\documentclass[10pt]{article} \usepackage{url} \usepackage{sober} \usepackage{color} \usepackage{times} \usepackage{multicol} \usepackage{amsmath} \usepackage{fullpage} \newcommand{\qq}[1]{\color{blue} #1 \color{black}} \title{Linear discrete-time models} \author{\copyright\ Ben Bolker: \today} \date{} \begin{document} \maketitle \enlargethispage{20pt} \thispagestyle{empty} \begin{multicols}{2} Univariate (one-dimensional), discrete-time, deterministic model: $N(t+1) = f(N(t))$. (Typically, state variable is continuous.) (Units of time, stock? When does discrete time make sense?) \section*{Geometric growth (decay)} Simplest possible model. $f(N)=RN$ (sometimes stated as $f(N)=(1+r)N$). Solve recursion analytically. Now we know everything about the dynamics. Suppose $N(0)>0$, $R>0$ (note: the R language indexes vectors starting from 1). (What happens if $N(0)<0$ ? model of debt?) \qq{What happens if $R<0$?} (Even this ridiculously simple rule --- % or generalizations of it --- is the basis of serious modeling in conservation biology.) The limiting set of points as $t\to\infty$ is called an \emph{attractor}. If $R<1$, $N \to 0$ but $N=0$ only in the limit, unless it starts there. A value of $N$ such that $f(N^*)=N^*$ is called an \emph{equilibrium} (or a \emph{fixed point}). \emph{Stability}: what happens for perturbations in the neighborhood of the fixed point? Consider displacing the population away from $N^*$ by $\delta$, where $\delta \ll 1$; what happens? \begin{equation*} \begin{split} f(N^*+\delta) & = f(N^*)+\delta f'(N)|_{N=N^*} \\ \qquad \mbox{} & +\delta^2/2 f''(N)|_{N=N^*} + \ldots \end{split} \end{equation*} Therefore the deviation $\delta \to \delta f'(N^*)$. \textbf{If $|g| \equiv |f'(N^*)|<1$ then the deviation from the equilibrium decreases geometrically with time}: \emph{stable} fixed point. Behavior for $g < (-1)$, $-11$ \ldots $N=0$ is always an equilibrium, stable iff $|R|<1$. \section*{Affine models} Now suppose (as in the example in the book) we are adding or subtracting a fixed amount per time step: $N(t+1) = a + b N(t)$. As before we can work out the recursion. % $N(t+2) = a + b (a + b N(t)) = a (1+b) + b^2 N(t)$ % $N(t+3) = a + b(a(1+b) + b^2 N(t)) = a (1 + b + b^2) + b^3 N(t)$ Summing the series for $t$ steps gives $a(1-b^t)/(1-b) + b^t N$; the limit is $a/(1-b) + \lim_{t\to\infty} b^t N(0)$. If $|b|>1$ this is a bit boring. If $|b|<1$ we get a stable equilibrium at $a/(1-b)$. (For $b<0$ (``bucket model''): $a$ is the supply rate, $1/(1-b)$ is the average \emph{residence time}.) Useful component for larger models. (Autoregressive model in time series analysis; sometimes used as the bottom level in food chain modeling.) In general, things are not so simple. The general approach is (1) solve for equilibria (directly); (2) evaluate stability of equilibria; (3) possibly evaluate for small $N$ (near system boundaries); (4) if possible solve for time-dependent solution. \section*{Graphical approaches: cobwebbing} \begin{center} \SweaveOpts{height=3,width=3} \setkeys{Gin}{width=3in} <>= source("../R/cobweb.R") par(mfrow=c(2,2)) par(mar=c(2,4,1,1),las=1,mgp=c(2.5,1,0)) par(cex=0.5) cobweb(0.75*x,start=20,N=10,xlab="") cobweb(1.25*x,start=1,N=10,xlab="") cobweb(10+0.75*x,start=2,N=10,xlab="",xlim=c(0,70),ylim=c(0,70)) cobweb(10+0.75*x,start=70,add=TRUE,scol=2) abline(a=10,b=0.75) ## cheat cobweb(10-1.25*x,start=8.1,N=10,xlab="") cobweb(10-1.25*x,start=7.9,N=10,add=TRUE,scol=2) @ \end{center} \section*{Multiple lags} What if $N(t+1)$ depends on previous time steps $N(t-1)$ etc. as well as $N(t)$? Homogeneous linear equations: $\sum_{i=0}^m a_i N(t-i)=0$. Plug in $N(t)=C \lambda^t$. Solve characteristic equation \ldots get a linear combination of geometric growth/decay, $\sum C_i \lambda_i^n$: largest \emph{eigenvalue} dominates long-term behavior. \end{multicols} \end{document}