
Lab 2: probability distributions, averaging, and

Jensen’s inequality

©2010 Ben Bolker

September 26, 2010

Licensed under the Creative Commons attribution-noncommercial license

(http://creativecommons.org/licenses/by-nc/3.0/). Please share & remix non-

commercially, mentioning its origin.

1 Random variables/probability distributions in R
R knows about lots of probability distributions. For each, it can generate ran-
dom numbers drawn from the distribution (“deviates”); compute the cumulative
distribution function and the probability distribution function; and compute the
quantile function, which gives the x value such that

∫ x
0
P (x) dx (area under the

curve from 0 to x) is a specified value, such as 0.95 (think about “tail areas”
from standard statistics). For example, you can obtain the critical values of the
standard normal distribution, ±1.96, with qnorm(c(0.025,0.975)).

Let’s take the binomial distribution (yet again) as an example.
First, use set.seed() for consistency:

> set.seed(1001)

� rbinom(n,size,prob) gives n random draws from the binomial distri-
bution with parameters size (trials per draw) and prob (probability of
success on each draw). You can give different parameters for each draw.
For example:

> rbinom(10,size=8,prob=0.5)

[1] 7 4 4 4 4 6 1 2 3 5

> ## specify probabilities of 0.2, 0.4, 0.6 for successive draws

> rbinom(3,size=8,prob=c(0.2,0.4,0.6))

[1] 1 2 3

Now plot the result of drawing 200 values from a binomial distribution
with N = 12 and p = 0.1 and plotting the results as a factor (with
200 draws we don’t have to worry about any of the 13 possible outcomes
getting missed and excluded from the plot):

> z <- rbinom(200,size=12,prob=0.1)

> plot(factor(z),xlab="# of successes",ylab="# of trials out of 200")

1

http://creativecommons.org/licenses/by-nc/3.0/

Probability density

x

x0

ddist(x0)

pdist(x0)

●● ●● ●●● ●●●

rdist(10)

Cumulative distribution

x

x0

pdist(x0)

0.95

qdist(0.95)

Figure 1: R functions for an arbitrary distribution dist, showing density
function (ddist), cumulative distribution function (pdist), quantile function
(qdist), and random-deviate function (rdist).

(Saying plot(factor(z,...)) gives a nice barplot. What do you get if
you just say plot(z)?)

� dbinom(x,size,prob) gives the value of the probability distribution func-
tion (pdf) at x (for a continous distribution, the analogous function would
compute the probability density function). Since the binomial is discrete,
x has to be an integer, and the pdf is just the probability of getting that
many successes; if you try dbinom with a non-integer x, you’ll get zero and
a warning.

� pbinom(q,size,prob) gives the value of the cumulative distribution func-
tion (cdf) at q (e.g. pbinom(7,size=10,prob=0.4));

� qbinom(p,size,prob) gives the quantile function x = q(p), where p is
a number between 0 and 1 (an area under the pdf, or value of the cdf)
and x is the value such that P (X ≤ x) = p. The quantile function Q is
the inverse of the cumulative distribution function C: if Q(p) = q then
C(q) = p. Example: qbinom(0.95,size=10,prob=0.4).

These four functions exist for each of the distributions R has built in: e.g. for
the normal distribution they’re rnorm(), pnorm(), dnorm(), qnorm(). Each dis-
tribution has its own set of parameters (so e.g. pnorm(x) is pnorm(x,mean=0,sd=1)).

2

*Exercise 1 : For the binomial distribution with 10 trials and a success prob-
ability of 0.2:

� Pick 8 random values and sort them into increasing order (if you
set.seed(1001) beforehand, you should get X = 0 (twice), X = 2
(4 times), and X = 4 and X = 5 (once each)).

� Calculate the probabilities of getting exactly 3, exactly 4, or exactly 5
successes.

� Calculate the probability of getting 5 or more successes. (Note that pbi-
nom(x,...) gives the probability. of getting less than or equal to x suc-
cesses. Using lower.tail=FALSE gives the probability of getting greater
than x successes.)

You can use the R functions to test your understanding of a distribution
and make sure that random draws match up with the theoretical distributions
as they should. This procedure is particularly valuable when you’re developing
new probability distributions by combining simpler ones, e.g. by zero-inflating
or compounding distributions.

The results of a large number of random draws should have approximately
the correct moments (mean and variance), and a histogram of those random
draws (with freq=FALSE or prob=TRUE) should match up with the theoretical
distribution. For example, draws from a binomial distribution with p = 0.2
and N = 20 should have a mean of approximately Np = 4 and a variance of
Np(1− p) = 3.2:

> set.seed(1001)

> N <- 20; p <- 0.2

> x <- rbinom(10000,prob=p,size=N)

> c(mean(x),var(x))

[1] 4.001200 3.144913

The mean is very close, the variance is a little bit farther off. We can use the
replicate() function to re-do this command many times and see how close we
get:

> var_dist <- replicate(1000,var(rbinom(10000,prob=p,size=N)))

(this may take a little while; if it takes too long, lower the number of replicates
to 100).

Looking at the summary statistics and at the 2.5% and 97.5% quantiles of
the distribution of variances:

> summary(var_dist)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.052 3.169 3.199 3.199 3.229 3.340

3

> quantile(var_dist,c(0.025,0.975))

2.5% 97.5%

3.114357 3.285333

(Try plotting a histogram (hist(var_dist)) or a kernel density estimate
(plot(density(var_dist))) of these replicates.) Even though there’s some
variation (of the variance) around the theoretical value, we seem to be doing
the right thing since the theoretical value (Np(1 − p)) falls within the central
95% of the empirical distribution.

Finally, we can compare the observed and theoretical quantiles of our original
sample:

> quantile(x,c(0.025,0.975))

2.5% 97.5%

1 8

> qbinom(c(0.025,0.975),prob=p,size=N)

[1] 1 8

Figure 2 shows the entire simulated frequency distribution along with the
theoretical values. The steps in R are:

1. pick 10,000 random deviates:

> x <- rbinom(10000,prob=p,size=N)

2. Tabulate the values, and divide by the number of samples to get a proba-
bility distribution:

> tx <- table(factor(x,levels=0:12))/10000

(The levels command is necessary in this case because the probability
of x = 12 with p = 0.2 and N = 12 is actually so low (≈ 4 × 10−9)
that it’s likely that a sample of 10,000 won’t include any samples with 12
successes.)

3. Draw a barplot of the values, extending the y-limits a bit to make room
for the theoretical values and saving the x locations at which the bars are
drawn:

> b1 <- barplot(tx,ylim=c(0,0.23),ylab="Probability")

4. Add the theoretical values, plotting them at the same x-locations as the
centers of the bars:

> points(b1,dbinom(0:12,prob=p,size=N),pch=16)

(barplot() doesn’t put the bars at x locations corresponding to their
numerical values, so you have to save those values as b1 and re-use them
to make sure the theoretical values end up in the right place.)

4

Here are a few alternative ways to do this plot: try at least one for yourself.

1. > plot(factor(x)); points(b1,10000*dbinom(0:12,prob=p,size=N))

(plots the number of observations without rescaling and scales the proba-
bility distribution to match);

2. > plot(table(x)/10000); points(0:12,dbinom(0:12,prob=p,size=N))

Plotting a table does a plot with type="h" (high density), which plots a
vertical line for each value. I think it’s not quite as pretty as the barplot,
but it works. (Don’t forget to use 0:12 for the x axis values — if you
don’t specify x the points will end up plotted at x locations 1:13.) Unlike
factors, tables can be scaled numerically, and the lines end up at the right
numerical locations, so we can just use 0:12 as the x locations for the
theoretical values.

3. You could also draw a histogram: since histograms were really designed
continuous data you have to make sure the breaks occur in the right place
(halfway between counts):

> h <- hist(x,breaks=seq(-0.5,12.5,by=1),col="gray",

prob=TRUE)

> points(0:12,dbinom(0:12,prob=p,size=N))

1.1 Continuous distribution: lognormal
Doing the equivalent plot for continuous distributions is actually somewhat eas-
ier, since you don’t have to deal with the complications of a discrete distribution:
just use hist(...,prob=TRUE) to show the sampled distribution (possibly with
ylim adjusted for the maximum of the theoretical density distribution) and
ddist(x,[parameters],add=TRUE) to add the theoretical curve.

Let’s go through the same exercise for the lognormal, a continuous distribu-
tion:

> z <- rlnorm(1000,meanlog=2,sdlog=1)

Plot the results:

> hist(z,breaks=100,freq=FALSE,col="gray",

ylim=c(0,0.09))

> lines(density(z,from=0),lwd=2,col=2)

Add a parametric estimate of the curve, based on the observed mean and
standard deviation of the log-values:

> obsmeanlog <- mean(log(z))

> obssdlog <- sd(log(z))

> curve(dlnorm(x,meanlog=obsmeanlog,sdlog=obssdlog),add=TRUE,lwd=2,from=0,

col="blue",n=200)

5

0 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

●

●

●

●

●

●

●

●

●

●
● ● ●

Figure 2: Checking binomial deviates against theoretical values.

6

Note that the maximum height of the parametric curve is higher than the
maximum height of the density estimator: this is generally true, since the density
estimator “smooths” (smears out) the data.

The probability of x > 20, and the 95% confidence limits:

> plnorm(20,meanlog=2,sdlog=1,lower.tail=FALSE)

[1] 0.1596901

> qlnorm(c(0.025,0.975),meanlog=2,sdlog=1)

[1] 1.040848 52.455437

Comparing the theoretical values of the mean and variance with the observed
values for this random sample (see ?rlnorm for theoretical values):

> meanlog <- 2

> sdlog <- 1

> ## expected/observed means

> c(exp(meanlog+sdlog^2/2),mean(z))

[1] 12.18249 12.22854

> ## expected/observed variances

> c(exp(2*meanlog+sdlog^2)*(exp(sdlog^2)-1),var(z))

[1] 255.0156 266.1457

> ## expected/observed 95th percentile

> c(qlnorm(0.95,meanlog=meanlog,sdlog=sdlog),quantile(z,0.95))

95%

38.27717 39.89901

There is a fairly large difference between the expected and observed variance.
This is typical: variances of random samples have larger variances, or abso-
lute differences from their theoretical expected values, than means of random
samples.

Sometimes it’s easier to deal with log-normal data by taking the logarithm
of the data and comparing them to the normal distribution:

> hist(log(z),freq=FALSE,breaks=100,col="gray")

> curve(dnorm(x,mean=meanlog,sd=sdlog),add=TRUE,lwd=2)

> lines(density(log(z)),col="red",lwd=2)

7

*Exercise 2 : Use rnbinom() to pick 10,000 negative binomial deviates with
µ = 2, k = 0.5 Draw a plot of the distribution. Check that the mean, variance,
and quantiles agree reasonably well with the theoretical values. Add points rep-
resenting the theoretical distribution to the plot. Because (unlike the binomial)
the negative binomial has no theoretical maximum value, you will have to pick
an maximum to plot (e.g. by finding the maximum value in the observed data
set). When you plot, don’t forget to fill in zeros for values that don’t occur in
the sample by using factor(x,levels=0:max(x)).
Extra credit: Now translate the µ and k parameters into their p and n equiva-
lents (the coin-flipping derivation of the negative binomial: see ?rnbinom). Use
these parameters as size and prob (rather than size and mu), compute the
probabilities of each value, and add those points to the plot [use a different
plotting symbol to make sure you can see that they are exactly the same as the
theoretical values based on the {µ, k} parameterization].

2 The method of moments: reparameterizing distribu-
tions

In class, I showed how to use the method of moments to estimate the parameters
of a distribution by setting the sample mean and variance (x̄, s2) equal to the
theoretical mean and variance of a distribution and solving for the parameters.
For the negative binomial, in particular, we start by setting the sample moments
(sample mean and variance) equal to their theoretical values:

x̄ = µ

s2 = µ(1 + µ/k)

We solve the second equation for k (the first is already “solved” for µ) to get
method-of-moments estimates µ = x̄ and k = (x̄)/(s2/x̄− 1).

You can also define your own functions that use your own parameterizations:
call them my_function rather than just replacing the standard R functions
(which will lead to insanity in the long run).

For example, defining

> my_dnbinom = function(x,mean,var,...) {

take mean and var, use them to get

original parameters ...

mu = mean

k = mean/(var/mean-1)

feed original parameters to the original function

dnbinom(x,mu=mu,size=k,...)

}

> my_rnbinom = function(n,mean,var,...) {

mu = mean

k = mean/(var/mean-1)

rnbinom(n,mu=mu,size=k,...)

}

8

(the ... in the function takes any other arguments you give to my_dnbinom and
just passes them through, unchanged, to dnbinom).

Now we test that this really worked:

> rr = my_rnbinom(10000,mean=3,var=5)

> ## correct values

> mean(rr); var(rr)

[1] 3.0152

[1] 5.093478

> plot(table(rr)/10000,ylab="prob")

> points(0:16,my_dnbinom(0:16,mean=3,var=5),col=2)

0.
00

0.
05

0.
10

0.
15

0.
20

rr

pr
ob

0 1 2 3 4 5 6 7 8 9 11 13 15 17

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

Defining your own functions can be handy if you need to work on a regular
basis with a distribution that uses a different parameterization than the one
built into the standard R function.

*Exercise 3 : Morris (1997) gives a definition of the beta distribution that
differs from the standard statistical parameterization. The standard parameter-
ization is

Beta(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

whereas Morris uses

Beta(x|P, θ) =
Γ(θ)

Γ(θP)Γ(θ(1− P))
xθP−1(1− x)θ(1−P)−1.

9

Find expressions for P and θ in terms of a and b and vice versa. Explain why
you might prefer Morris’s parameterization. Define a new set of functions that
generate random deviates from the beta distribution (my_rbeta) and calculate
the density function (my_dbeta) in terms of P and θ. Generate a histogram from
this distribution and draw a vertical line showing the mean of the distribution.

3 Averaging across discrete and continuous distributions
Suppose we have a (tiny) data set; we can organize it in two different ways, in
standard long format or in tabular form:

> (dat <- c(5,6,5,7,5,8))

[1] 5 6 5 7 5 8

> (tabdat=table(dat))

dat

5 6 7 8

3 1 1 1

To get the (sample) probability distribution of the data, just scale by the total
sample size:

> prob=tabdat/length(dat); prob

dat

5 6 7 8

0.5000000 0.1666667 0.1666667 0.1666667

(dividing by sum(tabdat) would be equivalent).
In the long format, we can take the mean with mean(dat) or, replicating the

formula
∑
xi/N exactly, sum(dat)/length(dat).

In the tabular format, we can calculate the mean with the formula
∑
P (x)x,

which in R would be sum(prob*5:8) or more generally

> vals <- as.numeric(names(prob))

> sum(prob*vals)

[1] 6

(you could also get the values by as.numeric(levels(prob)), or by sort(unique(dat))).
However, mean(prob) or mean(tabdat) is just plain wrong (at least, I can’t

think of a situation where you would want to calculate this value).
Going back the other way, from a table to raw values, we can use the rep()

function to repeat values an appropriate number of times. In its simplest form,
rep(x,n) just creates a vector repeats x (which may be either a single value
or a vector) n times but if n is a vector as well then each element of x is
repeated the corresponding number of times: for example,

> rep(c(1,2,3),c(2,1,5))

10

[1] 1 1 2 3 3 3 3 3

gives two copies of 1, one copy of 2, and five copies of 3.
Therefore,

> rep(vals,tabdat)

[1] 5 5 5 6 7 8

will recover our original data (although not in the original order) by repeating
each element of vals the correct number of times.

3.1 Jensen’s inequality
Looking at the data from Schmitt et al. (1999) on damselfish recruitment, the
density of settlers nearly fits an exponential distribution with a mean of 24.2
(so λ, the rate parameter, ≈ 1/24.2: Figure 3). Schmitt et al. also say that
recruitment (R) as a function of settlement (S) is R = aS/(1 + (a/b)S), with
a = 0.696 (initial slope, recruits per 0.1 m2 patch reef per settler) and b = 9.79
(asymptote, recruits per 0.1 m2 patch reef at high settlement density).

Let’s see how strong Jensen’s inequality is for this population and recruit-
ment function. We’ll figure out the average by approximating an integral by a
sum: E[R] =

∫∞
0
f(S)P (S) dS ≈

∑
f(Si)P (Si)∆S, where f(S) is the density

of recruits as a function of settlers and P (S) dS is the probability of a particular
number of settlers. We need to set the range big enough to get most of the
probability of the distribution, and the ∆S small enough to get most of the
variation in the distribution; we’ll try 0–200 in steps of 0.1. (If I set the range
too small or the ∆S too big, I’ll miss a piece of the distribution or the function.
If I try to be too precise, I’ll waste time computing.)

In R:

> a <- 0.696; b <- 9.79

> dS <- 0.1

> Smax <- 200

> S <- seq(0,Smax,by=dS)

> pS <- dexp(S,rate=1/24.5)

> fS <- a*S/(1+(a/b)*S)

> sum(pS*fS)*dS

[1] 5.008049

If you have time, try a few different values for Smax and ∆S to see how the
results vary.

R also knows how to integrate functions numerically: it can even approximate
an integral from 0 to∞ (Inf denotes +∞ in R, in contexts where it makes sense).
First we have to define a (vectorizable) function:

> tmpf <- function(S) {

dexp(S,rate=1/24.5)*a*S/(1+(a/b)*S)

}

11

> library(emdbook)

> data(DamselSettlement)

> par(mar=c(5,4,2,4)+0.1) ## leave room for right axis

> with(DamselSettlement,hist(density,breaks=100,freq=FALSE,las=1,

xlab="Settlement density",

ylab="Probability density",

main=""))

> m <- with(DamselSettlement,mean(density))

> curve(dexp(x,1/m),lty=2,lwd=2,add=TRUE)

> par(new=TRUE)

> a <- 0.696; b <- 9.79

> curve(a*x/(1+(a/b)*x),from=0,to=463.4,axes=FALSE,ann=FALSE,

lty=3,lwd=2)

> axis(side=4,las=1)

> mtext(side=4,"Recruit density",line=2.5)

Settlement density

P
ro

ba
bi

lit
y

de
ns

ity

0 100 200 300 400

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0

2

4

6

8

R
ec

ru
it

de
ns

ity

Figure 3: Settlement densities of larval Dascyllus trimaculatus on anemones:
Schmitt et al. (1999)

12

Then we can just ask R to integrate it:

> (i1 <- integrate(tmpf,lower=0,upper=Inf))

5.010691 with absolute error < 5.5e-05

(Use adaptIntegrate(), in the cubature package, if you need to do multidi-
mensional integrals, and note that if you want to retrieve the numerical value
of the integral for use in code you need to say i1$value; use str(i1) to see the
other information encoded in i1.)

This integral shows that we were pretty close with our first approximation.
However, numerical integration will always imply some level of approximation;
be careful with functions with sharp spikes, because it can be easy to miss
important parts of the function.

Now to try out the delta function approximation, which is that (E[f(x)] ≈
f(x̄) + (σ2f ′′(x̄)/2)).

The first derivative is a(1 + ax/b)−2; the second derivative is −2a2/b(1 +
ax/b)−3 (confirm this for yourself).

You can calculate the derivatives with the D function in R, but R doesn’t do
any simplification, so the results are very ugly:

> ## first derivative:

> (d2 <- D(D(expression(a*x/(1+(a/b)*x)),"x"),"x"))

-(a * (a/b)/(1 + (a/b) * x)^2 + (a * (a/b)/(1 + (a/b) * x)^2 -

a * x * (a/b) * (2 * ((a/b) * (1 + (a/b) * x)))/((1 + (a/b) *

x)^2)^2))

It’s best, whenever possible, to compute derivatives by hand and only use R to
check your results.

As stated above, the mean value of the distribution is about 24.5. The
variance of the exponential distribution is equal to the mean squared, or 600.25.

> Smean <- 24.5

> Svar <- Smean^2

> a <- 0.696

> b <- 9.79

> ## first derivative, will use this later for pictures:

> d1_num <- a*(1+a*Smean/b)^(-2)

> ## second derivative

> (d2_num <- -2*a^2/b*(1+a*Smean/b)^(-3))

[1] -0.004801415

> eval(d2,list(x=Smean)) ## check with R

[1] -0.004801415

> mval = a*Smean/(1+(a/b)*Smean)

> (dapprox = mval + 1/2*Svar*d2_num)

13

[1] 4.778299

Calculate relative errors of different approaches:

> (merr = (mval-i1$value)/i1$value)

[1] 0.2412107

> (err = (dapprox-i1$value)/i1$value)

[1] -0.04637931

The answer from the delta method is only about -24% below the true value, as
opposed to the naive answer (f(x̄)) which is about -5% high.

OPTIONAL section:
I also tried this problem in Mathematica, which was able to give me a closed-
form solution to∫ ∞

0

λe−λS
(

aS

1 + (a/b)S

)
= bebλ/a · ExpIntegralE(2, bλ/a)

where ExpIntegralE is an“exponential integral”function (don’t worry about
it too much). R can compute the type 2 exponential integral (as specified by the
first 2 in the parentheses) via the expint_E2 function in the gsl package (if you
want to run this code you have to install the GSL libraries on your computer,
too, outside of R):

> library(gsl)

> fun2 = function(a,b,lambda) {

b*exp(b*lambda/a)*expint_E2(b*lambda/a)

}

> f2 = fun2(0.696,9.79,1/24.5)

> f2-i1$value

[1] 6.494716e-11

There is very little difference between the numerical integral and the exact
solution . . .)
end OPTIONAL section

A picture . . . (I’m getting a bit fancy here, using rgb() to define a transpar-
ent gray color and then using polygon() to fill an area with this color: I use
an x vector that starts at 0, runs to 150, and then runs from 150 to 0, while
the y vector first traces out the top of the probability distribution and then
runs along zero (the bottom). The transparent gray may not show up in HTML
versions of the page, or other places where the graphics system doesn’t support
transparency.)

> a = 0.696

> b = 9.79

> Smean = 24.5

14

> lambda = 1/Smean

> curve(a*x/(1+(a/b)*x),from=0,to=150,xlab="settlers",

ylab="recruits",las=1,bty="l")

> abline(v=Smean,lty=2)

> curve(mval+(x-Smean)*d1_num+(x-Smean)^2*d2_num,add=TRUE,lty=2,col=2)

> trgray = rgb(0.5,0.5,0.5,alpha=0.5)

> xvec = 0:150

> polygon(c(xvec,rev(xvec)),

c(dexp(lambda*xvec)*8,rep(0,length(xvec))),

col=trgray,border=NA)

> legend("right",c("Michaelis-Menten","quadratic approx"),

col=c("black","red"),

lty=1:2)

0 50 100 150

0

2

4

6

8

settlers

re
cr

ui
ts

Michaelis−Menten
quadratic approx

Drawing the thing we’re actually trying to integrate, and its quadratic ap-
proximation:

> curve(a*x/(1+(a/b)*x)*dexp(x,lambda),from=0,to=150,xlab="settlers",

ylim=c(-0.02,0.11))

> abline(v=Smean,lty=2)

> curve((mval+(x-Smean)*d1_num+(x-Smean)^2*d2_num)*dexp(x,lambda),add=TRUE,col=2,

from=0)

> legend("right",c("Michaelis-Menten*exp dist","quadratic approx*exp dist"),

15

col=c("black","red"),

lty=1:2)

> abline(h=0)

0 50 100 150

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

settlers

a
*

x/
(1

 +
 (

a/
b)

 *
 x

)
*

de
xp

(x
, l

am
bd

a)

Michaelis−Menten*exp dist
quadratic approx*exp dist

*Exercise 4 : go through the above process again, but this time use a
Gamma distribution instead of an exponential. Keep the mean equal to 24.5
and change the variance to 100, 25, and 1, respectively (use the information
that the mean of the gamma distribution is shape*scale and the variance is
shape*scale^2; use the method of moments). Including the results for the
exponential (which is a gamma with shape=1), make a table showing how the
(1) true value of mean recruitment [calculated by numerical integration in R
either using integrate() or summing over small ∆S] (2) value of recruitment
at the mean settlement (3) delta-method approximation (4,5) proportional error
in #2 and #3 change with the variance.

Optional:

4 Creating new distributions
4.0.1 Finite mixture distributions
The general recipe for generating samples from finite mixtures is to use a uniform
distribution to sample which of the components of the mixture to sample, then
use ifelse to pick values from one distribution or the other. To pick 1000
values from a mixture of normal distributions with the parameters shown in the
chapter (p = 0.3, µ1 = 1, σ1 = 2, µ2 = 5, σ2 = 1):

16

> u1 <- runif(1000)

> z <- ifelse(u1<0.3,rnorm(1000,mean=1,sd=2),

rnorm(1000,mean=5,sd=1))

> hist(z,breaks=100,freq=FALSE)

The probability density of a finite mixture composed of two distributions D1

and D2 in proportions p1 and 1− p1 is p1D1 + p2D2. We can superimpose the
theoretical probability density for the finite mixture above on the histogram:

> curve(0.3*dnorm(x,mean=1,sd=2)+0.7*dnorm(x,mean=5,sd=1),

add=TRUE,lwd=2)

4.1 Zero-inflated distributions
The general formula for the probability distribution of a zero-inflated distribu-
tion, with an underlying distribution P (x) and a zero-inflation probability of
pz, is:

Prob(0) = pz + (1− pz)P (0)

Prob(x > 0) = (1− pz)P (x)

So, for example, we could define a probability distribution for a zero-inflated
negative binomial as follows:

> dzinbinom = function(x,mu,size,zprob) {

ifelse(x==0,

zprob+(1-zprob)*dnbinom(0,mu=mu,size=size),

(1-zprob)*dnbinom(x,mu=mu,size=size))

}

(the name, dzinbinom, follows the R convention for a probability distribution
function: a d followed by the abbreviated name of the distribution, in this case
zinbinom for “zero-inflated negative binomial”).

The ifelse() command checks every element of x to see whether it is zero
or not and fills in the appropriate value depending on the answer.

A random deviate generator would look like this:

> rzinbinom = function(n,mu,size,zprob) {

ifelse(runif(n)<zprob,

0,

rnbinom(n,mu=mu,size=size))

}

The command runif(n) picks n random values between 0 and 1; the ifelse

command compares them with the value of zprob. If an individual value is less
than zprob (which happens with probability zprob=pz), then the corresponding
random number is zero; otherwise it is a value picked out of the appropriate
negative binomial distribution.

optional exercise: Check graphically that these functions actually work.
For an extra challenge, calculate the mean and variance of the zero-inflated nega-
tive binomial and compare it to the results of rzinbinom(10000,mu=4,size=0.5,zprob=0.2).

17

5 Compounding distributions
The key to compounding distributions in R is that the functions that generate
random deviates can all take a vector of different parameters rather than a
single parameter. For example, if you were simulating the number of hatchlings
surviving (with individual probability 0.8) from a series of 8 clutches, all of size
10, you would say

> rbinom(8,size=10,prob=0.8)

[1] 9 8 8 8 8 7 9 10

but if you had a series of clutches of different sizes, you could still pick all the
random values at the same time:

> clutch_size = c(10,9,9,12,10,10,8,11)

> rbinom(8,size=clutch_size,prob=0.8)

[1] 8 8 8 11 8 8 6 7

Taking this a step farther, the clutch size itself could be a random variable:

> clutch_size = rpois(8,lambda=10)

> rbinom(8,size=clutch_size,prob=0.8)

[1] 9 6 8 7 2 6 13 8

We’ve just generated a Poisson-binomial random deviate . . .
As a second example, I’ll follow Clark et al. in constructing a distribution

that is a compounding of normal distributions, with 1/variance of each sample
drawn from a gamma distribution.

First pick the variances as the reciprocals of 10,000 values from a gamma
distribution with shape 5 (setting the scale equal to 1/5 so the mean will be 1):

> var_vals=1/rgamma(10000,shape=5,scale=1/5)

Take the square root, since dnorm uses the standard deviation and not the
variance as a parameter:

> sd_vals = sqrt(var_vals)

Generate 10,000 normal deviates using this range of standard deviations:

> x = rnorm(10000,mean=0,sd=sd_vals)

Figure 4 shows a histogram of the following commands:

> hist(x,prob=TRUE,breaks=100,col="gray")

> curve(dt(x,df=11),add=TRUE,lwd=2)

18

> hist(x,prob=TRUE,breaks=100,col="gray")

> curve(dt(x,df=11),add=TRUE,lwd=2)

Histogram of x

x

D
en

si
ty

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 4: Clark model: inverse gamma compounded with normal, equivalent
to the Student t distribution

19

The superimposed curve is a t distribution with 11 degrees of freedom; it turns
out that if the underlying gamma distribution has shape parameter p, the re-
sulting t distribution has df = 2p+ 1. (Figuring out the analytical form of the
compounded probability distribution or density function, or its equivalence to
some existing distribution, is the hard part; for the most part, though, you can
find these answers in the ecological and statistical literature if you search hard
enough.

**Exercise 5 : Generate 10,000 values from a gamma-Poisson compounded
distribution with parameters shape=k = 0.5, scale=µ/k = 4/0.5 = 8 and
demonstrate that it matches to a negative binomial with the equivalent pa-
rameters µ = 4 and k = 0.5.

Optional : generate 10,000 values from a lognormal-Poisson distribution with
the same expected mean and variance (the variance of the lognormal should
equal the variance of the gamma distribution you used as a compounding dis-
tribution; you will have to do some algebra to figure out the values of meanlog
and sdlog needed to produce a lognormal with a specified mean and variance.
Plot the distribution and superimpose the theoretical distribution of the nega-
tive binomial with the same mean and variance to see how different the shapes
of the distributions are.

References
Morris, W. F. 1997. Disentangling effects of induced plant defenses and food

quantity on herbivores by fitting nonlinear models. American Naturalist
150:299–327.

Schmitt, R. J., S. J. Holbrook, and C. W. Osenberg. 1999. Quantifying the
effects of multiple processes on local abundance: a cohort approach for open
populations. Ecology Letters 2:294–303.

20

	Random variables/probability distributions in R
	Continuous distribution: lognormal

	The method of moments: reparameterizing distributions
	Averaging across discrete and continuous distributions
	Jensen's inequality

	Creating new distributions
	Finite mixture distributions
	Zero-inflated distributions

	Compounding distributions

