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Introduction

The first law of population dynamics

• If individuals are behaving independently:
• the population-level rate of growth (or decline) is proportional to

the population size
• the population grows (or declines) exponentially

The second law of population dynamics

• Exponential growth (or decline) cannot continue forever
• Something is changing the average rate at which populations we

observe grow

The third law of population dynamics

• The changes in average rate must depend on the population size
• Populations are, directly or indirectly, affecting their own growth

rates
• Density dependence (or preferably density-dependent pro-

cesses)

Long-term growth rates

• Populations maintain long-term growth rates very close to r = 0
• This is almost certainly because factors affecting their growth rate

change with the size of population.
• What is one density-dependent mechanism that could feed back on

the growth rate?

Population regulation

• All the populations we see are regulated

http://www.polleverywhere.com/free_text_polls/PeT2hyeOZhf99oB
http://www.polleverywhere.com/free_text_polls/PeT2hyeOZhf99oB
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• On average, population growth is higher when the population is
lower

• Maybe with a time delay
• Lots of populations don’t seem to be regulated

Figure 1: plot of chunk elk1

Mechanisms of regulation

• Dense populations experience more within-species competition
• e.g. for food or space: per capita resources proportional to 1/N
• Dense populations may damage environments or resources that

they need
• Dense populations attract more natural enemies
• Dense populations may overflow onto poor habitat

Figure 2: rabbits in New ZealandRegulation may be hard to see

• Some species seem to completely fill a niche (mangroves), or de-
plete their own food resources (rabbits)

• Other species seem like they could easily be more common (pine
trees)

• May be controlled by cryptic (hard to see) natural enemies (disease,
parasites

• May be controlled by food limitation at bad times (e.g., droughts)
• Density vagueness (Strong 1986) ?
• Ecological data are noisy: need statistical methods to see regula-

tion
• In the long term, every species is controlled in part by factors

which respond to the species population size
• Otherwise, in the long term, it would increase forever or decline to

extinction (random walk)

Figure 3: plot of chunk elkdiff

Regulation works over the long term

• Not every species experiences population regulation all the time
• Maybe expanding into a niche (e.g., because of climate change)
• Maybe controlled by big outbreaks of disease
• Maybe species outbreaks into marginal habitat, and spends most of

the time contracting back to their “core” habitat
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How do we know it’s regulation?

• Why don’t we believe that population growth is controlled by
factors that don’t depend on the population itself?

The great density-dependence debate

• Ecologists spent 40 years arguing about how important density-
dependent processes are (Schmitt, Holbrook, and Osenberg 1999)

• Field ecologists: “We see strong density-independent processes
operating!”

• Theoreticians: “There must be density-dependence somewhere!”
• Leaky bucket: dW/dt = [input] − [leakiness]W → W ∗ =

[input]/[leakiness]
• Field ecologists are right: variation in D-I processes explains lots of

the variation we see
• Theoreticians are right: D-D most likely > 0 for most species
• Statisticians are right: better methods for measuring D-D (Dennis

and Taper 1994)

Modeling framework

Modeling

• Start with a discrete-time or continuous-time population model
• How can we add regulation?

Density-dependent processes

• How do per capita vital rates (birth rate, death rate) change with
population density?

• Shape: is the response straight, curved, curved more than once?
• Scale: how much does additional density affect vital rates?
• Two curves may have the same shape but different scales
• When does the curve cross zero?
• What does the zero-crossing point mean?

http://www.polleverywhere.com/free_text_polls/6L3HEPheUiSozDP
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Different scales (per capita)

Figure 4: plot of chunk scale1

Different scales (absolute growth)

Figure 5: plot of chunk scale2

Different shapes (per capita)

Figure 6: plot of chunk shape1

Different shapes (absolute)

Figure 7: plot of chunk shape2

Mathematical details

• Linear per capita rates: logistic model, r(N) = r0(1−N/K)

• Do birth rates, or death rates, or both, change?
• Maybe we only care about r(N) = b(N)− d(N)

• If birth, have to stop at b(N) = 0; can chop it off but this is
unrealistic/mathematically ugly

• Mortality rate can grow arbitrarily large (lifespan approaches zero)

Figure 8: plot of chunk mort1

Mathematical details (2)

• More flexible model: theta-logistic model, r(N) = r0(1 −
(N/K)θ)

• Have to be careful when θ < 0
• Hard to separate birth and death: phenomenological model (vs.

mechanistic alternatives)
• Hard to estimate: (Sæther, Engen, and Matthysen 2002; Sibly et al.

2005; Clark et al. 2010)

Figure 9: θ for mammal populations
(Sibly et al. 2005)

Another model

• In principle we can pick any model with decreasing (or constant)
fecundity and increasing (or constant) birth rates

• exponential-fecundity model
• constant death rates, d(N) ≡ d
• birth rate declines exponentially with density, b(N) ≡
b(0) exp(−N/Nb)

• What are the units of N_b?

Figure 10: plot of chunk fecmodel

http://www.polleverywhere.com/free_text_polls/HewqE2P4JRk9Ofb
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Another model

• can also reduce the model from birth & death to growth (birth-

death):

Continuous-time models

Mathematical model

• Suppose population has constant per capita birth rates b(N) and
death rates d(N)

• Our mathematical model is: dN
dt = (b(N)− d(N))N ≡ r(N)N

• This tells us how fast the population is changing at any instant
• Recall: when we model a population using its size, we are assuming

we can treat all individuals as the same

Recruitment

• Recruitment is when an organism moves from one life stage to
another

• e.g. Seed → seedling → sapling → tree
• Egg → larva → pupa → adult moth
• In simple continuous-time population models, recruitment is in-

cluded in birth:
• b is the rate at which adults produce new adults (or seeds produce

new seeds)

Density dependent processes

• What will normally happen to the (per capita) birth rate when
population density is high?

• What will normally happen to the (per capita) death rate when
population density is high?
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Density-dependent regulation

• “Density dependent” means that:

– Above some level of population density, the reproductive number
R goes down when density goes up:

– eventually R crosses from > 1 to < 1, r from positive to negative

Model behaviour

Dynamics

• What sort of dynamics do we expect from our conceptual popula-
tion?

• i.e., how will it change through time?
• What will the population do if it starts near zero?
• . . . near the equilibrium?
• . . . at a high value?

What will this model do?

Exponential-fecundity model:

Figure 11: plot of chunk unnamed-
chunk-1
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Time dynamics

Figure 12: plot of chunk logist_dt

Time dynamics (log scale)

Figure 13: plot of chunk lo-
gist_dt_log

Time dynamics (high starting value)

Figure 14: plot of chunk lo-
gist_dt_high

Time dynamics (different θ)

Figure 15: plot of chunk lo-
gist_dt_theta

Time dynamics (different θ, log scale)

Figure 16: plot of chunk thetalo-
gist_dt_log

Simulations

• We will simulate the behaviour of populations in continuous time
using the program R

• http://lalashan.mcmaster.ca/theobio/3SS/index.php/BirthDeath

Characteristic Time

• If a population is growing (or declining) exponentially at rate
r, we can call 1/r the characteristic time (e-folding time) of
population change

• Bacteria death example: they are continuously dying at a rate of
0.05 deaths per individuals per hour

• Characteristic time is 20 hours. If the rate didn’t decrease with
population size, they would disappear completely in 20 hours

Human growth example

• Long-term average growth rate is 0.0003/yr
• When growing at that rate:

Doubling time

• The characteristic time of growth (decline) is very similar to the
doubling time (half life)

• Characteristic time is more closely related to instantaneous dynam-
ics, so it’s used more often in dynamic modeling

Equations

• N = N0 exp(t/Tc) for growth
• N = N0 exp(−t/Tc) for decline

http://lalashan.mcmaster.ca/theobio/3SS/index.php/BirthDeath
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• If t� Tc change is close to linear
• If t� Tc change (should be) extreme!

Characteristic scale

• A characteristic scale for density dependence is analogous to a
characteristic time

• We rewrite the exponential equation to have a scale constant with
the same units as the population.

• For example: b(N) = b0 exp(−N/Nb)
• Nb is the characteristic scale of density-dependence in birth rate
• If N � Nb, density dependence is linear (and weak)
• If N � Nb, density dependence is extreme (virtually no births)

Analyzing behaviour

• Dynamics of density-dependent populations
• Recall dNdt = (b(N)− d(N))N

Equilibria

• In this simple model, when does equilibrium occur?

• Does our model have any stable equilibria?

• Does it have any unstable equilibria?

Stable and unstable equilibria

• If we are at an equilibrium we expect to stay there
• At least in our simplified model
• An equilibrium is defined as stable if we expect to approach the

equilibrium when we are near it
• An equilibrium is defined as unstable if we expect to move away

from the equilibrium when we are near it

What kind of equilibrium?

• How can we tell an equilibrium is stable?

• If population is just below the equilibrium:

• If population is just above the equilibrium:

Figure 17: plot of chunk stabplot
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Invasion

• We say a species can invade a community if its rate of change is
positive when the population is small.

• In other words, population can invade if the extinction equilib-
rium N = 0 is not stable

• In this conceptual model, this is the same as saying b(0) > d(0)

• We can define a new value R0 = b(0)/d(0)

Carrying capacity

• In a simple system with density dependence:
• When R0 < 1, R(N) is always < 1, and the population never

persists
• When R0 > 1, the population has a single, stable equilibrium:

Dynamics of density-dependent populations

• Populations following this model change smoothly
• Equations tell how the population will change at each instant
• They have no memory
• Birth rate and death rate are determined by population size alone
• Cycling is impossible

Dynamics of real-world populations

• Initial exponential growth and leveling off frequently observed
• Exponential approach to equilibrium hard to observe
• Real populations are subject to stochastic(random) effects
• Real populations are subject to changing conditions
• Some species exhibit cycles

Competition and depletion

• Competition occurs when organisms interfere with each others’
use of resources

• Competition may or may not involve depletion of resources (re-
ducing the amount of resource available in the future)
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Resource competition

• What is a resource that is competed for but not depleted?

Conclusion

• We expect models of resource competition without depletion to
exhibit smooth behaviours:

• The models in this section are not suitable for populations for
which resource depletion is important

Allee effects

Small-population effects

• What would happen if I released one butterfly into a new, highly
suitable habitat?

Allee effects

• Effects which cause small populations to have low per-capita
growth rates are called Allee effects

• Equivalent to saying that medium-sized populations have larger
per-capita growth rates than small ones

• Why might per capita growth rates decrease in small populations?

Allee effect models

Figure 18: plot of chunk allee1

Allee effect example

Figure 19: plot of chunk allee2

Allee effect: stability analysis

Figure 20: plot of chunk allee3

Allee effects

• Population may go extinct if it drops below a certain threshold
(strong Allee effect: r(0) < 0, R(0) < 1)

• Weak Allee effect: per capita growth rate decreases toward zero,
but doesn’t go negative (r(0) > 0, R(0) > 1)

• How do populations establish in the presence of Allee effects?

http://www.polleverywhere.com/free_text_polls/K7pvTtiaikSobSN
http://www.polleverywhere.com/free_text_polls/0nV3WN0weZ1vJxv
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Invasion

• When Allee effects are present, it’s no longer true that a species
that can’t invade can’t persist

• We may have R0 < 1, but R(N) > 1 for some intermediate value.
• Whether this is good or bad depends on your goal

Stochastic effects

• The world is complicated and biological populations are not per-
fectly predictable

• Real populations don’t go smoothly to equilibria, instead they
bounce around (or sometimes do other wild stuff)

• We divide stochastic (or random) effects into demographic and
environmental stochasticity

Example

• Female butterflies of a certain species lay 200 eggs on average, of
which:

• Half are female
• 50% hatch successfully into larvae
• 10% of larvae successfully pupate
• 60% of pupae become adults
• Half of adult females successfully reproduce
• A single gravid (pregnant) female butterfly is blown away by a

freak storm, and lands by chance on a suitable island with no
butterflies

• What do you expect to happen?

Butterfly example

• Depending on unknown conditions, especially in that first season,
all of those probabilities could change dramatically

• Even if we knew the probabilities, that would not guarantee an
exact result

• What if λ < 1?

Demographic stochasticity

• Demographic stochasticity is stochasticity that operates at the
level of individuals
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• Individuals don’t increase gradually, they die or give birth
• Individuals don’t produce 1.2 offspring: they produce 0, 1, 2 or 3

. . .
• Even if we control conditions perfectly, we can’t exactly predict the

dynamics of small populations
• Demographic stochasticity averages out in large populations
• Important in extinction, disease trough dynamics

Environmental stochasticity

• Environmental stochasticity is stochasticity that operates at the
level of the population

• e.g,. weather, pollution

• Environmental stochasticity can have large effects on any popula-
tion

• But small populations are the ones in danger of going extinct
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