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1 Beverton-Holt model
Density-dependent mortality of an initial cohort, over
a fixed time T .
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so B = 1/a, A = −bB = −b/a.
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Substituting t = 0, C = N0/(a+ bN0).
Now solve for N (ugh): call C exp(−bt/a) ≡ φ.
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2 Theta-logistic equation
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Use standard rescaling trick: set τ = rt (rescale
time), N ′ = NKθ (rescale space), hence

dN ′

dτ
= N ′(1 −N ′θ) (6)

Change of variables. Could crank through the for-
mula, or use Nθ = 1/w (dropping the prime on N ′).
This gives us

θNθ−1 dN = −w−2 dw,

1/w · 1/N dN = −w−2 dw, or dN = −N/w dw.
Substitute in: −N/w dw = N(1 − 1

w ) dτ or

dw = w(1 − w) dτ (7)

and we’re back to the logistic equation!
Solve by partial fractions; reverse the w/N ′ sub-

stitution; reverse the N ′, τ substitution.
The answer should (??) be:

N(t) = (K(−θ)+(N(0)(−θ)−K(−θ)) exp(−rθt))−1/θ
(8)


