
Ben Bolker

Mon Oct 29 23:20:23 2012

mixed model lab 1

Licensed under the Creative Commons attribution-noncommercial license. Please
share & remix noncommercially, mentioning its origin.

Linear mixed model: starling example

Data from Toby Marthews, r-sig-mixed-models mailing list:

load("starling.RData")
library(ggplot2)
library(grid)
theme_set(theme_bw())
squash panels together (need grid package loaded)
zmargin <- theme(panel.margin=unit(0,"lines"))
ggplot(dataf,aes(mnth,stmass))+

geom_point()+
geom_line(aes(group=subject))+
facet_grid(.~roostsitu)+
zmargin

You could also try

ggplot(dataf,aes(mnth,stmass,colour=roostsitu))+
geom_point()+
geom_line(aes(group=subject))

but I find the former more pleasant to look at.

It’s pretty obvious that the starting (November) mass varies among roost situa-
tions (tree/nest-box/etc.), and that mass increases from November to January,

1

http://creativecommons.org/licenses/by-nc-sa/2.5/ca/
http://tolstoy.newcastle.edu.au/R/e13/help/11/01/1364.html

Figure 1: plot of chunk starling1

but we might like to know if the slopes differ among situations. That means
our fixed effects would be ~roostsitu*month, with our attention focused on
the roostsitu:month (interaction) term. For random effects, we can allow
both intercept (obviously) and slope (maybe) to vary among individuals, via
~1+mnth|subject or equivalent . . . in this case, because measurements are only
taken in two months, we could also write the random term as ~1|subject/mnth.
However, it turns out that we can’t actually estimate random slopes for this
model, because every individual is only measured twice. That means that the
variance in the slopes would be completely confounded with the residual variance
(I only figured this out when I went to run the model in lme4 and it complained:
lme gave me an answer, but (as we shall see) it didn’t necessarily make sense . . .

library(nlme)
lme1 <- lme(stmass~mnth*roostsitu,
random=~1|subject/mnth,data=dataf)

The variance components apparently make sense: look at VarCorr(lme1).
However, if we try to get the approximate confidence intervals via
intervals(lme1,which="var-cov") we get an error: cannot get confidence
intervals on var-cov components: Non-positive definite approximate
variance-covariance. This is a bad sign.

lme2 <- lme(stmass~mnth*roostsitu,random=~1|subject,data=dataf)

We can now get estimates, although the subject-level random effects are very
uncertain: see intervals(lme2,which="var-cov") (we may investigate this

2

further in a future lab).

• Notice that the new residual variance is the same as the old subject-
by-month variance plus the old residual variance, and the subject-level
(intercept) variance is (very nearly) identical.

• Print out summary(lme2) and try to interpret all the pieces.

Diagnostic plots: fitted vs. residuals, coloured according to the roostsitu
variable:

plot(lme2,col=dataf$roostsitu)

Figure 2: plot of chunk lmediag

Q-Q plot (a straight line indicates normality)

3

qqnorm(lme2,col=dataf$roostsitu)

Figure 3: plot of chunk qqnorm

Boxplots of residuals subdivided by roostsitu (it’s a quirk that you have to
put the grouping variable on the left side of the formula here):

plot(lme2,roostsitu~resid(.))

One good way to assess the results of a model fit is to look at a coefficient plot:

library(coefplot2)
coefplot2(lme2)

4

Figure 4: plot of chunk diagbox

5

Figure 5: plot of chunk coefplot

6

Stop and explain to yourself what these parameters mean. If you’re not
sure, try resetting the base level of the roostsitu factor: dataf2 <-
transform(dataf,roostsitu=relevel(roostsitu,ref="other")), predict
what will happen to the results, and re-run the analysis.)

Exercise: This is actually a slightly trivial example, because there are only two
measurements for each individual: thus we can actually get the same answers
using a t test (as long as we only care about the changes within subjects).

Rearrange the data to git differences by subject:

library(plyr)
dataf2 <- ddply(dataf,.(subject), function(x) {

with(x,data.frame(roostsitu,massdiff=diff(stmass)))})

Draw a picture:

ggplot(dataf2,aes(x=roostsitu,y=massdiff))+geom_boxplot()+
geom_dotplot(binaxis="y",stackdir="center",fill="red",alpha=0.5)

Analyze the data with lm and convince yourself that the estimates (fixed-effect
coefficients, residual variance, etc.) are equivalent to those found from the
previous analysis.

analyze with lme4

The lmer syntax is almost identical, except that the random effects (in paren-
theses) are added to the formula rather than being expressed separately:

detach("package:nlme",unload=TRUE) ## nlme and lme4 don‚t like each other

Warning: ’nlme’ namespace cannot be unloaded: namespace ’nlme’ is imported
by ’lme4.0’ so cannot be unloaded

library(lme4)

Warning: the specification for S3 class "family" in package ’lme4’ seems
equivalent to one from package ’lme4.0’ and is not turning on duplicate
class definitions for this class

Warning: the specification for class "lmList" in package ’lme4’ seems
equivalent to one from package ’lme4.0’ and is not turning on duplicate
class definitions for this class

7

Figure 6: plot of chunk plotdiffs

8

lmer1 <- lmer(stmass~mnth*roostsitu+(1|subject),data=dataf)

Compare the results (you can use coefplot2(list(lmer1,lme2)) to compare
the fixed effects graphically).

See what other options you have for exploring the results.

analyze with MCMCglmm

library(MCMCglmm)
mcmcglmm1 <- MCMCglmm(stmass~mnth*roostsitu,

random=~subject,data=dataf,
verbose=FALSE)

(you can leave verbose at its default value of TRUE).

• Compare the results (use summary(): printing out the a raw MCMCglmm
model is ugly).

For MCMC approaches, it is your responsibility to check that the chain(s) are
well-behaved.

Try this:

library(coda)
xyplot(as.mcmc(mcmcglmm1$Sol))

analyze with JAGS/R2jags

jagsmodel <- function() {
for (i in 1:ntot) {
eta[i] <- inprod(X[i,],beta) ## fixed effects
eta2[i] <- eta[i] + u1[subject[i]] ## add random effect
stmass[i] ~ dnorm(eta2[i],tau.res)
}
for (i in 1:nindiv) {
u1[i] ~ dnorm(0,tau.indiv)

}
priors
for (i in 1:ncoef) {
beta[i] ~ dnorm(0,0.001)

}
traditional but sometimes dangerous -- discuss in class
tau.indiv ~ dgamma(0.01,0.01)

9

tau.res ~ dgamma(0.01,0.01)
for convenience, translate precisions to std devs
sd.indiv <- pow(tau.indiv,-0.5)
sd.res <- pow(tau.res,-0.5)

}
source("writeModel.R")
write.model(jagsmodel,"starling.bug")

JAGS machinery: specify data list, starting values, run model:

library(R2jags)

Warning: the specification for S3 class "bugs" in package ’R2jags’ seems
equivalent to one from package ’coefplot2’ and is not turning on duplicate
class definitions for this class

modelMat <- model.matrix(~mnth * roostsitu,data=dataf)
jagsData <- list(X=modelMat,

stmass=dataf$stmass,
subject=as.numeric(dataf$subject),

ntot=nrow(dataf),ncoef=ncol(modelMat),
nindiv=length(unique(dataf$subject)))

jagsInits <- list(list(beta=rep(0,8),tau.indiv=0.1,tau.res=0.1))
jags1 <- jags(data=jagsData,

inits=jagsInits,
model="starling.bug",
parameters=c("beta","sd.indiv","sd.res"),n.chains=1)

Notes:

• for simple models it’s easier to write out (e.g. y <- a + b*x, but for
more complex models it rapidly becomes worthwhile to construct a model
matrix in R and pass it to JAGS, so that all you need is to multiply (inprod
essentially does a single row of the Xβ calculation at a time)

• it’s good practice to avoid hard-coding values as much as possible (e.g. don’t
set ncoef to 8 even if you know that’s what it is for this particular example)
– instead, use the dimensions of your data to set them

• write.model is a handy function from R2WinBUGS – since we don’t need
the rest of it, I copied the code and made it available

• initial values are a list of lists. I’ve been lazy here and used a single chain.
Below I suggest that you try it with multiple chains.

• should set random-number seed!

10

In order to do more fun stuff with the results, it’s a good idea to (1) convert
to an mcmc object (for coda quantitative and graphical diagnostics) and (2)
rename the beta variables more meaningfully. JAGS arranges output variables
alphabetically: in this case we know the beta values are the first 8 columns of
the output, but we will again try to avoid hard-coding:

jagsmm1 <- as.mcmc(jags1)
betacols <- grep("^beta",colnames(jagsmm1)) ## find beta columns
colnames(jagsmm1)[betacols] <- colnames(modelMat)

Trace plots, density plots, and coefficient plots:

xyplot(jagsmm1) ## trace plot: default single-column layout
xyplot(jagsmm1,layout=c(3,4),asp="fill")
densityplot(jagsmm1,layout=c(3,4),asp="fill")
coefplot2(jags1) ## coefficient plot

Run the Raftery-Lewis diagnostic (suitable for a single chain):

raftery.diag(jagsmm1)

##
Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
##
You need a sample size of at least 3746 with these values of q, r and s

Exercise: * Try re-running with list(list(beta=rep(0,8),tau.indiv=0.1,tau.res=0.1),
list(beta=rep(1,8),tau.indiv=0.1,tau.res=0.1),beta=rep(0,8),tau.indiv=1,tau.res=1)),n.chains=3,...;
examine the output; run gelman.diag from the coda package on the mcmc
results (may need lump.mcmc.list from the emdbook package . . . ?)

Generalized linear mixed model: Culcita example

culcdat <- read.csv("culcitalogreg.csv",
colClasses=c(rep("factor",2),
"numeric",
rep("factor",6)))

abbreviate slightly
levels(culcdat$ttt.1) <- c("none","crabs","shrimp","both")

11

Adjust contrasts for the treatment, to compare (1) no-symbiont vs symbiont
cases, (2) crabs vs shrimp, (3) effects of a single pair/type of symbionts vs effects
of having both:

contrasts(culcdat$ttt) <-
matrix(c(3,-1,-1,-1,

0,1,-1,0,
0,1,1,-2),

nrow=4,
dimnames=list(c("none","C","S","CS"),

c("symb","C.vs.S","twosymb")))

library(lme4)
library(MASS)
culcmod0 <- glmmPQL(predation~ttt,random=~1|block,family=binomial,data=culcdat,

verbose=FALSE)
culcmod1 <- glmer(predation~ttt+(1|block),family=binomial,data=culcdat)
culcmod2 <- glmer(predation~ttt+(1|block),family=binomial,data=culcdat,nAGQ=8)
coefplot2(list(glmmPQL=culcmod0,Laplace=culcmod1,

GHQ8=culcmod2),col=c(1,2,4),legend.x="right")

Try it with glmmADMB and MCMCglmm:

library(MCMCglmm)
library(glmmADMB)

Warning: the specification for S3 class "glmmadmb" in package ’glmmADMB’
seems equivalent to one from package ’coefplot2’ and is not turning on
duplicate class definitions for this class

culcmod3 <- glmmadmb(predation~ttt,random=~1|block,family="binomial",
data=culcdat)

culcdat$nopred <- 1-culcdat$predation
culcmod4 <- MCMCglmm(cbind(predation,nopred)~ttt,random=~block,family="multinomial2",

data=culcdat,verbose=FALSE)

Check out the results. MCMCglmm doesn’t seem to be doing well: need stronger
priors?

JAGS

culcmodel <- function() {
for (i in 1:ncoef) {

12

Figure 7: plot of chunk glmmfits

13

beta[i] ~ dnorm(0,0.001) ## fixed-effect parameters: priors
}
sd.b ~ dunif(0,maxsdprior) ## prior for block variance
tau.b <- 1/sd.b^2
for (i in 1:nblock) {
u[i] ~ dnorm(0,tau.b) ## priors for block random effects

}
for (i in 1:nobs) {
linear predictor: design matrix*coeffs + random effects
eta[i] <- inprod(X[i,],beta)+u[block[i]]
p[i] <- 1/(1+exp(-eta[i])) ## convert to probabilities
obs[i] ~ dbern(p[i]) ## Bernoulli response

}
}
write.model(culcmodel,"culcita.bug")

cModelMat <- model.matrix(~ttt,data=culcdat)
cJagsDat <- list(nblock=length(unique(culcdat$block)),

ncoef=ncol(cModelMat),
nobs=nrow(culcdat),
maxsdprior=5,
obs=culcdat$predation,
block=culcdat$block,
X=cModelMat)

cJagsInit <- with(cJagsDat,list(list(beta=rep(0,ncoef),
sd.b=1,u=rep(0,nblock))))

load.module("glm")
cjags <- jags(data=cJagsDat,

inits=cJagsInit,
n.chains=1,
model.file="culcita.bug",
parameters=c("beta","sd.b"))

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph Size: 790
##
Initializing model

• in the actual analysis, we wanted to use a log link rather than the standard
logit link, which turned out be quite difficult . . .

If time permits, check out the Contraception data set from the mlmRev package
. . .

14

	Data visualization, focusing on ggplot and mixed models
	goals/contexts of data visualization
	exploration
	diagnostics
	presentation

	Basic criteria for data presentation
	challenges
	high-dimensional data (esp continuous)
	large data sets
	discrete data
	spatial data
	compositional data
	next generation tools

	Data visualization in R
	Base graphics
	Lattice
	ggplot

	ggplot intro

