
Getting started with the glmmADMB package

Ben Bolker, Hans Skaug, Arni Magnusson, Anders Nielsen

December 18, 2011

1 Introduction/quick start

glmmADMB is a package, built on the open source AD Model Builder nonlinear
fitting engine, for fitting generalized linear mixed models and extensions.

� response distributions: Poisson, binomial, negative binomial (NB1 and
NB2 parameterizations), Gamma, Beta, truncated Poisson and negative
binomial; Gaussian coming soon

� link functions: log, logit, probit, cloglog, inverse, identity

� zero-inflation (models with a constant zero-inflation value only); hurdle
models via truncated Poisson/NB

� single or multiple (nested or crossed) random effects

� offsets

� post-fit MCMC chain for characterizing uncertainty

As of version 0.6.5, the package has been greatly revised to allow a wider
range of response and link functions and to allow models with multiple random
effects. For now, the resulting package is slower than the old (single-random-
effect version), but we hope to increase its speed in the future.

In order to use glmmADMB effectively you should already be reasonably fa-
miliar with generalized linear mixed models (GLMMs), which in turn requires
familiarity with (i) generalized linear models (e.g. the special cases of logistic,
binomial, and Poisson regression) and (ii) ‘modern’ mixed models (those work-
ing via maximization of the marginal likelihood rather than by manipulating
sums of squares).

In order to fit a model in glmmADMB you need to:

� specify a model for the fixed effects, in the standard R (Wilkinson-Rogers)
formula notation (see ?formula or Section 11.1 of the Introduction to R.
Formulae can also include offsets.

1

http://admb-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf

� specify a model for the random effects, in the notation that is common to
the nlme and lme4 packages. Random effects are specified as e|g, where
e is an effect and g is a grouping factor (which must be a factor variable,
or a nesting of/interaction among factor variables). For example, the
formula would be 1|block for a random-intercept model or time|block

for a model with random variation in slopes through time across groups
specified by block. A model of nested random effects (block within site)
would be 1|site/block; a model of crossed random effects (block and
year) would be (1|block)+(1|year).

Random effects can be specified either in a separate random argument (as
in nlme) or as part of the model formula (as in lme4).

� choose the error distribution by specifying the family (as a string: e.g.
"poisson" or "binomial")

� specify a link function (as a string: e.g. "logit" or "log".

� optionally specify that zero-inflation is present zeroInflation=TRUE. In
the current version, zero-inflation can only be specified as a single constant
term across the entire model — i.e. it cannot vary across groups or with
covariates.

2 Owls data

These data, taken from [3] and ultimately from [2], quantify the number of
negotiations among owlets (owl chicks) in different nests prior to the arrival of
a provisioning parent as a function of food treatment (deprived or satiated), the
sex of the parent, and arrival time. The total number of calls from the nest is
recorded, along with the total brood size, which is used as an offset to allow the
use of a Poisson response.

Since the same nests are measured repeatedly, the nest is used as a random
effect. The model can be expressed as a zero-inflated generalized linear mixed
model (ZIGLMM).

First we draw some pictures (Figures 1, 2).
Load the glmmADMB package to get access to the Owls data set; load the

ggplot2 graphics package.

> library(glmmADMB)

> library(ggplot2)

Various small manipulations of the data set: (1) reorder nests by mean
negotiations per chick, for plotting purposes; (2) add log brood size variable
(for offset); (3) rename response variable.

> Owls <- transform(Owls,

Nest=reorder(Nest,NegPerChick),

logBroodSize=log(BroodSize),

NCalls=SiblingNegotiation)

2

Negotiations per chick

N
es

t Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz

Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz

Female

0 2 4 6 8

Male

0 2 4 6 8

D
eprived

S
atiated

obs

1

3

5

7

9

Figure 1: Basic view of owl data (arrival time not shown).

3

Arrival time

N
eg

ot
ia

tio
ns

 p
er

 c
hi

ck

0

2

4

6

8

22 23 24 25 26 27 28 29

obs

1

2

FoodTreatment

Deprived

Satiated

SexParent

Female

Male

Figure 2: Basic view of owl data, #2 (nest identity not shown)

4

Now fit some models:
The basic glmmadmb fit — a zero-inflated Poisson model.

> fit_zipoiss <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="poisson")

> summary(fit_zipoiss)

Call:

glmmadmb(formula = NCalls ~ (FoodTreatment + ArrivalTime) * SexParent +

offset(logBroodSize) + (1 | Nest), data = Owls, family = "poisson",

zeroInflation = TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.8562 0.3871 7.38 1.6e-13 ***

FoodTreatmentSatiated -0.3314 0.0635 -5.22 1.8e-07 ***

ArrivalTime -0.0807 0.0156 -5.18 2.3e-07 ***

SexParentMale 0.2882 0.3575 0.81 0.42

FoodTreatmentSatiated:SexParentMale 0.0740 0.0761 0.97 0.33

ArrivalTime:SexParentMale -0.0150 0.0143 -1.05 0.29

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: total=599, Nest=27

Random effect variance(s):

$Nest

(Intercept)

(Intercept) 0.14001

Zero-inflation: 0.25833 (std. err.: 0.018107)

Log-likelihood: -1985.3

The coefplot2 package knows about glmmadmb fits:

> library(coefplot2)

> coefplot2(fit_zipoiss)

5

Regression estimates
−0.5 0.0 0.5 1.0

FoodTreatmentSatiated

ArrivalTime

SexParentMale

FoodTreatmentSatiated:SexParentMale

ArrivalTime:SexParentMale

●

●

●

●

●

We can also try a standard zero-inflated negative binomial model; the default
is the “NB2” parameterization (variance = µ(1 + µ/k)).

> fit_zinbinom <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom")

Alternatively, use an “NB1” fit (variance = φµ).

> fit_zinbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Relax the assumption that total number of calls is strictly proportional to
brood size (i.e. using log(brood size) as an offset):

> fit_zinbinom1_bs <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Every change we have made so far improves the fit — changing distributions
improves it enormously, while changing the role of brood size makes only a
modest (-1 AIC unit) difference:

> library(bbmle)

> AICtab(fit_zipoiss,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs)

6

dAIC df

fit_zinbinom1_bs 0.0 10

fit_zinbinom1 1.2 9

fit_zinbinom 68.7 9

fit_zipoiss 637.0 8

Compare the parameter estimates:

> vn <- c("food","arrivaltime","sex","food:sex","arrival:sex","broodsize")

> coefplot2(list(ZIP=fit_zipoiss,

ZINB=fit_zinbinom,

ZINB1=fit_zinbinom1,

ZINB1_brood=fit_zinbinom1_bs),

varnames=vn,

legend=TRUE)

Regression estimates
−2 −1 0 1 2

food

arrivaltime

sex

food:sex

arrival:sex

broodsize

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ZINB1_brood
ZINB1
ZINB
ZIP

2.1 Hurdle models

In contrast to zero-inflated models, hurdle models treat zero-count and non-
zero outcomes as two completely separate categories, rather than treating the
zero-count outcomes as a mixture of structural and sampling zeros.

As of version 0.6.7.1, glmmADMB includes truncated Poisson and negative
binomial familes and hence can fit hurdle models. The two parts of the model

7

have to be fitted separately, however. First we fit a truncated distribution to
the non-zero outcomes:

> fit_hnbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=subset(Owls,NCalls>0),

family="truncnbinom1")

Then we fit a model to the binary part of the data (zero vs. non-zero). In
this case, I started by fitting a simple (intercept-only) model with intercept-
level random effects only. This comes a bit closer to matching the previous
(zero-inflation) models, which treated zero-inflation as a single constant level
across the entire data set (in fact, leaving out the random effects and just using
glmmADMB(nz~1,data=Owls,family="binomial"), or glm(nz~1,data=Owls,family="binomial"),
would be an even closer match). I then fitted a more complex binary model —
this is all a matter of judgment about how complex a model it’s worth trying
to fit to a given data set — but it does look as though the zero-inflation varies
with arrival time and satiation.

> Owls$nz <- as.numeric(Owls$NCalls>0)

> fit_count <- glmmadmb(nz~1+(1|Nest),

data=Owls,

family="binomial")

> fit_ccount <- glmmadmb(nz~(FoodTreatment+ArrivalTime)*SexParent+(1|Nest),

data=Owls,

family="binomial")

> AICtab(fit_count,fit_ccount)

> summary(fit_ccount)

2.2 MCMC fitting

AD Model Builder has the capability to run a post hoc Markov chain to assess
variability — that is, it uses the MLE as a starting point and the estimated
sampling distribution (variance-covariance matrix) of the parameters as a can-
didate distribution, and “jumps around” the parameter space in a consistent
way (Metropolis-Hastings?) to generate a series of samples from a posterior
distribution of the parameter distribution (assuming flat priors: please see the
ADMB documentation, or [1], for more details).

This is very convenient, but tends to be a bit slow. In the example below, I
ran a chain of 50,000 MCMC iterations — on examination, the default chain of
1000 iterations was much too short — which took about two hours on a modern
(2011) laptop.

> fit_zinbinom1_bs_mcmc <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

8

family="nbinom1",

mcmc=TRUE,

mcmc.opts=mcmcControl(mcmc=50000))

Convert the MCMC chain to an mcmc object which the coda package can
handle:

> library(coda)

> m <- as.mcmc(fit_zinbinom1_bs_mcmc$mcmc)

Look at the trace plots. (Unfortunately, the MCMC variables are not prop-
erly labeled yet!)

> library(scapeMCMC)

> plotTrace(m)

V1 V2 V3 V4 V5 V6 V7

V8 V9 V10 V11 V12 V13 V14

V15 V16 V17 V18 V19 V20 V21

V22 V23 V24 V25 V26 V27 V28

V29 V30 V31 V32 V33 V34 V35

V36 V37

> gg <- geweke.diag(m)

> range(effectiveSize(m))

[1] 316.7461 702.1153

> HPDinterval(m)

9

lower upper

V1 0.04086837 0.13503793

V2 39.65328510 48.75123447

V3 -10.48568580 -6.10491571

V4 -8.21234181 -4.30098848

V5 -1.04757046 3.24003606

V6 0.88345874 8.90789301

V7 -0.31651160 3.56829008

V8 -2.22957611 1.55683873

V9 -1.36784463 -0.45857212

V10 1.59636460 1.95655313

V11 -1.49081983 -1.02366435

V12 -1.56828489 -0.72608096

V13 -1.61582871 -0.50460814

V14 -1.90121523 -0.76022085

V15 -1.06732858 -0.20816054

V16 -0.20797827 0.66810830

V17 -1.34831422 -0.43570542

V18 -0.70588824 0.07192203

V19 -1.43300082 -0.41339674

V20 -1.35590230 -0.22022910

V21 -0.51441482 0.78808287

V22 -0.51891395 0.25602298

V23 -0.23575700 0.73582321

V24 -0.54402216 0.26956438

V25 0.03551954 0.79823805

V26 -0.80082990 1.12111573

V27 -0.09841576 0.70041477

V28 -0.62273846 0.21209616

V29 0.16680329 1.21003569

V30 0.96304138 2.07080017

V31 -0.47786300 0.52939624

V32 0.14796009 0.92470871

V33 0.94182995 2.02695564

V34 0.46302084 1.29059423

V35 0.59005525 1.41125115

V36 0.78509092 1.80918334

V37 0.32249976 1.23303743

attr(,"Probability")

[1] 0.9503386

> plotDens(m)

> ## very slow and not particularly useful for this large a set of parameters ...

> plotSplom(m,pch=".")

10

3 Other information

The standard set of accessors is available:

coef extract (fixed-effect) coefficients

fixef a synonym for coef, for consistency with nlme/lme4

ranef extract random effect coefficients (“BLUPs” or “conditional modes”)

residuals extract (Pearson) residuals

fitted fitted values

predict predicted values (based only on fixed effects, not on random effects),
possibly with standard errors (based only on uncertainty of fixed effects),
possibly for new data

logLik extract log-likelihood

AIC extract AIC

summary print summary

stdEr extract standard errors of coefficients

vcov extract estimated variance-covariance matrix of coefficients

VarCorr extract variance-covariance matrices of random effects

confint extract confidence intervals of fixed-effect coefficients

Missing: specifying starting values; MCMC; general troubleshooting (extra
arguments, running outside R)

References

[1] Benjamin M. Bolker. Ecological Models and Data in R. Princeton University
Press, Princeton, NJ, 2008.

[2] A. Roulin and L. Bersier. Nestling barn owls beg more intensely in the pres-
ence of their mother than in the presence of their father. Animal Behaviour,
74:1099–1106, 2007.

[3] Alain F. Zuur, Elena N. Ieno, Neil J. Walker, Anatoly A. Saveliev, and
Graham M. Smith. Mixed Effects Models and Extensions in Ecology with R.
Springer, 1 edition, March 2009.

11

	Introduction/quick start
	Owls data
	Hurdle models
	MCMC fitting

	Other information

