Probability basics

(C) Ben Bolker: September 26, 2010

Definitions

1. For two events A and B, the probability of A or B is $\operatorname{Prob}(A \cup B)=\operatorname{Prob}(A)+\operatorname{Prob}(B)-$ $\operatorname{Prob}(A \cap B)$, where the last bit term is the joint probability of A and B.
2. For mutually exclusive events (joint prob. $=0$, e.g., "individual is male/female"); probability of A or $B \equiv \operatorname{Prob}(A \cup B)=\operatorname{Prob}(A)+\operatorname{Prob}(B)$.
3. The sum of probabilities of all possible outcomes of an observation or experiment $=1.0$. (E.g.: normalization constants.)
4. Conditional probability of A given B, $\operatorname{Prob}(A \mid B): \quad \operatorname{Prob}(A \mid B) \quad=\quad \operatorname{Prob}(A \cap$ $B) / \operatorname{Prob}(B)$. (Compare the unconditional probability of $A: \operatorname{Prob}(A)=\operatorname{Prob}(A \mid B)+$ $\operatorname{Prob}(A \mid \operatorname{not} B)$.)
5. If $\operatorname{Prob}(A \mid B)=\operatorname{Prob}(A), A$ is independent of B. Independence $\Longleftrightarrow \operatorname{Prob}(A \cap$ $B)=\operatorname{Prob}(A) \operatorname{Prob}(B)\left(\right.$ or $\log \prod_{i} \operatorname{Prob}\left(A_{i}\right)=$ $\left.\sum_{i} \log \operatorname{Prob}\left(A_{i}\right)\right)$.

Probability distributions

Discrete: probability distribution, cumulative probability distribution. Continuous: cumulative distribution function, probability density function $(p(x)=$ limit of $\operatorname{Prob}(x<X<x+\Delta x) / \Delta x$ as $\Delta x \rightarrow$ $0)$. Describe by moments. Mean: $\sum x_{i} / N=$ $\sum \operatorname{count}(x) x / N=\sum p(x) x$ (discrete), $\int p(x) x d x$. Variance: $\sum p(x)(x-\bar{x})^{2}, \int p(x)(x-\bar{x})^{2} d x$. Higher moments: skew, kurtosis. Also: median, mode.

Bestiary

Pretty good summaries on Wikipedia (http:// en.wikipedia.org/wiki/List_of_probability_ distributions). R help pages. Books: [1, 2, Johnson, Kotz, Balakrishnan et al.

Characteristics (discrete vs continuous; range (positive, bounded, ...); symmetric or skewed ...)

- Binomial (Bernoulli: $N=1$)
- Poisson: (limit of Binomial with $N \rightarrow \infty, N p$ constant)
- Negative binomial: coin-flipping, or overdispersed version of Poisson (Gamma-Poisson)
- Normal (Gaussian): continuous, symmetric; central limit theorem.
- Gamma: waiting time (exponential: shape=1).
- Lognormal: exponential-transformed Gaussian.

(Insanely thorough version: [3].)

Method of moments

Quick estimation of parameters. Solve $\{\bar{x}=$ (theor. mean), $s^{2}=$ (theor. variance): sometimes biased.

Jensen's inequality

$E[f(x)] \neq f(E[x])$, unless f is linear (notation: expectation of function $f(x)$ over $\operatorname{PDF} p(x): E_{p}[f(x)] \equiv$ $\int p(x) f(x) d x$. Analytic integration (if possible); numeric integration; or delta method.

Delta method: $E_{p}[f(x)] \approx E_{p}[f(\bar{x})]+$ $E_{p}\left[\left.f^{\prime}(x)\right|_{x=\bar{x}}(x-\bar{x})\right]+1 / 2 E_{p}\left[\left.f^{\prime \prime}(x)\right|_{x=\bar{x}}(x-\bar{x})^{2}\right]=$ $f(\bar{x})+1 / 2 f^{\prime \prime}(\bar{x}) \operatorname{Var}(x)$.

References

[1] B. M. Bolker. Ecological Models and Data in R. Princeton University Press, 2008.
[2] M. Evans, N. Hastings, C. Forbes, and J. B. Peacock. Statistical Distributions. John Wiley \& Sons, 2010.
[3] L. M. Leemis and J. T. McQueston. Univariate distribution relationships. The American Statistician, 62(1):45-53, 2008.

