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Advantages: conceptually simpler. No over-
shooting; e.g. chaotic dynamics impossible in < 3 di-
mensions. Easier to define sensible dynamics. Fewer
difficulties with order of events. Often (?) more real-
istic.

Disadvantages: rigorous analysis is harder; solv-
ing the system requires calculus (integration). Nu-
merical solutions harder.

(Side note on realism: is time “really” continuous
or discrete? Hybrids . . . )

1 First-order models: analysis
Simple (univariate) equations (e.g. dN/dt = rN).
(Compartmental models with a single compartment.)

Separable equations

These are equations that can be put in the form
dx/dt = Q(x)R(t), therefore we can separate them,
integrate on both sides, and (hopefully) solve for x(t).

Examples: exponential, exponential plus constant
(equivalent of affine models?), density-dependent
mortality model.

Exponential equation: analog of geometric
growth. N(0)Rt = N(0) exp(t logR) = N(0) exp(rt).
Common in derivations of discrete-time rules, i.e.
what do we get if we integrate some simple continuous
process from t to t+ 1?

Another standard trick: partial fractions. e.g.
survival of a cohort under density-dependent mortal-
ity (see auxiliary derivation of Beverton-Holt equa-
tion) or logistic equation.

Logistic equation: important building block
for any model (quadratic extension of exponential
model). Solution: K/(1 + C exp(−rt)) (can also
rescale time, space to get dimensionless form 1/(1 +
C exp(−rt))). Properties of logistic growth: max.
growth rate at N = K/2; inflection point in growth
curve at N = K/2.

Population growth example (the book is silly!)
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1.1 Bernoulli equations

Equations of the form

dx/dt+ p(t)x = q(t)xn

Can change variables to w = x1−n, solve (possibly
via integrating factors, see below).

von Bertalanffy growth function, theta-logistic
equation.

1.2 Integrating factors

If a first-order linear ODE is in the form dx/dt +
P (t)x = Q(t) then if we define µ(t) = e

∫
P (t) dt then

d(xµ)/dt = µ (dx/dt) + x d(µ/dt); multiplying the
original equation by µ on both sides makes every-
thing work nicely.

2 First-order systems: graphical anal-
ysis

Graphical evaluation of 1-D systems: stability is triv-
ial (none of this fancy stuff with the absolute value of
the slopes). Lots we can automatically/qualitatively
say about stability.

Finding the equilibria: possibly hard algebraically
(as with discrete systems), but all we need to do is
evaluate the derivative of the gradient function at the
equilibrium and we’re done.

Terminology: (non)-autonomous.



3 Numerical integration

Euler’s method. Don’t use it!

Runge-Kutta, etc etc etc.. “Stiff” systems.

In R: need to define gradient function.

> library(deSolve)

> ## parameters *must be in this order*

> ## but names don't matter

> gradfun <- function(t,N,params) {

with(c(as.list(N),as.list(params)),

## magic -- must return a list

## with gradient as the *first element*

list(c(N=r*N*(1-N/K)),NULL))

}

> desol <- lsoda(y=c(N=0.1), ## init cond

times=seq(0,10,by=0.1),

func=gradfun,

parms=c(r=1,K=5))

> ## handy for referring to columns

> desol <- as.data.frame(desol)

> with(desol,plot(time,N))
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