The many flavors of apply

Ben Bolker

September 13, 2010

Licensed under the Creative Commons attribution-noncommercial

@ @ @ | license (http://creativecommons.org/licenses/by-nc/3.0/). Please

share & remix noncommercially, mentioning its origin.

One of the more powerful capabilities of R is the “apply” family. These
are functions whose purpose is to take an R function and some R object that
represents “a set of things” and apply the function to each element in the set.
You can often achieve the same results with a for loop, stepping through
the elements of the set one by one, but the equivalent *apply commands are
(1) more compact, making code easier to read [at least if you understand
them!], (2) slightly more convenient — various bookkeeping such as figuring
out the number of elements in the set and setting aside storage for the results
gets done automatically, (3) more “idiomatic” in R (in case that matters to
you), and (4) [sometimes] more efficient [although it is no longer always the
case, as it was in early versions of S-PLUS, that for loops are much less
efficient than the apply commands].

This general approach to programming (define a function, then apply it
to a set of objects) is called (not too surprisingly) functional programming
(http://en.wikipedia.org/wiki/Functional_programming). This style
of programming started out in LISP, and is also very common in Mathe-
matica (where it is represented by the Map function).

*applying is easiest when an existing function does what you want, but
you can also define functions on the fly. For example, R doesn’t have a
square() function. You could define it:

> square <- function(x) {
x"2
}

> sapply(1:5,square)

[11] 1 4 9 16 25

http://creativecommons.org/licenses/by-nc/3.0/
http://en.wikipedia.org/wiki/Functional_programming

but for this kind of short function you can just say

> sapply(1:5,function(x) {x"2})
[1] 1 4 9 16 25

(Mathematica has an even slicker way to do this.)

You can also omit the curly brackets when your function consists of a
single statement. If it has more than one you can use semicolons to keep all
the statements on the same line, for compactness; e.g.

> sapply(1:5,function(x) {y <- x; y~2})
[1] 1 4 9 16 25

(although in this case the extra statement is obviously pointless).
You'd also be surprised sometimes what can be used as a function:

> sapply(1:5,""",2)
[1] 1 4 9 16 25

This example also represents a powerful and sometimes overlooked feature
of *apply: extra arguments get passed through to the function you are
applying. This is particularly handy when you want to apply the function
to a vector but use the vector as something other than the first argument
to the function. For example, suppose we wanted to run a linear regression
on a series of different data sets. Rather than

> datlist = list(datl,dat2,dat3)
> lapply(datlist, function(d) 1m(y~x,data=d))

we could just say

> datlist = list(datl,dat2,dat3)
> lapply(datlist, lm, formula=y~x)

R will fill in the formula argument and then use the elements of datlist
for the next unfilled argument, which in this case is data.

Note that applying can also be overdone: See section 4 of Patrick Burns’
“R Inferno” (http://www.burns-stat.com/pages/Tutor/R_inferno.pdf)
(which is a pleasure to read in general).

Reproduced and slightly extended from that reference:

http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

1 APPLY 3
function input output comment
apply matrix or array vector or array or list

lapply list or vector list

sapply list or vector vector or matrix or list simplify
tapply data, categories array or list ragged
mapply lists and/or vectors vector or matrix or list multiple
rapply list vector or list recursive
eapply environment list

dendrapply dendogram dendogram
z00: :rollapply data similar to input
emdbook: :apply2d two vectors matrix

multicore: :mclapply

same as lapply

same as lapply

parallelize across cores
(OK on Unix, exper-
imental for Windows
(pre-Vista only): see
http://rforge.net/
multicore)

kernapply has the same pattern, but I don’t think it is really in the *apply

family.
Also: simFrame: :simApply, functions
mpi.iapply, mpi.apply), gridR: :apply,

RPostgreSQL: :dbApply,

1 apply

Apply fun to the “margins” of a matrix or array.

in Rmpi (mpi.parapply,
RMySQL: : dbApply,

PerformanceAnalytics: :apply.rolling,
ff::ffapply, xts::{period.apply,apply.monthly}, etc. etc. etc..
(these are the results of sos::findFn("apply")). Also nlme: :gapply.

“Margin” here means

row, column, or other “slices” of a higher-dimensional array. The MARGIN
argument is 1 for rows, 2 for columns, and n for another dimension of a
higher-dimensional array. You can give more than one margin:

> m = matrix(1:4,byrow=TRUE,ncol=2)
> apply(m,c(1,2),function(x) x°2)

[,1]1 [,2]
[1,] 1 4
[2,] 9 16

Of course, in this case we don’t do any better than just saying m~2. But we
could apply over more than one, but not all, dimensions of an array with

http://rforge.net/multicore
http://rforge.net/multicore

2 LAPPLY 4

> 2 dimensions.

colSums, rowSums, colMeans, rowMeans are special cases that are consider-
ably faster than the equivalent apply commands. (I think there’s an equiv-
alent for the median somewhere in a Bioconductor package.)

2 lapply

Apply a function to a list.

3 sapply

Apply a function to a list, or a vector (this is handy so you don’t have to
say lapply(as.list(x)), and simplify the results if possible.

4 mapply

Apply a function of multiple arguments to multiple lists. I sometimes use
this as a shortcut where I should probably just give up and use a for loop.

> mapply(function(dat,i) {
plot(datx,daty,col=1i)
text (1,2,names(dat) [i])
},
datlist,1:length(datlist))

it would be great to have a way within an *apply function to access the
current value of the index (or name of the current element) but I don’t
know of one ...

Additional arguments have to be specified explicitly with MoreArgs. De-
pending on what you’re doing you may want SIMPLIFY to be TRUE or FALSE

4 MAPPLY 5)

Related functions

function purpose

do.call apply a function to a list of arguments

replicate repeat an expression many times

outer apply a function to all combinations of two vectors (function
must be vectorized — otherwise see emdbook: : apply2d

Map equivalent to mapply: see ?funprog

Reduce apply a function to successively combine elements

cumsum (and cummax, cummin, cumprod): cumulative functions

plyr::ddply (and friends) split an object, apply a function to chunks, then
recombine the chunks (split/tapply/rbind on steroids)
For the truly clever: why does this work?

> N <- 0; replicate(20,N <<- N-round(0.25*N)+10)

[1] 10 18 24 28 31 33 35 36 37 38 38 38 38 38 38 38 38 38 38 38

	apply
	lapply
	sapply
	mapply

