
Mixed stock analysis in R: getting started with
the mixstock package

Ben Bolker

February 27, 2017

1 Introduction

The mixstock package is a set of routines written in the R language (R
Core Team, 2014) for doing mixed stock analysis using data on haploid
genetic markers gathered from source populations and from one or more
mixed populations. The package was developed for analyzing mitochon-
drial DNA (mtDNA) markers from sea turtle populations, but should be
applicable to any case with discrete sources, discrete mixed populations,
and discrete markers. (However, I do refer to sources as “rookeries” and
markers as “haplotypes” throughout this document, and you will see other
echoes of its origins, e.g. the number of markers is internally stored as vari-
able H and the number of sources is stored as R.) The package is intended to
be self-contained, but some familiarity with R or S-PLUS will definitely be
helpful. (Some familiarity with your computer’s operating system, which
is probably Microsoft Windows, is also assumed.) The statistical methods
implemented in the package are described in Bolker et al. (2003), Okuyama
and Bolker (2005), Bolker et al. (2007), and Pella and Masuda (2001).

This package is in the public domain (GNU General Public License),
is ©2008-2014 Ben Bolker and Toshinori Okuyama, and comes with NO
WARRANTY. Please suggest improvements to me (Ben Bolker) at bolker@mcmaster.ca.

If you are feeling impatient and confident, turn to “Quick Start” (sec-
tion 6).

2 Installation

You can skip this section if you are reading this file via the vignette()
command in R— that means you’ve already successfully installed the pack-

1

age.
To get started, you will have to download and install the R package, a

general-purpose statistics and graphics package, from CRAN (the “Com-
prehensive R Archive Network”); go to http://www.r-project.org
and navigate from there1

The package has been developed under Linux and runs under Win-
dows; it has been tested less thoroughly on MacOS. In general, the main
compatibility/set-up issue will be running hierarchical models with Win-
BUGS or JAGS. The download file for R is about 52Mb. If you are run-
ning an antivirus package that is configured to check the signatures of ex-
ecutable files before they run, make sure you turn it off or register the new
files installed by R before proceeding. You may also have some difficulty
downloading packages if you have a firewall running on your computer
— if you have trouble, you may want to (temporarily, at your own risk!)
disable it.

Once you have downloaded and installed R, start the R program. The
setup program should have asked whether you want to add a shortcut to
the desktop or the Start menu: if you didn’t, you will have to search for a
file called Rgui.exe, which probably lives somewhere (on Windows) like
Program Files\R\R-3.4.0\bin depending on what version of R you
are using and where you decided to install it. R will open up a window
for you with a command prompt (>), at which you can type R commands.
(Don’t panic.)

You can exit R by selecting File/Exit from the menus, or by typing
q() at the command prompt. In general, if you want help on a particular
command (e.g. uml) you can type a question mark followed by the com-
mand name (e.g. ?uml)

You need to install the JAGS package (a separate software package that
mixstock uses for some analyses). Go to http://sourceforge.net/projects/mcmc-
jags/files/. The page should offer you a download compatible with your
OS (look for “Looking for the latest version? Download JAGS-...”)

If you plan to use WinBUGS (an alternative to JAGS that runs on Win-
dows, and with some difficulty on MacOS or Linux), you will need to go to

1if you are in the US and using Windows, you can go directly to http://cran.
us.r-project.org/bin/windows/base/: you will need to download a file called
R-x.y.z-win.exe which will install R for you, when executed; x.y.z stands for the cur-
rent version of R (3.4.0 as of February 27, 2017). Otherwise, see http://www.r-project.
org/mirrors.html for a list of alternative “mirror sites” closer to you and navigate
through the web pages to find a version to install (if you are not using Unix and/or an
expert, you will want to look for a binary version of R).

2

http://www.r-project.org
http://sourceforge.net/projects/mcmc-jags/files/
http://sourceforge.net/projects/mcmc-jags/files/
http://cran.us.r-project.org/bin/windows/base/
http://cran.us.r-project.org/bin/windows/base/
http://www.r-project.org/mirrors.html
http://www.r-project.org/mirrors.html

the BUGS web page and follow the installation instructions.
You will next need to install the mixstock package and several other

auxiliary packages, over the web, from within R. You will need to maintain
a connection to the internet for this piece, although it is also possible to do
this step off-line. Within R, at the command prompt, type

install.packages("mixstock")

this should install the package and all of the packages it depends on.
If R asks you whether you want to delete the source files, answer y; you
shouldn’t need them again.

(If you don’t have a convenient internet connection, you can download
the files corresponding to mixstock and all of its dependent packages
and install them by going to the Packages menu within R and choosing
Install from local zip file. However, you will need compilation
tools installed — see the documentation or FAQ for using R with your op-
erating system.)

3 Loading the mixstock package and reading in data

Start every session with the mixstock package by typing

library(mixstock)

at the command prompt; this loads the mixstock package.
The package can read plain text data files that are separated by white

space (spaces and/or tabs) or commas. If your data are in Microsoft Excel,
you should export them as a comma-separated (CSV) file. If they are in
Word, save them as plain text. The expected data format is that each row
of data represents a haplotype, each column except the last represents sam-
ples from a particular rookery, and the last column is the samples from the
mixed population. Each row and column should be named; your life will
be simpler if the names do not have spaces or punctuation other than peri-
ods in them (a common R convention is to replace spaces with periods, e.g.
North.FL for “North FL”). Do not label the haplotype column; R detects
the presence of column names by checking whether the first row has one
fewer item than the rest of the rows in the file.

For example, a plain text file (with haplotype labels H1 and H2 and rook-
ery labels R1–R3) could look like this:

3

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

R1 R2 R3 mix
H1 1 2 3 4
H2 3 4 5 6

Or a comma-separated file could look like this (note that the first line has
only 4 elements while subsequent lines have 5).

R1,R2,R3,mix
H1,1,2,3,4
H2,3,4,5,6

If you have data from multiple mixed stocks, either put those data in a
separate file or run them all together as columns of the same table (you will
get a chance to specify how many sources and how many mixed popula-
tions there are):

R1,R2,R3,mix1,mix2
H1,1,2,3,4,7
H2,3,4,5,6,0

To read in your data, you first need to make sure that R knows how
to find them. The easiest thing to do is to use the menu options2 to move
to a directory (i.e., folder) you will use for analysis, which should contain
the data files you want to use and will contain R’s working files. You can
use the getwd() (get working directory) command to see where you are,
and list.files() to list the files in the current directory. Once you have
changed to the appropriate directory, you can read in your data files and
assign the data to a variable. For example, if you had a file with space-
separated data called mydata.dat, you could it read it in by typing

mydata = read.table("mydata.dat",header=TRUE)

and if you have a comma-separated file called mydata.csv you can
use

mydata = read.csv("mydata.csv")

(1) header=TRUE is required with read.table to specify that there is
a header line in the file; it is part of the default settings for read.csv. Make

2File/Change working directory on Windows, Misc/Change working
directory or Apple-D on MacOS

4

sure there are no extra lines at the top of your data file, although you can
use the skip argument (see ?read.table for details) if necessary. (2) You
must specify the extension of the file — the letters after the dot. Sometimes
your operating system will hide that information from you.

If you have your own data you can read it in now and follow along,
or you can use the lahanas98raw data set that comes with the package
(Lahanas et al., 1998):

mydata = lahanas98raw

To make sure that everything came out OK, type the name of the vari-
able alone at the command prompt: e.g.

mydata

to print out the data, or

head(mydata)

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR feed
I 11 7 0 0 0 0 0 0 0 2
II 1 0 0 0 0 0 0 0 0 0
III 12 5 40 3 0 0 0 0 0 62
IV 0 0 1 0 0 0 0 0 0 0
V 0 1 0 27 13 0 0 0 0 10
VI 0 0 0 0 1 0 0 0 0 0

to print out just the first few lines, as shown above.
Next, use the as.mixstock.data command to convert your data to a

form that the package can use:

mydata = as.mixstock.data(mydata)

Once your data are converted in this way, you can use plot(mydata)
to produce a summary plot of the data (Figure 1).

The default plot is a barplot, with the proportions of each haplotype
sampled in each rookery represented by a separate bar; the mixed popula-
tion data are shown as the rightmost bar.3

3you can change from the default colors by specifying a colors= argument: e.g. if
you have 10 haplotypes, colors=topo.colors(10) or colors=gray((0:9)/9). See
?gray or ?rainbow for more information.

5

Haplotype frequency

FL
MEXI

CR
AVES
SURI
BRAZ
ASCE
AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX

Figure 1: Basic plot of turtle mtDNA haplotype data, using
plot(mydata,mix.off=2) (mix.off=2 leaves a slightly larger
space between the rookery and mixed stock data)

6

Before proceeding, you will need to “condense” your data set by (1)
excluding any haplotype samples that are found only in the mixed popu-
lation (such “singleton” haplotypes will break some estimation methods,
and provide no useful information on turtle origins) and (2) lumping to-
gether all haplotypes that are found only in a single rookery and the mixed
population (distinguishing among such haplotypes provides no extra in-
formation in our analyses, and may slow down estimation). You can do
this by typing

mydata = markfreq.condense(mydata)

(To examine the condensed form of the data, you can print them by
typing mydata at the command prompt, head(mydata) to see just the
first few lines, or plot(mydata) to see the graphical summary [Figure 2].)

Some data are already entered in the package in the condensed format;
lahanas98 is the green turtle haplotype frequency data from Lahanas
et al. (1998), while bolten98 is the loggerhead haplotype frequency data
from Bolten et al. (1998). Both of these data sets are already converted and
condensed: lahanas98raw and bolten98raw give you the correspond-
ing raw data tables.

Warning in plot.mixstock.data(lahanas98, mix.off = 2,
leg.space = 0.4): some legend text may be truncated: increase
leg.space?

4 Stock analysis

You can use the mixstock package to run various mixed-stock analyses
on your data.

4.1 Conditional and unconditional maximum likelihood

You can do standard conditional maximum likelihood (CML) analysis us-
ing cml(mydata). to do: citations If you want to save the results, you can
save them as a variable that you can then print, plot, etc. (Figure 3)

mydata.cml = cml(mydata)
mydata.cml

7

Haplotype frequency

FL
MEXI

CR
AVES
SURI
BRAZ
ASCE
AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI/VII
VIII
IX
X
XI/XII
XIII/XIV
XV/XVI/XVII/XVIII

Figure 2: Condensed haplotype data from Lahanas
1998 (plot(lahanas98, mix.off=2, leg.space=0.4);
leg.space=0.4 leaves more room for the legend).

8

●

●

●

●

● ● ● ● ●

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

0.0

0.2

0.4

0.6

0.8

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR

Figure 3: CML estimates for Lahanas 1998 data; plot(mydata.cml)

Estimated input contributions:
FL MEXI CR AVES SURI
5.463021e-02 9.453698e-05 7.833919e-01 1.485493e-01 1.333410e-06
BRAZ ASCE AFRI CYPR
1.333277e-06 1.333144e-06 1.332877e-02 1.333010e-06
##
Estimated marker frequencies in sources:
(cml: no estimate)
##
method: cml

Assigning the results of cml to a variable doesn’t produce any output;
you need to type the name of the variable to get the answers to print out.

Plotting the data produces a simple plot of the estimated contributions
from each source (with no error bars): see Figure 3.

plot(mydata.cml)

When you print CML results, R will tell you there is no estimate for the
rookery frequencies, because CML assumes that the true rookery frequen-
cies are equal to the sample rookery frequencies, rather than estimating the
rookery frequencies independently.

The default plot for estimation results plots points specifying the esti-
mated proportions of the mixed population contributed by each rookery (to

9

plot this with a logarithmic scale for the vertical axis, use plot(mydata.cml,log="y")).
Standard unconditional maximum likelihood analysis (UML) takes a

little longer, but is equally straightforward (Smouse et al., 1990):

mydata.uml = uml(mydata)

UML estimates also include estimates of the true haplotype frequen-
cies in each rookery, which are printed with the contribution estimates (as
before, print these results by typing mydata.uml on a line by itself). As
with CML, you can plot the results with plot(mydata.uml); by default
this plot includes just the rookery contribution information. You can in-
clude the estimated haplotype frequencies in the rookeries in the graphical
summary as follows:

par(ask=TRUE)
plot(mydata.uml,plot.freqs=TRUE)
par(ask=FALSE)

(par(ask=TRUE) tells R to wait for user input between successive
plots).

4.2 Confidence intervals: CML and UML bootstrapping

mydata.umlboot = genboot(mydata,"uml")

will generate standard (nonparametric) bootstrap confidence intervals
for a UML fit to mydata, by resampling the data with replacement 1000
times (by default). This is slow with a realistic size data set: it took 2.2 min-
utes to run 1000 bootstrap samples on my laptop. (You can ignore warnings
about singular matrix, returning equal contribs, Error in
qr.solve, etc..) You can find out the results by typing

confint(mydata.umlboot)

2.5% 97.5%
contrib.FL 1.000000e-04 1.853967e-01
contrib.MEXI 8.255739e-05 9.999000e-05
contrib.CR 6.349666e-01 8.915403e-01
contrib.AVES 6.152913e-02 2.417467e-01

10

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●
●

●

●

● ● ● ● ●0.0

0.2

0.4

0.6

0.8

1.0

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR

Figure 4: UML estimates with bootstrap confidence limits for Lahanas 1998
data: plot(mydata.umlboot)

contrib.SURI 1.079622e-09 2.764224e-02
contrib.BRAZ 5.715238e-10 1.844699e-05
contrib.ASCE 1.628700e-13 3.672277e-05
contrib.AFRI 1.232938e-13 3.999982e-02
contrib.CYPR 1.719070e-13 2.407764e-05

4.3 Markov Chain Monte Carlo estimation

mydata.mcmc = tmcmc(mydata)

mydata.mcmc

Estimated input contributions:
contrib.FL contrib.MEXI contrib.CR contrib.AVES contrib.SURI
0.055518267 0.009706668 0.777704826 0.105769897 0.036445990
contrib.BRAZ contrib.ASCE contrib.AFRI contrib.CYPR
0.003427765 0.004219192 0.005680010 0.001527386
##
Estimated marker frequencies in sources:

11

NULL
##
method: mcmc
prior strength: 0.1147742

confint(mydata.mcmc)

2.5% 97.5%
contrib.FL 2.009853e-11 0.23823757
contrib.MEXI 1.726347e-17 0.07512486
contrib.CR 5.956080e-01 0.89165907
contrib.AVES 3.616006e-10 0.22608667
contrib.SURI 7.363441e-16 0.17303709
contrib.BRAZ 1.664703e-16 0.02785796
contrib.ASCE 8.067783e-17 0.03001117
contrib.AFRI 3.820586e-15 0.03642586
contrib.CYPR 9.118769e-18 0.01506706

plot(mydata.mcmc)

do the standard things: print the results, show confidence intervals,
plot the results. (By default the information on haplotype frequencies in
rookeries is not saved — it tends to be voluminous — and so this does not
show up in the MCMC results.)

4.4 Convergence diagnostics for MCMC

When you are running MCMC analyses, you have to check that the Markov
chains have converged (i.e. that you’ve run everything long enough for a
reliable estimate).

4.4.1 Raftery and Lewis

The command

diag1=calc.RL.0(mydata)

(The final character is the numeral 0, not the letter O).
runs Raftery and Lewis diagnostics on your data set: these criteria at-

tempt to determine how long a single chain has to be in order for it to give

12

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●
●

●

●

●
● ● ● ●

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: MCMC estimates with confidence limits for Lahanas 1998 data

“sufficiently good” estimates. This function actually runs an iterative pro-
cedure, repeating the chain until the R&L criterion is satisfied.

The results consist of two parts:

• diag1$current gives the diagnostics for the last chain evaluated.
These diagnostics consist of the predicted required length of the “burn-
in” period (a transient that is discarded); the total number of iter-
ations required; a lower bound on the total number required; and a
“dependence factor” that tells how much correlation there is between
subsequent values in the chain (see ?raftery.diag for more infor-
mation). Here are the first few lines of diag1$current:

head(diag1$current)

Burn-in Total Lower bound Dependence factor
contrib.FL 18 1521 235 6.47
contrib.MEXI 14 926 235 3.94
contrib.CR 28 1804 235 7.68
contrib.AVES 4 312 235 1.33
contrib.SURI 15 1230 235 5.23
contrib.BRAZ 5 367 235 1.56

• diag1$suggested gives the history of how long each suggested

13

chain was as we went along: the iterations stop once suggested >current,
but note that there is a lot of variability in the results.

diag1$history

##
iteration Current Suggested
1 500 647
2 647 3882
3 3882 1804

4.4.2 Gelman and Rubin

The command

diag2=calc.GR(mydata)

tests the Gelman-Rubin criterion, which starts multiple chains from widely
spaced starting points and tests to ensure that the chains “overlap” — i.e.,
that between-chain variance is small relative to within-chain variance. The
general rule of thumb is that the criterion should be below 1.2 for all pa-
rameters in order for the chain to be judged to have converged properly.
(Gelman et al., 1996).

5 Hierarchical models

To run hierarchical models, you will need to use either WinBUGS (on Win-
dows, or on Linux or MacOS via a program called WINE, or some sort of
Windows emulator) or JAGS (a newer, less well-tested program, but one
that runs more easily on a variety of platforms).

Brief installation instructions for these programs:

• WinBUGS: go to http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml and follow the instructions there to download and
install WinBUGS version 1.4 and get a license key. Then make sure
that you’ve installed the R2WinBUGS package (install.packages("R2WinBUGS"))

• JAGS: go to http://www-fis.iarc.fr/˜martyn/software/jags/
and download the appropriate version for your computer. Then in-
stall R2jags (install.packages("R2jags"))

14

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www-fis.iarc.fr/~martyn/software/jags/

You can use the pm.wbugs() command (with the same syntax as tmcmc
above) to run basic mixed stock analysis (although tmcmcwill in general be
much more convenient and efficient: pm.wbugs is included for complete-
ness and testing of WinBUGS methods). Use mm.wbugs() to run many-
to-many analyses, with R2WinBUGS (default, pkg="WinBUGS") or JAGS
(pkg="JAGS").

5.1 Many-to-many analysis

The simmixstock2 command does basic simulation of multiple-mixed-
stock systems. At its simplest, it simply generates random uniform values
for the haplotype frequencies in each rookery and the proportional contri-
butions of each rookery to each mixed stock (ref Figure 6).:

Z = simmixstock2(nsource=4,nmark=5,nmix=3,
sourcesize=c(4,2,1,1),
sourcesampsize=rep(25,4),
mixsampsize=rep(30,3),rseed=1001)

Z

4 sources, mixed stock(s), 5 distinct markers
Sample data:
R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 4 3 1
H3 2 2 11 5 4 6 3
H4 2 2 7 0 4 6 11
H5 5 13 2 6 6 9 6

plot(Z)

Now try to fit this via mm.wbugs:
Or, keeping the run in BUGS format for diagnostic purposes:

Zfit0 = mm.wbugs(Z,sourcesize=c(4,2,1,1),returntype="bugs")

This takes about 2.5 minutes to run with the default settings, which run
4 chains (equal to the number of sources) for 20,000 steps each. (There are
two different versions of the BUGS code that can be used with mm.wbugs;
in this particular case they give relatively similar answers and take about

15

Haplotype frequency

R1

R2

R3

R4

M1

M2

M3

0.0 0.2 0.4 0.6 0.8 1.0

H1
H2
H3
H4
H5

Figure 6: Simulated multiple-mixed-stock data

the same amount of time (bugs.code="BB" took 2.6 minutes), but if you’re
having trouble you might try switching from the default bugs.code="TO"
to bugs.code="BB".

Other important options when running mm.wbugs are:

• n.iter: the default is 20,000 iterations per chain, with the first half
used as burn-in (n.burnin=floor(n.iter/2)); this may be con-
servative, and could take a long time with realistically large data
sets. Use CODA’s diagnostics as described above (raftery.diag,
gelman.diag, etc.) to figure out an appropriate number of itera-
tions.

• n.chains: equal to the number of sources by default, which may
again be overkill. (Bolker et al. (2007) used three chains for an 11-
source problem.)

• inittype: "dispersed" starts the chains from a starting point
where 95% of the contributions are assumed to come from a single
source; "random" starts the chains from random starting points. If
which.init is specified, these sources will be used as the dominant

16

starting points: for example, mm.wbugs(...,n.chains=3,inittype="dispersed",which.init=c(1,5,7))
will start 3 chains with dominant contributions from sources 1, 5, and
7. If which.init is unspecified and n.chains is less than the num-
ber of sources, dominant sources will be picked at random.

• returntype: specifies what format to use for the answer. The de-
fault is a mixstock.est object that can be plotted or summarized
like the results from any other mixed-stock analysis. However, for
diagnostic purposes, it may be worth running the code initially with
returntype="bugs" and using as.mcmc.bugs and as.mixstock.est.bugs
to convert the result to either CODA format or mixstock format. Plot-
ting bugs format and CODA format gives different diagnostic plots;
CODA format can also be used to run convergence diagnostics such
as raftery.diag or gelman.diag.

Plots from many-to-many runs:
Plot BUGS format diagnostics (plot not shown):

plot(Zfit0)

Plot CODA diagnostics (plot not shown):

plot(as.mcmc.bugs(Zfit0))

(the plotMCMC package generates prettier diagnostic output).
Plot results:

plot(Zfit)

17

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

R1 R2 R3 R4

●

●

●

●

M1

R1 R2 R3 R4

●

●

●
●

M2

R1 R2 R3 R4

●

●

●

●

M3

Source-centric form:

plot(Zfit,sourcectr=TRUE)

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

1.0

M1 M2 M3 Unk

●

● ● ●

R1

M1 M2 M3 Unk

●

●
●

●

R2

●
● ●

●

R3

0.0

0.2

0.4

0.6

0.8

1.0

●
●

●

●

R4

18

Summary/confidence intervals:

summary(Zfit)

4 sources, mixed stock(s), 5 distinct markers
Sample data:
R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 4 3 1
H3 2 2 11 5 4 6 3
H4 2 2 7 0 4 6 11
H5 5 13 2 6 6 9 6
##
Estimates:
##
Mixed-stock-centric:
2.5% 97.5%
R1.M1 0.60256040 0.078821995 0.7408842
R2.M1 0.16647873 0.009677483 0.5892447
R3.M1 0.09200103 0.006879285 0.6020860
R4.M1 0.13895984 0.016972857 0.7626414
R1.M2 0.42660557 0.032831838 0.5819234
R2.M2 0.29882484 0.021458904 0.7444345
R3.M2 0.15762447 0.015216179 0.7046728
R4.M2 0.11694513 0.007169693 0.6777866
R1.M3 0.41654497 0.011549403 0.5832104
R2.M3 0.26691690 0.007883143 0.6435538
R3.M3 0.21188681 0.022270832 0.7401362
R4.M3 0.10465132 0.005100256 0.6309439
##
Source-centric:
2.5% 97.5%
R1.Unk 0.3579425 0.005932542 0.6375082
R2.Unk 0.2226075 0.008984328 0.7461992
R3.Unk 0.1995506 0.006014595 0.6378718
R4.Unk 0.2198993 0.011419723 0.8087170
M1.R1 0.1954923 0.287715003 0.8656942
M2.R1 0.2938525 0.136826110 0.7720181
M3.R1 0.2322330 0.069635867 0.8015838
M1.R2 0.2784221 0.011133327 0.4247108

19

M2.R2 0.1988958 0.030758291 0.6017980
M3.R2 0.2860141 0.015592982 0.6521844
M1.R3 0.3205853 0.003803650 0.2846312
M2.R3 0.1945048 0.007772304 0.3818277
M3.R3 0.2988647 0.014364737 0.5471175
M1.R4 0.2176844 0.008370931 0.3683801
M2.R4 0.1801710 0.004592795 0.3380245
M3.R4 0.3032799 0.004170499 0.3171537

Possibly prettier/do it yourself with ggplot:

Zfit.d <- as.data.frame(Zfit)
library(ggplot2)
library(grid)
theme_set(theme_bw())
zmargin <- theme(panel.margin=unit(0,"lines"))

Warning: ‘panel.margin‘ is deprecated. Please use ‘panel.spacing‘
property instead

ggplot(subset(Zfit.d,type=="input.freq"),
aes(x=from,y=est,ymin=lwr,ymax=upr))+

geom_pointrange()+facet_wrap(˜to)+zmargin

●

●

●
●

●

●

●
●

●

●
●

●

M1 M2 M3

R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.00

0.25

0.50

0.75

from

es
t

20

6 Quick start

• Download and install R from CRAN (find the site closest to you at
http://cran.r-project.org/mirrors.html; go to “Precom-
piled binary distributions” and from there to the base package; pick
your operating system; download the setup program; and run the
setup program).

• Download and install JAGS from http://sourceforge.net/projects/mcmc-
jags/files/.

• Start R.

• From within R, download and install the mixstock package — this
should automatically install all of the dependent packages as well.

install.packages("mixstock")

(This installation procedure needs to be done only once, although the
library command below, loading the package, needs to be done for
every new R session.)

• Load the package: library(mixstock)

• Load data from a comma-separated value (CSV) file, convert to proper
format, and condense haplotypes:

mydata = hapfreq.condense(as.mixstock.data(read.csv("myfile.dat")))

• analyze, e.g:

mydata.mcmc = tmcmc(mydata)
mydata.mcmc
intervals(mydata.mcmc)
plot(mydata.mcmc)

7 To do

• read.csv/read.table + as.mixstock.data combined into a single read.mixstock.data
command? (also incorporate hapfreq.condense as a default option)

21

http://cran.r-project.org/mirrors.html
http://sourceforge.net/projects/mcmc-jags/files/
http://sourceforge.net/projects/mcmc-jags/files/

• print.mixstock.est could print sample frequencies instead of
saying “no estimate” for CML

• MCMC section could be cleaned up considerably, explained better,
R&L parameters not hard-coded, more efficient — don’t re-run chains
every time

• incorporate rookery sizes in data

• keep CODA objects or potential for CODA plots in MCMC results

• make MCMC convergence process more efficient: more explanation

• add hierarchical models????

• describe fuzz and bounds parameters on CML/UML, E-M algorithm

• plot(...,legend=TRUE) doesn’t work for CML. add unstacked/beside=TRUE
option to plot.mixstock.est

• incorporate source size data as part of data object

• some functions don’t work with uncondensed data: fix or issue warn-
ing

• use HPDinterval from CODA for confidence intervals, rather than
quantiles?

References

Bolker, B., T. Okuyama, K. Bjorndal, and A. Bolten (2003). Stock estimation
for sea turtle populations using genetic markers: accounting for sam-
pling error of rare genotypes. Ecological Applications 13(3), 763–775.

Bolker, B. M., T. Okuyama, K. A. Bjorndal, and A. B. Bolten (2007). Incor-
porating multiple mixed stocks in mixed stock analysis: ’many-to-many’
analyses. Molecular Ecology 16, 685–695.

Bolten, A. B., K. A. Bjorndal, H. R. Martins, T. Dellinger, M. J. Biscotio,
S. E. Encalada, and B. W. Bowen (1998). Transatlantic developmental
migrations of loggerhead sea turtles demonstrated by mtDNA sequence
analysis. Ecological Applications 8(1), 1–7.

22

Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin (1996). Bayesian data
analysis. New York, New York, USA: Chapman and Hall.

Lahanas, P. N., K. A. Bjorndal, A. B. Bolten, S. E. Encalada, M. M.
Miyamoto, R. A. Valverde, and B. W. Bowen (1998). Genetic composition
of a green turtle (Chelonia mydas) feeding ground population: evidence
for multiple origins. Marine Biology 130, 345–352.

Okuyama, T. and B. M. Bolker (2005). Combining genetic and ecological
data to estimate sea turtle origins. Ecological Applications 15(1), 315–325.

Pella, J. and M. Masuda (2001). Bayesian methods for analysis of stock
mixtures from genetic characters. Fisheries Bulletin 99, 151–167.

R Core Team (2014). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-
07-0.

Smouse, P. E., R. S. Waples, and J. A. Tworek (1990). A genetic mixture anal-
ysis for use with incomplete source population data. Canadian Journal of
Fisheries and Aquatic Sciences 47, 620–634.

23

	Introduction
	Installation
	Loading the mixstock package and reading in data
	Stock analysis
	Conditional and unconditional maximum likelihood
	Confidence intervals: CML and UML bootstrapping
	Markov Chain Monte Carlo estimation
	Convergence diagnostics for MCMC
	Raftery and Lewis
	Gelman and Rubin

	Hierarchical models
	Many-to-many analysis

	Quick start
	To do

