Continuous-time deterministic models (ordinary differential equations) I: first-order models

(C) Ben Bolker: October 28, 2010

Advantages: conceptually simpler. No overshooting; e.g. chaotic dynamics impossible in <3 dimensions. Easier to define sensible dynamics. Fewer difficulties with order of events. Often (?) more realistic.

Disadvantages: rigorous analysis is harder; solving the system requires calculus (integration). Numerical solutions harder.
(Side note on realism: is time "really" continuous or discrete? Hybrids . . .)

1 First-order models: analysis

Simple (univariate) equations (e.g. $d N / d t=r N$). (Compartmental models with a single compartment.)

Separable equations

These are equations that can be put in the form $d x / d t=Q(x) R(t)$, therefore we can separate them, integrate on both sides, and (hopefully) solve for $x(t)$.

Examples: exponential, exponential plus constant (equivalent of affine models?), density-dependent mortality model.

Exponential equation: analog of geometric growth. $N(0) R^{t}=N(0) \exp (t \log R)=N(0) \exp (r t)$. Common in derivations of discrete-time rules, i.e. what do we get if we integrate some simple continuous process from t to $t+1$?

Another standard trick: partial fractions. e.g. survival of a cohort under density-dependent mortality (see auxiliary derivation of Beverton-Holt equation) or logistic equation.

Logistic equation: important building block for any model (quadratic extension of exponential model). Solution: $K /(1+C \exp (-r t))$ (can also rescale time, space to get dimensionless form $1 /(1+$ $C \exp (-r t))$). Properties of logistic growth: max. growth rate at $N=K / 2$; inflection point in growth curve at $N=K / 2$.

Population growth example (the book is silly!)

1.1 Bernoulli equations

Equations of the form

$$
d x / d t+p(t) x=q(t) x^{n}
$$

Can change variables to $w=x^{1-n}$, solve (possibly via integrating factors, see below).
von Bertalanffy growth function, theta-logistic equation.

1.2 Integrating factors

If a first-order linear ODE is in the form $d x / d t+$ $P(t) x=Q(t)$ then if we define $\mu(t)=e^{\int P(t) d t}$ then $d(x \mu) / d t=\mu(d x / d t)+x d(\mu / d t)$; multiplying the original equation by μ on both sides makes everything work nicely.

2 First-order systems: graphical analysis

Graphical evaluation of 1-D systems: stability is trivial (none of this fancy stuff with the absolute value of the slopes). Lots we can automatically/qualitatively say about stability.

Finding the equilibria: possibly hard algebraically (as with discrete systems), but all we need to do is evaluate the derivative of the gradient function at the equilibrium and we're done.

Terminology: (non)-autonomous.

3 Numerical integration

Euler's method. Don't use it!
Runge-Kutta, etc etc etc.. "Stiff" systems.
In R: need to define gradient function.

```
> library(deSolve)
> ## parameters *must be in this order*
> ## but names don't matter
> gradfun <- function(t,N,params) {
    with(c(as.list(N),as.list(params)),
            ## magic -- must return a list
            ## with gradient as the *first element*
            list(c(N=r*N*(1-N/K)),NULL))
}
> desol <- lsoda(y=c(N=0.1), ## init cond
> desol <- Isoda( \(\mathrm{y}=\mathrm{c}(\mathrm{N}=0.1)\), \#\# init cond
```

times=seq $(0,10, b y=0.1)$,
func=gradfun,
parms $=c(r=1, K=5))$
> \#\# handy for referring to columns
> desol <- as.data.frame(desol)
> with(desol,plot(time,N))

