Continuous-time deterministic models (ordinary differential

equations) I: first-order models

(© Ben Bolker: October 28, 2010

Advantages: conceptually simpler. No over-
shooting; e.g. chaotic dynamics impossible in < 3 di-
mensions. Easier to define sensible dynamics. Fewer
difficulties with order of events. Often (?) more real-
istic.

Disadvantages: rigorous analysis is harder; solv-
ing the system requires calculus (integration). Nu-
merical solutions harder.

(Side note on realism: is time “really” continuous
or discrete? Hybrids ... )

1 First-order models: analysis

Simple (univariate) equations (e.g. dN/dt = rN).
(Compartmental models with a single compartment.)

Separable equations

These are equations that can be put in the form
dxz/dt = Q(z)R(t), therefore we can separate them,
integrate on both sides, and (hopefully) solve for x(t).

Examples: exponential, exponential plus constant
(equivalent of affine models?), density-dependent
mortality model.

Exponential equation: analog of geometric
growth. N(0)R! = N(0)exp(tlog R) = N(0)exp(rt).
Common in derivations of discrete-time rules, i.e.
what do we get if we integrate some simple continuous
process from ¢ to ¢t + 17

Another standard trick: partial fractions. e.g.
survival of a cohort under density-dependent mortal-
ity (see auxiliary derivation of Beverton-Holt equa-
tion) or logistic equation.

Logistic equation: important building block
for any model (quadratic extension of exponential
model). Solution: K/(1 + Cexp(—rt)) (can also
rescale time, space to get dimensionless form 1/(1 +
Cexp(—rt))). Properties of logistic growth: max.
growth rate at N = K/2; inflection point in growth
curve at N = K/2.

Population growth example (the book is silly!)
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1.1 Bernoulli equations
Equations of the form

dx/dt + p(t)x = q(t)x"
Can change variables to w = z!™"
via integrating factors, see below).
von Bertalanffy growth function, theta-logistic
equation.

, solve (possibly

1.2 Integrating factors

If a first-order linear ODE is in the form dz/dt +
P(t)z = Q(t) then if we define u(t) = e/ P14t then
d(zp)/dt = p(dx/dt) + xd(u/dt); multiplying the
original equation by p on both sides makes every-
thing work nicely.

2 First-order systems: graphical anal-
ysis

Graphical evaluation of 1-D systems: stability is triv-
ial (none of this fancy stuff with the absolute value of
the slopes). Lots we can automatically/qualitatively
say about stability.

Finding the equilibria: possibly hard algebraically
(as with discrete systems), but all we need to do is
evaluate the derivative of the gradient function at the
equilibrium and we’re done.

Terminology: (non)-autonomous.



3 Numerical integration

Euler’s method. Don’t use it!
Runge-Kutta, etc etc etc.. “Stiff” systems.
In R: need to define gradient function.

> library(deSolve)

> ## parameters *must be in this orderx
> ## but names don't matter

> gradfun <- function(t,N,params) {

with(c(as.list(N),as.list (params)),
## magic -—- must return a list
## with gradient as the *first element*
list (c (N=r*N*(1-N/K)),NULL))

}

> desol <- lsoda(y=c(N=0.1), ## init cond
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times=seq(0,10,by=0.1),
func=gradfun,
parms=c (r=1,K=5))

## handy for referring to columns
desol <- as.data.frame(desol)
with(desol,plot(time,N))
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