.1 Vignette

� More examples

� Show how to specify starting values

� fix MCMC! Apply phi, std dev

� General troubleshooting (extra arguments, running outside R)

� basic intro to R2admb?

� (appendix?) document details of TPL file – robustness hacks, etc.

4.2 Code

� Speed improvement by identifying special cases?

� Spatial models?

� Additional flexibility:

– Allow model specification for zero-inflation

– Allow model specification for shape parameter

– More complex variance models (see AS-REML/MCMCglmm for in-
terface/syntax ideas)

� Improve predict method: allow prediction based on REs

� simulate method

References

[1] Benjamin M. Bolker. Ecological Models and Data in R. Princeton University
Press, Princeton, NJ, 2008.

[2] A. Roulin and L. Bersier. Nestling barn owls beg more intensely in the pres-
ence of their mother than in the presence of their father. Animal Behaviour,
74:1099–1106, 2007.

[3] Alain F. Zuur, Elena N. Ieno, Neil J. Walker, Anatoly A. Saveliev, and
Graham M. Smith. Mixed Effects Models and Extensions in Ecology with R.
Springer, 1 edition, March 2009.

16

	Introduction/quick start
	Owls data
	Hurdle models
	Testing and inference
	Integration with lme4
	Convert glmmADMB parameters to lme4

	MCMC fitting

	Other information
	To do/road map
	Vignette
	Code

