Structured models

(C) Ben Bolker: October 19, 2010

Structured models. linear only. (Perhaps unrealistic but very useful for understanding short-term growth/growth when rare ...)
e.g. Leslie matrix model: $\mathbf{A}=0$ except for first row (fecundities, ≥ 0) and first subdiagonal (survival, $0<a_{i+1, i} \leq 1$). Lefkovitch model: the same except that more column entries can be non-zero (columns add to ≤ 1).

Time evolution of system: $\mathbf{x}(n)=\mathbf{A}^{n} \mathbf{x}(0)$. (Matrix multiplication in R : $\% * \%$; matrix powers, matpow in the expm package.

Irreducible non-negative matrix: For every ij there exists m such that $\left(\mathbf{A}^{k}\right)_{i j}$ is not zero. (There are no "dead-end" stages.)

Primitive matrix: There exists k such that for all $i j,\left(\mathbf{A}^{k}\right)_{i j}$ is positive. (There are loops of different lengths > 1.)

Perron-Frobenius theorem: for a non-negative, irreducible, primitive matrix, there is a single positive largest root; its associated eigenvector is the only positive (all-equal-sign) eigenvector.

Eigenvalues/eigenvectors: $\mathbf{A e}=\lambda \mathbf{e}$.
If the max. modulus of the eigenvalues $\max |\lambda|$ (also called spectral radius) >1, then the population grows geometrically in the long-term; the associated eigenvalue is called the stable age (stage) distribution. (Transients may be different; e.g. start with no adults.) (Note eigenvectors can be scaled any way you like: $\sum e_{i}=1$ is convenient for interpretation, R scales so that $\sum e_{i}^{2}=1$.)

Teasel model:

```
> options(digits=3)
> snames <- c("dseed1","dseed2",
    "smros","medros", "lgros","flow")
> X <- matrix(c(0,0,0,0,0,322.38,
    0.966,0,0,0,0,0,
    0.013,0.010,0.125,0,0,3.448,
        0.007,0,0.125,0.238,0,30.17,
        0.008,0,0,0.245,0.167,0.862,
        0,0,0,0.023,0.75,0),
```

 ,0,0,0.023,0.75,0,
    ```
    byrow=TRUE, nrow=6,
    dimnames=list(snames,snames))
> library(expm)
> x200 <- (X%^%200) %*% c(1,0,0,0,0,0)
> as.vector(x200/sum(x200))
```

[1] 0.636900 .264980 .012170 .069280 .012080 .00459
> e1 <- eigen(X) \#\# eigenvalues/vectors
> e1\$values[1] \#\# pop. growth rate
[1] $2.32+0 \mathrm{i}$

```
> ## speed of approach to stable distribution:
> ## ratio of first two eigenvalues
> Mod(e1$values[2]/e1$values[1])
```

[1] 0.762
> as.numeric(e1\$vectors[,1]/sum(e1\$vectors[,1]))
[1] 0.636900 .264980 .012170 .069280 .012080 .00459
> sum(e1\$vectors [, 1] ^2)
[1] $1+0 \mathrm{i}$
http://www.stanford.edu/~jhj1/teachingdocs/ Jones-Leslie1-050208.pdf

Markov models: conserved values. Columns sum to 1 . Lead eigenvector now equal to 1 ; the lead eigenvector is the stable distribution.

If we have an absorbing state (matrix is not reducible!) then the final results might depend on starting conditions: which hole will we fall into?

Transition matrix is block-diagonal, with absorbing states forming an identity matrix (a nonabsorbing, b absorbing states):

$$
\left(\begin{array}{cc}
A_{b \times b} & 0_{b \times a} \\
B_{a \times b} & I_{a \times a}
\end{array}\right)
$$

Can work out probability of ending up in a particular absorbing state, average length of time to get there.

