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Introduction

The first law of population dynamics

o If individuals are behaving independently:
« the population-level rate of growth (or decline) is proportional to
the population size

¢ the population grows (or declines) exponentially

The second law of population dynamics

o Exponential growth (or decline) cannot continue forever
e Something is changing the average rate at which populations we
observe grow

The third law of population dynamics

e The changes in average rate must depend on the population size

o Populations are, directly or indirectly, affecting their own growth
rates

« Density dependence (or preferably density-dependent pro-
cesses)

Long-term growth rates

o Populations maintain long-term growth rates very close to r = 0

e This is almost certainly because factors affecting their growth rate
change with the size of population.

e What is one density-dependent mechanism that could feed back on
the growth rate?

Population requlation

e All the populations we see are regulated
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e On average, population growth is higher when the population is
lower
e Maybe with a time delay

e Lots of populations don’t seem to be regulated

Mechanisms of requlation

e Dense populations experience more within-species competition

e e.g. for food or space: per capita resources proportional to 1/ N

e Dense populations may damage environments or resources that
they need

e Dense populations attract more natural enemies

e Dense populations may overflow onto poor habitat

Regulation may be hard to see

o Some species seem to completely fill a niche (mangroves), or de-
plete their own food resources (rabbits)

o Other species seem like they could easily be more common (pine
trees)

o May be controlled by cryptic (hard to see) natural enemies (disease,
parasites

e May be controlled by food limitation at bad times (e.g., droughts)

o Density vagueness (Strong 1986) 7

¢ Ecological data are noisy: need statistical methods to see regula-
tion

e In the long term, every species is controlled in part by factors
which respond to the species population size

e Otherwise, in the long term, it would increase forever or decline to
extinction (random walk)

Regulation works over the long term

o Not every species experiences population regulation all the time

e Maybe expanding into a niche (e.g., because of climate change)

e Maybe controlled by big outbreaks of disease

o Maybe species outbreaks into marginal habitat, and spends most of
the time contracting back to their “core” habitat
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POPULATION REGULATION

How do we know it’s requlation?

e Why don’t we believe that population growth is controlled by
factors that don’t depend on the population itself?

The great density-dependence debate

o Ecologists spent 40 years arguing about how important density-
dependent processes are (Schmitt, Holbrook, and Osenberg 1999)

o Field ecologists: “We see strong density-independent processes
operating!”

o Theoreticians: “There must be density-dependence somewhere!”

o Leaky bucket: dW/dt = [input] — [leakiness|W — W* =
[input]/ [leakiness|

o Field ecologists are right: wvariation in D-I processes explains lots of
the variation we see

e Theoreticians are right: D-D most likely > 0 for most species

o Statisticians are right: better methods for measuring D-D (Dennis
and Taper 1994)

Modeling framework

Modeling

e Start with a discrete-time or continuous-time population model

e How can we add regulation?

Density-dependent processes

e How do per capita vital rates (birth rate, death rate) change with
population density?

e Shape: is the response straight, curved, curved more than once?

e Scale: how much does additional density affect vital rates?

e Two curves may have the same shape but different scales

¢ When does the curve cross zero?

e What does the zero-crossing point mean?

3
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Different scales (per capita)
Different scales (absolute growth)
Different shapes (per capita)
Different shapes (absolute)
Mathematical details

o Linear per capita rates: logistic model, r(N) = r9(1 - N/K)

e Do birth rates, or death rates, or both, change?

o Maybe we only care about 7(N) = b(N) — d(N)

o If birth, have to stop at b(N) = 0; can chop it off but this is
unrealistic/mathematically ugly

o Mortality rate can grow arbitrarily large (lifespan approaches zero)

Mathematical details (2)

o More flexible model: theta-logistic model, r(N) = ro(1 —
(N/K))

e Have to be careful when 6 < 0

o Hard to separate birth and death: phenomenological model (vs.
mechanistic alternatives)

e Hard to estimate: (Seether, Engen, and Matthysen 2002; Sibly et al.

2005; Clark et al. 2010)

Another model

e In principle we can pick any model with decreasing (or constant)
fecundity and increasing (or constant) birth rates

o exponential-fecundity model

« constant death rates, d(N) =d

o birth rate declines exponentially with density, b(N)
b(0) exp(=N/Ns)

e« What are the units of N _b?
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Another model

e can also reduce the model from birth & death to growth (birth-
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Continuous-time models

Mathematical model

 Suppose population has constant per capita birth rates b(N) and
death rates d(N)

« Our mathematical model is: &} = (b(N) —d(N))N = r(N)N

e This tells us how fast the population is changing at any instant

¢ Recall: when we model a population using its size, we are assuming
we can treat all individuals as the same

Recruitment

¢ Recruitment is when an organism moves from one life stage to
another

e e.g. Seed — seedling — sapling — tree
e Egg — larva — pupa — adult moth

¢ In simple continuous-time population models, recruitment is in-
cluded in birth:

o b is the rate at which adults produce new adults (or seeds produce
new seeds)

Density dependent processes

e What will normally happen to the (per capita) birth rate when
population density is high?

o What will normally happen to the (per capita) death rate when
population density is high?
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Density-dependent regulation

o “Density dependent” means that:

— Above some level of population density, the reproductive number
R goes down when density goes up:

— eventually R crosses from > 1 to < 1, r from positive to negative
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Model behaviour

Dynamics

e What sort of dynamics do we expect from our conceptual popula-
tion?

e i.e., how will it change through time?

e What will the population do if it starts near zero?

e ... near the equilibrium?

e ... at a high value?

3

What will this model do?
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Time dynamics

Time dynamics (log scale)

Time dynamics (high starting value)
Time dynamics (different 6)

Time dynamics (different 6, log scale)
Simulations

¢ We will simulate the behaviour of populations in continuous time
using the program R
o http://lalashan.mcmaster.ca/theobio/3SS /index.php/BirthDeath

Characteristic Time

o If a population is growing (or declining) exponentially at rate
r, we can call 1/r the characteristic time (e-folding time) of
population change

o Bacteria death example: they are continuously dying at a rate of
0.05 deaths per individuals per hour

¢ Characteristic time is 20 hours. If the rate didn’t decrease with
population size, they would disappear completely in 20 hours

Human growth example

o Long-term average growth rate is 0.0003/yr
e When growing at that rate:

Doubling time

e The characteristic time of growth (decline) is very similar to the
doubling time (half life)

¢ Characteristic time is more closely related to instantaneous dynam-
ics, so it’s used more often in dynamic modeling

Fquations

o N = Nyexp(t/T,) for growth
o N = Nyexp(—t/T,) for decline
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o If t < T, change is close to linear
o Ift > T, change (should be) extreme!

Characteristic scale

¢ A characteristic scale for density dependence is analogous to a

characteristic time

e We rewrite the exponential equation to have a scale constant with

the same units as the population.
o For example: b(N) = by exp(—N/Np)

e N, is the characteristic scale of density-dependence in birth rate
o If N < Ny, density dependence is linear (and weak)
o If N> Ny, density dependence is extreme (virtually no births)

Analyzing behaviour

e Dynamics of density-dependent populations

e Recall ¥ = (b(N) —d(N))N

Equilibria

e In this simple model, when does equilibrium occur?

e Does our model have any stable equilibria?

e Does it have any unstable equilibria?

Stable and unstable equilibria

o If we are at an equilibrium we expect to stay there

e At least in our simplified model

e An equilibrium is defined as stable if we expect to approach the

equilibrium when we are near it

e An equilibrium is defined as unstable if we expect to move away

from the equilibrium when we are near it

What kind of equilibrium?

e How can we tell an equilibrium is stable?
o If population is just below the equilibrium:

o If population is just above the equilibrium:
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Invasion

We say a species can invade a community if its rate of change is
positive when the population is small.

In other words, population can invade if the extinction equilib-
rium N = 0 is not stable

In this conceptual model, this is the same as saying b(0) > d(0)

We can define a new value Ry = b(0)/d(0)

Carrying capacity

e In a simple system with density dependence:

o When Ry < 1, R(N) is always < 1, and the population never
persists

e When Ry > 1, the population has a single, stable equilibrium:

Dynamics of density-dependent populations

Populations following this model change smoothly

Equations tell how the population will change at each instant
They have no memory

Birth rate and death rate are determined by population size alone

Cycling is impossible

Dynamics of real-world populations

Initial exponential growth and leveling off frequently observed
Exponential approach to equilibrium hard to observe

Real populations are subject to stochastic(random) effects
Real populations are subject to changing conditions

Some species exhibit cycles

Competition and depletion

o Competition occurs when organisms interfere with each others’
use of resources

o Competition may or may not involve depletion of resources (re-
ducing the amount of resource available in the future)
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Resource competition

e What is a resource that is competed for but not depleted?

Conclusion

e We expect models of resource competition without depletion to
exhibit smooth behaviours:

e The models in this section are not suitable for populations for
which resource depletion is important

Allee effects

Small-population effects

e What would happen if I released one butterfly into a new, highly
suitable habitat?

Allee effects

o Effects which cause small populations to have low per-capita
growth rates are called Allee effects

o Equivalent to saying that medium-sized populations have larger
per-capita growth rates than small ones

e Why might per capita growth rates decrease in small populations?

Allee effect models
Allee effect example

Allee effect: stability analysis
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Allee effects ) “l

¢ Population may go extinct if it drops below a certain threshold : :
(strong Allee effect: 7(0) < 0, R(0) < 1) ’ ’

e Weak Allee effect: per capita growth rate decreases toward zero, of o T~——
but doesn’t go negative (r(0) > 0, R(0) > 1) e e

e How do populations establish in the presence of Allee effects? Figure 19: plot of chunk allee2
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Invasion

e When Allee effects are present, it’s no longer true that a species
that can’t invade can’t persist

o We may have Ry < 1, but R(N) > 1 for some intermediate value.

e Whether this is good or bad depends on your goal

Stochastic effects

e The world is complicated and biological populations are not per-
fectly predictable

¢ Real populations don’t go smoothly to equilibria, instead they
bounce around (or sometimes do other wild stuff)

o We divide stochastic (or random) effects into demographic and
environmental stochasticity

Example

o Female butterflies of a certain species lay 200 eggs on average, of
which:

« Half are female

e 50% hatch successfully into larvae

o 10% of larvae successfully pupate

e 60% of pupae become adults

o Half of adult females successfully reproduce

o A single gravid (pregnant) female butterfly is blown away by a
freak storm, and lands by chance on a suitable island with no
butterflies

e« What do you expect to happen?

Butterfly example
¢ Depending on unknown conditions, especially in that first season,
all of those probabilities could change dramatically

e Even if we knew the probabilities, that would not guarantee an

exact result

e What if A < 17

Demographic stochasticity

¢ Demographic stochasticity is stochasticity that operates at the
level of individuals

11
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¢ Individuals don’t increase gradually, they die or give birth

¢ Individuals don’t produce 1.2 offspring: they produce 0, 1, 2 or 3

e Even if we control conditions perfectly, we can’t exactly predict the
dynamics of small populations
e Demographic stochasticity averages out in large populations

e Important in extinction, disease trough dynamics

Environmental stochasticity

« Environmental stochasticity is stochasticity that operates at the

level of the population
e e.g,. weather, pollution

¢ Environmental stochasticity can have large effects on any popula-

tion

o But small populations are the ones in danger of going extinct
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