
An introduction to R for modeling

Stephen Ellner∗, modified by Ben Bolker†

January 21, 2012

Licensed under the Creative Commons attribution-noncommercial

license (http://creativecommons.org/licenses/by-nc/3.0/). Please

share & remix noncommercially, mentioning its origin.

Version: 2012-01-21 14:43:24

0 How to use this document

• These notes contain many sample calculations. It is important to do
these yourself—type them in at your keyboard and see what
happens on your screen—to get the feel of working in R.

• Exercises in the middle of a section should be done immediately when
you get to them, and make sure you have them right before moving
on. Some more challenging exercises (indicated by asterisks) appear
at the end of some sections. These can be left until later, and may be
assigned as homework.

These notes are based in part on course materials by former TAs Colleen
Webb, Jonathan Rowell and Daniel Fink at Cornell, Professors Lou Gross
(University of Tennessee) and Paul Fackler (NC State University), and on
the book Getting Started with Matlab by Rudra Pratap (Oxford University
Press). They also draw on the documentation supplied with R. They parallel,
but go into more depth than, the chapter supplement for the book Ecological
Models and Data in R by Ben Bolker (Princeton University Press).

You can find many other similar introductions scattered around the
web, or in the “contributed documentation” section on the R web site
(http://cran.r-project.org/other-docs.html). This particular version
is limited (it has similar coverage to Sections 1 and 2 of the Introduction to

∗Ecology and Evolutionary Biology, Cornell University
†Department of Mathematics & Statistics and Biology, McMaster University

1

http://creativecommons.org/licenses/by-nc/3.0/
http://cran.r-project.org/other-docs.html

1 WHAT IS R? 2

R that comes with R) and targets biologists who are neither programmers
nor statisticians.

1 What is R?

R is an object-oriented scripting language that combines

• a programming language called S, developed by John Chambers at
Bell Labs, that can be used for numerical simulation of deterministic
and stochastic dynamic models

• an extensive set of functions for classical and modern statistical data
analysis and modeling

• graphics functions for visualizing data and model output

• a user interface with a few basic menus and extensive help facilities

R is an open source project, available for free download via the Web.
Originally a research project in statistical computing (Ihaka and Gentleman,
1996), it is now managed by a development team that includes a number
of well-regarded statisticians, and is widely used by statistical researchers
(and a growing number of theoretical ecologists and ecological modelers)
as a platform for making new methods available to users. The commercial
implementation of S (called S-PLUS) offers an Office-style “point and click”
interface that R lacks. For our purposes, however, the advantage of this
front-end is outweighed by the fact that R is built on a faster and much less
memory-hungry implementation of S and is easier to interface with other
languages (and is free!). A standard installation of R also includes exten-
sive documentation, including an introductory manual (≈ 100 pages) and
a comprehensive reference manual (over 1000 pages). (There is a graphical
front-end for parts of R, called “R commander” (Rcmdr for short), available
at the R site, but we will not be using it in this class.)

1.1 Installing R on your computer: basics

If R is already installed on your computer, you can skip this section.
The main source for R is the CRAN home page http://cran.

r-project.org. You can get the source code, but most users will prefer
a precompiled version. To get one of these from CRAN:

• go to http://cran.r-project.org/mirrors.html and find a mirror
site that is geographically somewhat near you.

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org/mirrors.html

1 WHAT IS R? 3

• Find the appropriate page for your operating system — when you get
to the download section, go to base rather than contrib. Down-
load the binary file (e.g. base/R-x.y.z-win32.exe for Windows,
R-x.y.z.dmg for MacOS, where x.y.z is the version number). The
binary files are large (30–60 megabytes) — you will need to find a fast
internet connection.

• Read and follow the instructions (which are pretty much “click on the
icon”).

R should work well on any reasonably modern computer. Version 2.5.1
requires MacOS X 10.4.4 (or higher) or Windows 95 (or higher), or just
about any version of Linux; it can also be compiled on other versions of Unix.
Windows XP or higher is recommended. R moves quickly: if possible, you
should make sure you have upgraded to the most recent version available,
or at least that your version isn’t more than about a year old.

The standard distributions of R include several packages, user-
contributed suites of add-on functions (unfortunately, the command to load
a package into R is library!). These Notes use some packages that are
not part of the standard distribution. In general, you can install additional
packages from within R using the Packages menu, or the install.packages
command. (See below.)

For Windows or MacOS, install R by launching the downloaded file and
following the on-screen instructions. At the end you’ll have an R icon on
your desktop that you can use to launch the program. Installing versions
for Linux or Unix is slightly more complicated, which will not bother the
corresponding users. For doing anything more than very simple examples,
you should probably use a better interface than the default R Console. Prob-
ably the best choice at the moment is RStudio (http://www.rstudio.org),
which works across all three major platforms, takes only a few clicks to
download and install, and has all the basic features we want from an R inter-
face (syntax highlighting, which colors R commands and material in quotes);
bracket-matching; hot-pasting of code into a running R session; plot history
and export options). However, any programming editor you like is also fine:
see http://sciviews.org/_rgui/projects/Editors.html for a variety of
choices.

w© If you are using R on a machine where you have sufficient permissions,
you may want to edit some of your graphical user interface (GUI) options.

• To allow command and graphics windows to move independently
on the desktop (SDI, single-document interface, rather than MDI,

http://www.rstudio.org
http://sciviews.org/_rgui/projects/Editors.html

2 INTERACTIVE CALCULATIONS 4

multiple-document interface): go to File/Edit/Preferences and
click the radio button to set SDI instead of MDI. This edits the
Rconsole file. R will ask you where to save it; click through to My

Computer/Program Files/R/R-x.y.z/, where x.y.z stands for the
version of R. You will then need to restart R.

1.2 Starting R

w© Just click on the icon on your desktop, or in the Start menu (if you
allowed the Setup program to make either or both of these). If you
lose these shortcuts for some reason, you can search for the executable
file Rgui.exe on your hard drive, which will probably be somewhere like
Program Files\R\R-x.y.z\bin\Rgui.exe. If you are using Tinn-R, first
start Tinn-R, then go to . . .

1.3 Stopping R

When entering, always look for the exit.

Lebanese proverb

You can stop R from the File menu (w©), or you can stop it by typing
q() at the command prompt (if you type q by itself, you will get some
confusing output which is actually R trying to tell you the definition of the
q function; more on this later).

When you quit, R will ask you if you want to save the workspace (that
is, all of the variables you have defined in this session); for now (and in
general), say “no” in order to avoid clutter.

Should an R command seem to be stuck or take longer than you’re willing
to wait, click on the stop sign on the menu bar or hit the Escape key (in
Unix, type Control-C).

2 Interactive calculations

w© When you start R it opens the console window. The console has a few
basic menus at the top; check them out on your own. The console is also
where you enter commands for R to execute interactively, meaning that the
command is executed and the result is displayed as soon as you hit the
Enter key. For example, at the command prompt >, type in 2+2 and hit
Enter; you will see

2 INTERACTIVE CALCULATIONS 5

2+2

[1] 4

(When cutting and pasting from this document to R, don’t include the
text for the command prompt (>).)

To do anything complicated, you have to store the results from calcula-
tions by assigning them to variables, using = or <-. For example:

a <- 2+2

R automatically creates the variable a and stores the result (4) in it,
but it doesn’t print anything. This may seem strange, but you’ll often be
creating and manipulating huge sets of data that would fill many screens,
so the default is to skip printing the results. To ask R to print the value,
just type the variable name by itself at the command prompt:

a

[1] 4

(the [1] at the beginning of the line is just R printing an index of element
numbers; if you print a result that displays on multiple lines, R will put an
index at the beginning of each line. print(a) also works to print the value
of a variable.) By default, a variable created this way is a vector, and it is
numeric because we gave R a number rather than some other type of data
(e.g. a character string like "pxqr"). In this case a is a numeric vector of
length 1, which acts just like a number.

You could also type a <- 2+2; a, using a semicolon to put two or more
commands on a single line. Conversely, you can break lines anywhere that
R can tell you haven’t finished your command and R will give you a “con-
tinuation” prompt (+) to let you know that it doesn’t think you’re finished
yet: try typing

a=3*(4+ [Enter]

5)

to see what happens (you will sometimes see the continuation prompt when
you don’t expect it, e.g. if you forget to close parentheses). If you get
stuck continuing a command you don’t want—e.g. you opened the wrong
parentheses—just hit the Escape key or the stop icon in the menu bar to
get out.

2 INTERACTIVE CALCULATIONS 6

Variable names in R must begin with a letter, followed by let-
ters or numbers. You can break up long names with a period, as in
very.long.variable.number.3, or an underscore (), but you can’t use
blank spaces in variable names (or at least it’s not worth the trouble).
Variable names in R are case sensitive, so Abc and abc are different vari-
ables. Make variable names long enough to remember, short enough to
type. N.per.ha or pop.density are better than x and y (too short) or
available.nitrogen.per.hectare (too long). Avoid c, l, q, t, C, D, F, I,
O, and T, which are either built-in R functions or hard to tell apart from
other symbols (e.g. l (lower-case L) vs. 1 (numeral 1)).

R does calculations with variables as if they were numbers. It uses +, -,
*, /, and ^ for addition, subtraction, multiplication, division and exponen-
tiation, respectively. For example:

x <- 5

y <- 2

z1 <- x*y ## no output

z2 <- x/y ## no output

z3 <- x^y ## no output

z2

[1] 2.5

z3

[1] 25

Even though R did not display the values of x and y, it “remembers”
that it assigned values to them. Type x; y to display the values.

You can retrieve and edit previous commands. The up-arrow (↑) key
(or Control-P) recalls previous commands to the prompt. For example, you
can bring back the second-to-last command and edit it to

z3 <- 2*x^y

(experiment with the other arrow keys (↓, →, ←), Home and End keys
too). This will save you many hours in the long run.

You can combine several operations in one calculation:

2 INTERACTIVE CALCULATIONS 7

abs absolute value
cos, sin, tan cosine, sine, tangent of angle x in radians
exp exponential function, ex

log natural (base-e) logarithm
log10 common (base-10) logarithm
sqrt square root

Table 1: Some of the built-in mathematical functions in R. You can get a
more complete list from the Help system: ?Arithmetic for simple, ?log for
logarithmic, ?sin for trigonometric, and ?Special for special functions.

A <- 3

C <- (A+2*sqrt(A))/(A+5*sqrt(A)); C

[1] 0.5544

Parentheses specify the order of operations. The command

C <- A+2*sqrt(A)/A+5*sqrt(A)

is not the same as the one above; rather, it is equivalent to C <- A +

2*(sqrt(A)/A) + 5*sqrt(A).
The default order of operations is: (1) parentheses; (2) exponentiation,

or powers, (3) multiplication and division, (4) addition and subtraction
(“pretty please excuse my dear Aunt Sally”).

b <- 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5

b <- (12-4)/2^3 gives 8/8 = 1

b <- -1^2 gives -(1^2) = -1

b <- (-1)^2 gives 1
In complicated expressions you might start off by using parentheses to

specify explicitly what you want, such as b <- 12 - (4/(2^3)) or at
least b <- 12 - 4/(2^3) ; a few extra sets of parentheses never hurt
anything, although when you get confused it’s better to think through the
order of operations rather than flailing around adding parentheses at ran-
dom.

R also has many built-in mathematical functions that operate on vari-
ables (Table 1 shows a few).

Exercise 2.1 : Using editing shortcuts wherever you can, have R com-
pute the values of

3 THE HELP SYSTEM 8

1. 27

27−1 and compare it with (1− 1
27

)−1 (If any square brackets [] show
up in your web browser’s rendition of these equations, replace them
with regular parentheses ().)

2. • 1 + 0.2

• 1 + 0.2 + 0.22/2

• 1 + 0.2 + 0.22/2 + 0.23/6

• e0.2 (remember that R knows exp but not e; how would you get
R to tell you the value of e? What is the point of this exercise?)

3. the standard normal probability density, 1√
2π
e−x

2/2, for values of x = 1

and x = 2 (R knows π as pi.) (You can check your answers against the
built-in function for the normal distribution; dnorm(1) and dnorm(2)

should give you the values for the standard normal for x = 1 and
x = 2.)

3 The help system

R has a help system, although it is generally better for providing detail or
reminding you how to do things than for basic “how do I . . . ?” questions.

• You can get help on any R function by entering

?foo

(where foo is the name of the function you are interested in) in the
console window (e.g., try ?sin).

• The Help menu on the tool bar provides links to other documentation,
including the manuals and FAQs, and a Search facility (‘Apropos’ on
the menu) which is useful if you sort of maybe remember part of the
the name of what it is you need help on.

• Typing help.start() opens a web browser with help information.

• example(cmd) will run any examples that are included in the help
page for command cmd.

• demo(topic) runs demonstration code on topic topic: type demo()

by itself to list all available demos

3 THE HELP SYSTEM 9

By default, R’s help system only provides information about functions
that are in the base system and packages that you have loaded with library

(see below).

• ??topic or help.search("topic") (with quotes) will list informa-
tion related to topic available in the base system or in any extra
installed packages: then use ?topic to see the information, perhaps us-
ing library(pkg) to load the appropriate package first. help.search
uses “fuzzy matching” — for example, help.search("log") finds
528 entries (on my particular system) including lots of functions with
“plot”, which includes the letters “lot”, which are almost like “log”.
If you can’t stand it, you can turn this behavior off by specifying the
incantation help.search("log",agrep=FALSE) (81 results which still
include matches for “logistic”, “myelogenous”, and “phylogeny” . . .)

• help(package="pkg") will list all the help pages for a loaded package.

• example(fun) will run the examples (if any) given in the help for a
particular function fun: e.g. example(log)

• RSiteSearch("topic") does a full-text search of all the R documen-
tation and the mailing list archives for information on topic (you need
an active internet connection).

• the sos package is a web-aware help function that searches all of the
packages on CRAN; its findFn function tries to find and organize
functions in any package on CRAN that match a search string (again,
you need a network connection for this).

Try out one or more of these aspects of the help system.
Exercise 3.1 : Do an Apropos on sin via the Help menu, to see what

it does. Now enter the command

help.search("sin")

and see what that does (answer: help.search pulls up all help pages
that include ‘sin’ anywhere in their title or text. Apropos just looks at the
name of the function).

4 A FIRST INTERACTIVE SESSION: A “LEAKY BUCKET”MODEL10

4 A first interactive session: a “leaky bucket”
model

To get a feel for working in R we’ll construct a simple discrete-time dynamical
system, sometimes known as the “leaky bucket” model.

Suppose that in a queue (a group of people or things waiting for service
— e.g. people waiting at a bank, or jobs waiting for processing on a computer
system, or cars in line at a toll booth), 25% (rounded) of the people waiting
are served every hour and 10 new people arrive every hour. (For precision,
we will assume that the 10 new people arrive at the end of the hour and are
not counted in the fraction served.)

Suppose the queue is initially empty. We could run this model by brute
force by typing

N <- 0

to set the initial state and then typing (or cutting and pasting)

N <- N-round(0.25*N)

N <- N+10

over and over again.
Of course, this would be extremely tedious (we also wouldn’t see the

results unless we typed N by itself from time to time to see where we’d
gotten). This approach doesn’t save the results over time; we can only see
the current state of the system.

Suppose that we decide we want to run the system for 20 steps. We can
set aside space for a vector of 20 numbers, set the first to zero, and assign
a variable i as a counter (if i is an integer in the correct range, then N[i]

refers to the ith value from the vector N — more on this below):

N <- numeric(20)

N[1] <- 0

i <- 1

Then we can do the following steps repeatedly:

i <- i+1

N[i] <- N[i-1]-round(0.25*N[i-1])+10 ## condense

4 A FIRST INTERACTIVE SESSION: A “LEAKY BUCKET”MODEL11

Of course, this doesn’t help much in the tedium department. We should
instead use a while statement:

i <- 1

while (i<20) {

i <- i+1

N[i] <- N[i-1]-round(0.25*N[i-1])+10

}

N

[1] 0 10 18 24 28 31 33 35 36 37 38 38 38 38 38 38 38 38 38 38

R repeatedly tests the condition i<20 given in parentheses after while;
if it is true, it runs all of the code inside the curly brackets ({}), then starts
again.

Exercise 4.1 : Why did we use the condition i<20 rather than the
condition i<=20?

Alternatively, since we know in advance how many times we want to run
the model, we can instead use a “for loop”:

for (i in 2:20) {

N[i] <- N[i-1]-round(0.25*N[i-1])+10

}

N

[1] 0 10 18 24 28 31 33 35 36 37 38 38 38 38 38 38 38 38 38 38

The colon (:) operator creates a sequence of integers starting at 2 and
ending at 20 (notice that we start from 1, not 2, because we have already set
the value for N[1]). For each value in this vector, R sets the loop variable
i to that value and runs the code inside the curly brackets.

Let’s plot the results. plot(N) by itself will plot the values in N on
the y-axis against their “index” (position in the vector) on the x-axis, but
it might be better to specify the x values explicitly, as in plot(1:20,N).
Perhaps even better, we can assign the x values to a variable: at the same
time, we can (1) specify that R should use both lines and points to plot the
values by specifying type="b" and (2) specify more informative labels for
the axes (see Figure 1).

5 R INTERFACES 12

tvec <- 1:20

plot(tvec,N,type="b",xlab="Time (hours)",ylab="Queue length")

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

5 10 15 20

0
10

20
30

Time (hours)

Q
ue

ue
 le

ng
th

R’s default plotting character is an open circle. Open symbols are good
for plotting large data sets because it is easier to see where they overlap,
but you could include pch=16 in the plot command if you wanted closed
circles instead. Figure 2 shows several more ways to adjust the appearance
of lines and points in R.

5 R interfaces

5.1 Editors and GUIs

While R works perfectly well out of the box, there are interfaces that can
make your R experience easier. Editors such as Tinn-R (Windows: http:

//www.sciviews.org/Tinn-R/), Kate (Linux: http://kate-editor.org),
or Emacs/ESS (cross-platform: http://ess.r-project.org/ will color R
commands and quoted material, allow you to submit lines or blocks of R
code to an R session, and give hints about function arguments: the standard
MacOS interface has all of these features built in. Graphical interfaces such

http://www.sciviews.org/Tinn-R/
http://www.sciviews.org/Tinn-R/
http://kate-editor.org
http://ess.r-project.org/

5 R INTERFACES 13

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

5 10 15 20

0

10

20

30

Time (hours)

Q
ue

ue
 le

ng
th

Figure 1: Queue length “simulation”: N(t) = N(t− 1)− 0.25 · round(N(t−
1) + 10.

● ● ● ● ● ● pch: point type

● col: point color

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● cex: point size

a b c d e A B C D E 0 1 2 3 4 5 6 7 8 9 text

lty: line type

lwd: line width

Figure 2: Some of R’s graphics parameters. Color specification, col, also
applies in many other contexts: colors are set to a rainbow scale here. See
?par for (many more) details on graphics parameters, and one or more of
?rgb, ?palette, or apropos("color") for more on colors.

5 R INTERFACES 14

as JGR (cross-platform: http://rosuda.org/JGR/) or SciViews (Windows:
http://www.sciviews.org/SciViews-R/) include similar editors and have
extra functions such as a workspace browser for looking at all the variables
you have defined. (All of these interfaces, which are designed to facilitate R
programming, are in a different category from Rcmdr, which tries to simplify
basic statistics in R.) If you are using Windows or Linux I would strongly
recommend that, once you have tried R a little bit, you download at least
an R-aware editor and possibly a GUI to make your life easier. Links to all
of these systems, and more, can be found at http://www.r-project.org/

GUI/.

5.2 Script files and data files

Modeling and complicated data analysis are much easier if you use scripts,
which are a series of commands stored in a text file. The Windows and
MacOS versions of R both have basic script editors: you can also use Win-
dows Notepad or Wordpad, or a more featureful editor like PFE, Xemacs,
or Tinn-R: you should not use MS Word.

Most programs for working with models or analyzing data follow a simple
pattern of program parts:

1. “Setup” statements.

2. (Possibly) input some data from a file or the keyboard.

3. Carry out the calculations that you want.

4. Print the results, graph them, or save them to a file.

For example, a script file might

1. Load some packages, or run another script file that creates some func-
tions (more on functions later).

2. Read in data from a text file.

3. Fit several statistical models to the data and compare them.

4. Graph the results, and save the graph to disk for including in your
term project.

Even for relatively simple tasks, script files are useful for building up a
calculation step-by-step, making sure that each part works before adding on
to it.

http://rosuda.org/JGR/
http://www.sciviews.org/SciViews-R/
http://www.r-project.org/GUI/
http://www.r-project.org/GUI/

5 R INTERFACES 15

Tips for working with data and script files (sounding slightly scary but
just trying to help you avoid common pitfalls):

• To tell R where data and script files are located, you can do any one
of the following:

– spell out the path, or file location, explicitly. (Use a single forward
slash to separate folders (e.g. "c:/My Documents/R/script.R"):
this works on all platforms.)

– use filename=file.choose() (this works on all platforms, but
is only useful on Windows and MacOS).

– change your working directory to wherever the file(s) are located
using Change dir in the File menu (Windows: on Mac it’s
Misc/Change Working Directory);

– change your working directory to wherever the file(s) are lo-
cated using the setwd (set working directory) function, e.g.
setwd("c:/temp")

Changing your working directory is more efficient in the long run, if
you save all the script and data files for a particular project in the
same directory and switch to that directory when you start work.

If you have a shortcut defined for R on your desktop (or in the
Start menu) you can permanently change your default working di-
rectory by right-clicking on the shortcut icon, selecting Properties,
and changing the starting directory to somewhere like (for example)
My Documents/R work.

• it’s vital that you save your data and script files as plain text (or
sometimes comma-separated) files. There are three things that can go
wrong here: (1) if you use a web browser to download files, be careful
that it doesn’t automatically append some weird suffix to the files; (2)
if your web browser has a “file association” (e.g. it thinks that all files
ending in .dat are Excel files), make sure to save the file as plain text,
and without any extra extensions; (3) never, (never, never) use
Microsoft Word to edit your data and script files; MS Word
will try very hard to get you to save them as Word (rather than text)
files, which will screw them up!

• If you send script files by e-mail, even if you paste them into the
message as plain text, lines will occasionally get broken in different
places — leading to confusion. Beware.

5 R INTERFACES 16

As a first example, the file Intro1_2e3.R has the commands from the
leaky bucket model. Important: before working with an example file,
create a personal copy in some location on your own computer. We will
refer to this location as your temp folder. At the end of a lab session you
must move files onto your personal disk (or email them to yourself).

Now open your copy of Intro1_2e3.R. In your editor, select and Copy
the entire text of the file, and then Paste the text into the R console window
(Ctrl-C and Ctrl-V [Apple-C and Apple-V on the Mac] are useful short-
cuts). This has the same effect as entering the commands by hand into the
console: they will be executed and so a graph is displayed with the results.
Cut-and-Paste allows you to execute script files one piece at a time (which
is useful for finding and fixing errors). The source function allows you to
run an entire script file, e.g.

source("c:/temp/Intro1.R")

You can also source files by pointing and clicking via the File menu on
the console window.

Exercise 5.1 Make a copy of Intro1_2e3.R under a new name, and
modify the copy so that it picks the number of new arrivals from a Pois-
son distribution with mean 10 (rpois(1,lambda=10)) and plots the data
appropriately. (We will learn about the Poisson distribution later.) In the
“setup” phase of your code, use the command set.seed(101) to initialize
the random number generator so that you get the same answer as I did. You
should end up with a graph that resembles Figure 3.

Exercise 5.2 The axes in plots are scaled automatically, but the out-
come is not always ideal (e.g. if you want several graphs with exactly the
same axis limits). You can use the xlim and ylim arguments in plot to
control the limits:

plot(x,y,xlim=c(x1,x2), [other stuff])

will draw the graph with the x-axis running from x1 to x2, and using
ylim=c(y1,y2) within the plot command will do the same for the y-axis.

Create a plot of queue length versus time with the x-axis running from
0 to 50 and the y-axis running from 0 to 50.

Exercise 5.3 You can place several graphs within a single figure by
using the par function (short for “parameter”) to adjust the layout of the
plot. For example, the command

5 R INTERFACES 17

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

5 10 15 20

0

10

20

30

40

Time (hours)

Q
ue

ue
 le

ng
th

Figure 3: Queue simulation with random arrivals.

5 R INTERFACES 18

par(mfrow=c(2,3))

divides the plotting area into 2 rows and 3 columns. As R draws a series
of graphs, it places them along the top row from left to right, then along the
next row, and so on. mfcol=c(2,3) has the same effect except that R draws
successive graphs down the first column, then down the second column, and
so on.

Save Intro1_2e3.R with a new name and modify the program as follows.
Use mfrow=c(1,2) to create side-by-side graphs of queue length vs. time
for the deterministic (exactly 10 new people per hour) and stochastic (X ∼
Poisson(λ = 10) new people per hour). Use the ylim argument to make
sure the y-axis scales are the same in each plot.

Exercise 5.4 Use ?par to read about other plot control parameters
that you use par to set (you should definitely skim — this is one of the
longest help files in the whole R system!). Then draw a 2 × 2 set of plots,
each showing the line y = 5x + 3 with x running from 3 to 8, but with 4
different line styles and 4 different line colors.

Exercise 5.5 Modify one of your scripts so that at the very end it
saves the plot to disk. Use either savePlot or dev.print. Use ?savePlot,
?dev.print to read about these functions. Note that the argument
filename can include the path to a folder; for example, in Windows you
can use filename="c:/temp/Intro2Figure".

(These are really exercises in using the help system, with the bonus
that you learn some things about plot. (Let’s see, we know plot can
graph a simulation (N versus tvec and all that). Maybe it can also draw a
line to connect the points, or just draw the line and leave out the points.
That would be useful. So let’s try ?plot and see if it says anything about
lines . . . Hey, it also says that graphical parameters can be given as

arguments to plot, so maybe I can set line colors inside the plot command
instead of using par all the time . . .) The help system can be quite helpful
(amazingly enough) once you get used to it and get in the habit of using it
often.)

The main point is not to be afraid of experimenting; if you have saved
your previous commands in a script file, there’s almost nothing you can
break by trying out commands and inspecting the results.

Exercise 5.6 * Read about lines and legend. Using everything you
have learned so far, recreate versions of Figures 1.5, 1.6, and 1.7 on pp. 15
and 16 of Mooney and Swift’s book.

6 THE R PACKAGE SYSTEM 19

6 The R package system

R has many extra packages that provide extra functions. You may be able
to install new packages from a menu within R. You can always type

install.packages("plotrix")

(for example — this installs the plotrix package). You can install more
than one package at a time:

install.packages(c("ellipse","plotrix"))

(c stands for “combine”, and is the command for combining multiple
things into a single object.) If the machine on which you use R is not
connected to the Internet, you can download the packages to some other
medium (such as a flash drive or CD) and install them later, using Install

from local zip file in the menu or

install.packages("plotrix",repos=NULL)

If you do not have permission to install packages in R’s central directory,
R will may ask whether you want to install the packages in a user-specific
directory. Go ahead and say yes.

You will frequently get a warning message something like
Warning message: In file.create(f.tg) : cannot create file

’.../packages.html’, reason ’Permission denied’. Don’t worry
about this; it means the package has been installed successfully, but the
main help system index files couldn’t be updated because of file permissions
problems.

7 Statistics in R

Some of the important functions and packages (collections of functions) for
statistical modeling and data analysis are summarized in Table 2. Ven-
ables and Ripley (2002) give a good practical (although somewhat advanced)
overview, and you can find a list of available packages and their contents at
CRAN, the main R website (http://www.cran.r-project.org — select a
mirror site near you and click on Package sources). For the most part, we
will not be concerned here with this side of R.

http://www.cran.r-project.org

8 VECTORS 20

aov, anova Analysis of variance or deviance
lm Linear models (regression, ANOVA, ANCOVA)
glm Generalized linear models (e.g. logistic, Poisson regression)
gam Generalized additive models (in package mgcv)
nls Fit nonlinear models by least-squares
lme, nlme, lmer,
glmer

Linear, generalized linear, and nonlinear mixed-effects models (re-
peated measures, block effects, spatial models): in packages nlme
and lme4

boot Package: bootstrapping functions
splines Package: nonparametric regression (more in packages fields,

KernSmooth, logspline, sm and others)
princomp, manova,
lda, cancor

Multivariate analysis (some in package MASS; also see packages
vegan, ade4)

survival Package: survival analysis
tree, rpart Packages: tree-based regression

Table 2: A few of the functions and packages in R for statistical modeling
and data analysis. There are many more, but you will have to learn about
them somewhere else.

8 Vectors

Vectors and matrices (1- and 2-dimensional rectangular arrays of numbers)
are pre-defined data types in R. Operations with vectors and matrices may
seem a bit abstract now, but we need them to do useful things later. Vectors’
only properties are their type (or class) and length, although they can also
have an associated list of names.

We’ve already seen two ways to create vectors in R:

1. A command in the console window or a script file listing the values,
such as

initialsize=c(1,3,5,7,9,11)

2. Using read.table:

initialsize=read.table("c:/temp/initialdata.txt")

(assuming of course that the file exists in the right place).

8 VECTORS 21

You can then use a vector in calculations as if it were a number (more
or less)

(finalsize=initialsize+1)

[1] 2 4 6 8 10 12

(newsize=sqrt(initialsize))

[1] 1.000 1.732 2.236 2.646 3.000 3.317

(The parentheses are an R trick that tell it to print out the results of
the calculation even though we assigned them to a variable.)

Notice that R applied each operation to every entry in the vector. Sim-
ilarly, commands like initialsize-5, 2*initialsize, initialsize/10

apply subtraction, multiplication, and division to each element of the vector.
The same is true for

initialsize^2

[1] 1 9 25 49 81 121

In R the default is to apply functions and operations to vectors in an
element by element (or “vectorized”) manner.

8.1 Functions for creating vectors

You can use the seq function to create a set of regularly spaced values. seq’s
syntax is

x <- seq(from,to,by)

or

x <- seq(from,to)

or

x <- seq(from,to,length.out) ## can abbreviate length.out to

’length’

8 VECTORS 22

The first form generates a vector (from,from+by,from+2*by,...) with
the last entry not extending further than than to. In the second form
the value of by is assumed to be 1 or -1, depending on whether from

or to is larger. The third form creates a vector with the desired end-
points and length. As we saw above, the syntax from:to is a shortcut
for seq(from,to):

1:8

[1] 1 2 3 4 5 6 7 8

Exercise 8.1 * Use seq to create the vector v=(1 5 9 13), and to
create a vector going from 1 to 5 in increments of 0.2.

You can use rep to create a constant vector such as (1 1 1 1); the basic
syntax is rep(values,lengths). For example,

rep(3,5)

[1] 3 3 3 3 3

creates a vector in which the value 3 is repeated 5 times. rep will repeat
a whole vector multiple times

rep(1:3,3)

[1] 1 2 3 1 2 3 1 2 3

or will repeat each of the elements in a vector a given number of times:

rep(1:3,each=3)

[1] 1 1 1 2 2 2 3 3 3

Even more flexibly, you can repeat each element in the vector a different
number of times:

rep(c(3,4),c(2,5))

[1] 3 3 4 4 4 4 4

8 VECTORS 23

seq(from,to,by=1) Vector of evenly spaced values, default increment = 1)
seq(from, to,

length.out)

Vector of evenly spaced values, specified length)

c(u,v,...) Combine a set of numbers and/or vectors into a single vector
rep(a,b) Create vector by repeating elements of a by amounts in b

as.vector(x) Convert an object of some other type to a vector
hist(v) Histogram plot of value in v
mean(v),var(v),sd(v) Estimate of population mean, variance, standard deviation

based on data values in v

cor(v,w) Correlation between two vectors

Table 3: Some important R functions for creating and working with vectors.
Many of these have other optional arguments; use the help system (e.g.
?cor) for more information. The statistical functions such as var regard
the values as samples from a population and compute an estimate of the
population statistic; for example sd(1:3)=1.

The value 3 was repeated 2 times, followed by the value 4 repeated 5
times. rep can be a little bit mind-blowing as you get started, but it will
turn out to be useful.

Table 3 lists some of the main functions for creating and working with
vectors.

8.2 Vector indexing

You will often want to extract a specific entry or other part of a vector. This
procedure is called vector indexing, and uses square brackets ([]):

z=c(1,3,5,7,9,11)

z[3]

[1] 5

(how would you use seq to construct z?) z[3] extracts the third item,
or element, in the vector z. You can also access a block of elements using
the functions for vector construction, e.g.

z[2:5]

[1] 3 5 7 9

8 VECTORS 24

extracts the second through fifth elements.
What happens if you enter v=z[seq(1,5,2)] ? Try it and see, and make

sure you understand what happened.
You can extracted irregularly spaced elements of a vector. For example

z[c(1,2,5)]

[1] 1 3 9

You can also use indexing to set specific values within a vector. For
example,

z[1]=12

changes the value of the first entry in z while leaving all the rest alone,
and

z[c(1,3,5)]=c(22,33,44)

changes the first, third, and fifth values (note that we had to use c to
create the vector — can you interpret the error message you get if you try
z[1,3,5] ?)

Exercise 8.2 * Write a one-line command to extract a vector consisting
of the second, first, and third elements of z in that order.

Exercise 8.3 Write a script file that computes values of y = (x−1)
(x+1) for

x = 1, 2, · · · , 10, and plots y versus x with the points plotted and connected
by a line (hint: in ?plot, search for type).

Exercise 8.4 * The sum of the geometric series 1 + r+ r2 + r3 + ...+ rn

approaches the limit 1/(1−r) for r < 1 as n→∞. Set the values r = 0.5 and
n = 10, and then write a one-line command that creates the vector G =
(r0, r1, r2, ..., rn). Compare the sum (using sum) of this vector to the limiting
value 1/(1 − r). Repeat for n = 50. (Note that comparing very similar
numeric values can be tricky: rounding can happen, and some numbers
cannot be represented exactly in binary (computer) notation. By default R
displays 7 significant digits (options("digits")). For example:

x = 1.999999

x

[1] 2

8 VECTORS 25

x-2

[1] -1e-06

x=1.9999999999999

x

[1] 2

x-2

[1] -9.992e-14

All the digits are still there, in the second case, but they are not shown.
Also note that x-2 is not exactly −1× 10−13; this is unavoidable.)

8.3 Logical operators

Logical operators return a value of TRUE or FALSE. For example, try:

a=1

b=3

c=a<b

d=(a>b)

c

[1] TRUE

d

[1] FALSE

The parentheses around (a>b) are optional but make the code easier to
read. One special case where you do need parentheses (or spaces) is when
you make comparisons with negative values; a<-1 will surprise you by setting
a=1, because <- (representing a left-pointing arrow) is equivalent to = in R.
Use a< -1, or more safely a<(-1), to make this comparison.

When we compare two vectors or matrices of the same size, or compare a
number with a vector or matrix, comparisons are done element-by-element.
For example,

8 VECTORS 26

x<y less than
x>y greater than
x<=y less than or equal to
x>=y greater than or equal to
x==y equal to
x!=y not equal to

Table 4: Some comparison operators in R. Use ?Comparison to learn more.

x=1:5

(b=(x<=3))

[1] TRUE TRUE TRUE FALSE FALSE

So if x and y are vectors, then (x==y) will return a vector of values giving
the element-by-element comparisons. If you want to know whether x and
y are identical vectors, use identical(x,y) which returns a single value:
TRUE if each entry in x equals the corresponding entry in y, otherwise FALSE.
You can use ?Logical to read more about logical operators. Note the
difference between = and ==: can you figure out what happened
in the following cautionary tale?

a = 1:3

b = 2:4

a==b

[1] FALSE FALSE FALSE

a=b

a==b

[1] TRUE TRUE TRUE

Exclamation points ! are used in R to mean “not”; != (not !==) means
“not equal to”.

R also does arithmetic on logical values, treating TRUE as 1 and FALSE

as 0. So sum(b) returns the value 3, telling us that three entries of x

satisfied the condition (x<=3). This is useful for (e.g.) seeing how many of
the elements of a vector are larger than a cutoff value.

Build more complicated conditions by using logical operators to combine
comparisons:

8 VECTORS 27

! Negation
&, && AND
|, || OR

OR is non-exclusive, meaning that x|y is true if either x or y or both
are true (a ham-and-cheese sandwich would satisfy the condition “ham OR
cheese”). For example, try

a=c(1,2,3,4)

b=c(1,1,5,5)

(a<b)& (a>3)

[1] FALSE FALSE FALSE TRUE

(a<b) | (a>3)

[1] FALSE FALSE TRUE TRUE

and make sure you understand what happened (if it’s confusing, try
breaking up the expression and looking at the results of a<b and a>3 sep-
arately first). The two forms of AND and OR differ in how they handle
vectors. The shorter one does element-by-element comparisons; the longer
one only looks at the first element in each vector.

8.4 Vector indexing II

We can also use logical vectors (lists of TRUE and FALSE values) to pick
elements out of vectors. This is important, e.g., for subsetting data (getting
rid of those pesky outliers!)

As a simple example, we might want to focus on just the values N near
the maximum in the leaky bucket example:

(largeN <- N[N>0.9*max(N)])

[1] 38 38 39 42 40

(largeN_tvec = tvec[N>0.9*max(N)])

[1] 9 13 15 18 19

What is really happening here (think about it for a minute) is that
N>0.9*max(N) generates a logical vector the same length as N (FALSE FALSE

FALSE ...) which is then used to select the appropriate values.

8 VECTORS 28

If you want the positions at which N is greater than 90% of its maxi-
mum, you could say (1:length(N))[N>0.9*max(N)], but you can also use
a built-in function: which(N>0.9*max(N)). If you wanted the position at
which the maximum value of N occurs, you could say which(N==max(N)).
(This normally results in a vector of length 1; when could it give a longer vec-
tor?) There is even a built-in command for this specific function, which.max
(although which.max always returns just the first position at which the max-
imum occurs).

Exercise 8.5 : What would happen if instead of setting
largeN you replaced N by saying N <- N[N>0.9*max(N)], and then
tvec <- tvec[N>0.9*max(N)]? Why would that be wrong? Try it with
some temporary variables — set N2 <- N and tvec2 <- tvec and then
play with N2 and tvec2 so you don’t mess up your working variables —
and work out what happened . . .

We can also combine logical operators (making sure to use the element-
by-element & and | versions of AND and OR):

N[N>0.9*max(N) & tvec >= 15]

[1] 39 42 40

tvec[N>0.9*max(N) & tvec >= 15]

[1] 15 18 19

If we were going to do this a lot, we could save typing by assigning a
logical vector

bigN <- N>0.9*max(N) & tvec>= 15

and using it to do the indexing.
Exercise 8.6 runif(n) is a function (more on it soon) that generates a

vector of n random, uniformly distributed numbers between 0 and 1. Create
a vector of 20 numbers, then select the subset of those numbers that is
less than the mean. (If you want your answers to match mine exactly, use
set.seed(273) to set the random-number generator to a particular starting
point before you use runif; [273 is an arbitrary number I chose].)

Exercise 8.7 * Find the positions of the elements that are less than
the mean of the vector you just created (e.g. if your vector were
(0.1 0.9. 0.7 0.3) the answer would be (1 4)).

9 MATRICES 29

As I mentioned in passing above, vectors can have names associated with
their elements: if they do, you can also extract elements by name (use names
to find out the names).

x = c(first=7,second=5,third=2)

names(x)

[1] "first" "second" "third"

x["first"]

first

7

x[c("third","first")]

third first

2 7

Finally, it is sometimes handy to be able to drop a particular set of
elements, rather than taking a particular set: you can do this with negative
indices. For example, x[-1] extracts all but the first element of a vector.

Exercise 8.8 *: Specify two ways to take only the elements in the odd
positions (first, third, . . .) of a vector of arbitrary length.

9 Matrices

9.1 Creating matrices

Like vectors, you can create matrices by using read.table to read in values
from a data file. (Actually, this creates a data frame, which is almost the
same as a matrix — see section 10.2.) You can also create matrices of
numbers by creating a vector of the matrix entries, and then reshaping
them to the desired number of rows and columns using the function matrix.
For example

(X=matrix(1:6,nrow=2,ncol=3))

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

9 MATRICES 30

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix.
By default R loads the values into the matrix column-wise (this is prob-

ably counter-intuitive since we’re used to reading tables row-wise). Use the
optional parameter byrow to change this behavior. For example :

(A=matrix(1:9,nrow=3,ncol=3,byrow=TRUE))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

R will re-cycle through entries in the data vector, if necessary to fill a
matrix of the specified size. So for example

matrix(1,nrow=10,ncol=10)

creates a 10×10 matrix of ones.
Exercise 9.1 Use a command of the form X=matrix(v,nrow=2,ncol=4)

where v is a data vector, to create the following matrix X:

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 2 2 2 2

If you can, try to use R commands to construct the vector rather than
typing out all of the individual values.

R will also collapse a matrix to behave like a vector whenever it makes
sense: for example sum(X) above is 12.

Exercise 9.2 Use rnorm (which is like runif, but generates Gaussian
(normally distributed) numbers with a specified mean and standard devi-
ation instead) and matrix to create a 5 × 7 matrix of Gaussian random
numbers with mean 1 and standard deviation 2. (Use set.seed(273) again
for consistency.)

Another useful function for creating matrices is diag. diag(v,n) cre-
ates an n × n matrix with data vector v on its diagonal. So for example
diag(1,5) creates the 5× 5 identity matrix, which has 1’s on the diagonal
and 0 everywhere else. Try diag(1:5,5) and diag(1:2,5); why does the
latter produce a warning?

Finally, you can use the data.entry function. This function can only
edit existing matrices, but for example (try this now!!)

9 MATRICES 31

matrix(v,nrow=m,ncol=n) m× n matrix using the values in v

t(A) transpose (exchange rows and columns) of matrix A

dim(X) dimensions of matrix X. dim(X)[1]=# rows, dim(X)[2]=#
columns

data.entry(A) call up a spreadsheet-like interface to edit the values in A

diag(v,n) diagonal n×n matrix with v on diagonal, 0 elsewhere (v is 1
by default, so diag(n) gives an n× n identity matrix)

cbind(a,b,c,...) combine compatible objects by attaching them along columns
rbind(a,b,c,...) combine compatible objects by attaching them along rows
as.matrix(x) convert an object of some other type to a matrix, if possible
outer(v,w) “outer product” of vectors v, w: the matrix whose (i, j)th

element is v[i]*w[j]

Table 5: Some important functions for creating and working with matrices.
Many of these have additional optional arguments; use the help system for
full details.

A=matrix(0,nrow=3,ncol=4)

data.entry(A)

will create A as a 3×4 matrix, and then call up a spreadsheet-like interface
in which you can change the values to whatever you need.

9.2 cbind and rbind

If their sizes match, you can combine vectors to form matrices, and stick
matrices together with vectors or other matrices. cbind (“column bind”)
and rbind (“row bind”) are the functions to use.

cbind binds together columns of two objects. One thing it can do is put
vectors together to form a matrix:

(C=cbind(1:3,4:6,5:7))

[,1] [,2] [,3]

[1,] 1 4 5

[2,] 2 5 6

[3,] 3 6 7

R interprets vectors as row or column vectors according to what you’re
doing with them. Here it treats them as column vectors so that columns
exist to be bound together. On the other hand,

9 MATRICES 32

(D=rbind(1:3,4:6))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.
Exercise 9.3 Verify that rbind(C,D) works, cbind(C,C) works, but

cbind(C,D) doesn’t. Why not?

9.3 Matrix indexing

Matrix indexing is like vector indexing except that you have to specify both
the row and column, or range of rows and columns. For example z=A[2,3]

sets z equal to 6, which is the (2nd row, 3rd column) entry of the matrix A
that you recently created, and

A[2,2:3]

[1] 5 6

(B=A[2:3,1:2])

[,1] [,2]

[1,] 4 5

[2,] 7 8

There is an easy shortcut to extract entire rows or columns: leave out
the limits, leaving a blank before or after the comma.

(first.row=A[1,])

[1] 1 2 3

(second.column=A[,2])

[1] 2 5 8

(What does A[,] do?)
As with vectors, indexing also works in reverse for assigning values to

matrix entries. For example,

10 OTHER STRUCTURES: LISTS AND DATA FRAMES 33

(A[1,1]=12)

[1] 12

You can do the same with blocks, rows, or columns, for example

(A[1,]=c(2,4,5))

[1] 2 4 5

If you use which on a matrix, R will normally treat the matrix as a
vector — so for example which(A==8) will give the answer 6 (figure out
why). However, which does have an option that will treat its argument as
a matrix:

which(A==8,arr.ind=TRUE)

row col

[1,] 3 2

10 Other structures: Lists and data frames

10.1 Lists

While vectors and matrices may seem familiar, lists are probably new to you.
Vectors and matrices have to contain elements that are all the same type:
lists in R can contain anything — vectors, matrices, other lists . . . Indexing
lists is a little different too: use double square brackets [[]] (rather than
single square brackets as for a vector) to extract an element of a list by
number or name, or $ to extract an element by name (only). Given a list
like this:

L = list(A=x,B=y,C=c("a","b","c"))

Then L$A, L[["A"]], and L[[1]] will all grab the first element of the
list.

You won’t use lists too much at the beginning, but many of R’s own
results are structured in the form of lists.

REFERENCES 34

10.2 Data frames

Data frames are the solution to the problem that most data sets have several
different kinds of variables observed for each sample (e.g. categorical site
location and continuous rainfall), but matrices can only contain a single type
of data. Data frames are a hybrid of lists and vectors; internally, they are
a list of vectors that may be of different types but must all be the same
length, but you can do most of the same things with them (e.g., extracting
a subset of rows) that you can do with matrices. You can index them either
the way you would index a list, using [[]] or $ — where each variable is
a different item in the list — or the way you would index a matrix. Use
as.matrix if you have a data frame (where all variables are the same type)
that you really want to be a matrix, e.g. if you need to transpose it (use
as.data.frame to go the other way).

References

Ihaka, R. and R. Gentleman. 1996. R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics 5:299–314.

Venables and Ripley. 2002. Modern Applied Statistics with S. Springer,
New York. 4th edition.

	How to use this document
	What is R?
	Installing R on your computer: basics
	Starting R
	Stopping R

	Interactive calculations
	The help system
	A first interactive session: a ``leaky bucket'' model
	R interfaces
	Editors and GUIs
	Script files and data files

	The R package system
	Statistics in R
	Vectors
	Functions for creating vectors
	Vector indexing
	Logical operators
	Vector indexing II

	Matrices
	Creating matrices
	cbind and rbind
	Matrix indexing

	Other structures: Lists and data frames
	Lists
	Data frames

