
Likelihood and all that, for disease ecologists

Ben Bolker (bolker@mcmaster.ca) and Steve Ellner and Matthew Ferrari?

May 19, 2012

Last compiled: Thu May 17 15:37:47 2012
Licensed under the Creative Commons attribution-noncommercial license

(http://creativecommons.org/licenses/by-nc/3.0/). Please share & remix non-

commercially, mentioning its origin.

Contents

1 Why likelihood? 1

2 Definition and simple example 2

3 Probability distributions and likelihood curves 3
3.1 Probability distributions . 3
3.2 Probability distributions: Examples 5
3.3 Likelihood curves . 6

4 From data points to data sets 7

5 MLE fitting 9

6 Inference I: confidence intervals 12

7 Multi-parameter models: likelihood surfaces 14

8 Inference II: multi-variable models 19

9 Summary of methods for mle2 fits 21

1 Why likelihood?
Why go to the trouble of defining likelihood etc. rather than using good old
fashioned ANOVA, t tests, nonparametric tests, etc. . . . ?

• Likelihood-based approaches are flexible and can be based on
mechanistic models. Parameters are meaningful, and statistical hy-
potheses often correspond closely with biological hypotheses. One can
often adapt likelihood models to estimate the parameters of specific, the-
oretically based biological models.

1

• Many (most) common statistical approaches represent special
cases of likelihood-based approaches. It is a unifying framework into
which most statistical techniques fit. For example, the MLE is equivalent
to the least-squares fit for normal, homoscedastic, independent data.

• Likelihood-based approaches focus on parameter and confidence
interval estimation (rather than p values and null hypothesis
testing). We will see later how to estimate parameters and compute
confidence intervals based on likelihood — but we can also compare models
and get p values of specified null hypotheses.

2 Definition and simple example
Definition: probability of a given set of data having occurred, given a particular
hypothesis : Prob(D|H) = L(D, H)1.

Read in a data set (collected by Caro Perez-Heydrich) that we will use for
running examples. For 250 gopher tortoises captured in Florida, it documents
various individual characteristics (sex/reproductive status, size, site and year)
and the serological status (determined via ELISA test) with respect to my-
coplasmal infection.

Download the gopher tortoise data from http://www.math.mcmaster.ca/bolker/eeid/private/gophertor
and save it in your working directory.

> dat <- read.table("gophertortoise.txt",header=TRUE)

We’ll start with a basic binomial model — say our observations are x, the
number of seropositive individuals out of a total of N individuals. We’ll suppose
that (1) all individuals have the same per-individual probability of infection p,
and (2) all individuals are seropositive (or seronegative) independently. Then
the distribution of the number seropositive will be binomial:

x ∼ Binomial(p, N) (1)

or

Prob(x|p, N) =

(

N

x

)

px(1 − p)N−x. (2)

Since the joint probability of independent events equals the product of their
probabilities, you can think of this as (probability of x independent “successes”
(positive tests), each with probability p) × (probability of N − x independent
“failures” (negative tests) each with probability 1 − p) — times a complicated
bit at the beginning which accounts for the order of events and makes the
probabilities of any possible x add up to 1.0 as they should23

1Because it can be reasonably said to be the “likelihood of the hypothesis”, you will some-
times see the notation Prob(D|H) = L(H|D). While this is technically consistent, I don’t
like it because it makes it easier to slip across the line to thinking that you are calculating
Prob(H|D).

2in practise, we can often ignore these normalization constants when doing likelihood
analysis, for reasons to be explained later

3one possible source of confusion here is that we have two probabilities — one “per-trial”

2

Of the N = 31 individuals between 230 and 240 mm carapace length, there
are x = 26 seropositive and N − x = 5 seronegative individuals4. In R, I will
define these values as N =tot0 (total) and x =pos0 (seropositive). To calculate
the probability of this outcome for a particular infection probability p, use dbi-
nom(pos0,size=tot0,prob=p); for example, dbinom(pos0,size=tot0,prob=0)
is 0 (there is no chance of getting 26 successes if the per-trial probability is zero),
while dbinom(pos0,size=tot0,prob=0.84) is 0.191.

3 Probability distributions and likelihood curves
3.1 Probability distributions
There are two ways to examine the binomial probability model: in R, both use
dbinom(). In the first, we can generate the probability distribution of possible
outcomes (from 0 to 31 in this case), for a fixed p5:

> xvec = 0:tot0
> plot(xvec,dbinom(xvec,size=tot0,prob=0.84),

xlab="Number seropositive (x)",ylab="Probability")
> abline(v=pos0)

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

Number seropositive (x)

Pr
ob

ab
ilit

y

Note that while x = 26 is the most likely outcome (with a probability of 0.191,
getting 27 seropositive individuals is almost equally likely (0.191).

or “per-capita” probability, the probability that any individual is seropositive, and the other
the probability of the overall data set (i.e., the likelihood).

4with(subset(dat,size>=230 & size<240),table(status))
5we use R’s default point-based plot in this case to emphasize that only integer outcomes

are possible, although we could use type="b" to guide our eye

3

Extreme outcomes (say, x < 21 or x > 30) are very unlikely indeed. We can
see just how extreme by plotting the log-probability:6

> plot(xvec,dbinom(xvec,size=tot0,prob=0.84,log=TRUE),
xlab="Number seropositive (x)",ylab="Log probability")

> abline(v=pos0)

0 5 10 15 20 25 30

−50

−40

−30

−20

−10

0

Number seropositive (x)

Lo
g

pr
ob

ab
ilit

y

(Note that R uses natural logarithms for log(x) and for log=TRUE: use log10(x)
to get base-10 logarithms.)

Alternatively, we could

> plot(xvec,dbinom(xvec,size=tot0,prob=0.84),log="y")

which plots the probabilities on a logarithmic y scale rather than calculating the
log-probabilities. There is at least some probability of getting no seropositive
individuals with these parameters, even if it is on the order of 10−25 . . .

3.2 Probability distributions: Examples
An important question at the start of any analysis is ”which probability dis-
tribution/likelihood should I use?”. In some cases, the process itself suggests
a distribution; i.e. the binomial distribution describes processes that can be
reasonable caricatured as coin-flipping trials – e.g. the death or infection of
discrete individuals.

Some special distributions result as the consequence of aggregating many
arbitrary random variables. Notably, the Normal and Lognormal distribution
result from the sum and product, respectively, of many randome events. The

6This plot is almost the same as the one we would get for
plot(xvec,log(dbinom(xvec,size=tot0,prob=0.84))), but slightly more accurate for
small probabilities.

4

more things in the collection, the better these distributions reflect the distribu-
tion of the aggregation.

In general, we choose distributions/likelihoods because their properties (range,
skewness) reflect the pattern of variation seen in the data.

Distribution Type Range Skew Examples
Binomial Discrete 0,N Any coin flipping (# of heads),

number surviving, cases
reported

Geometric Discrete 0,inf Right coin flipping (flips
until a head), discrete lifetimes

Poisson Discrete 0,inf Right Counts of rare events, cases
per day

Negative Binomial Discrete 0,inf Right Counts of aggregated
events, cases per day

Uniform Continuous -inf,inf None
Normal Continuous -inf,inf None Sum of arbitrary random

events, size, mass
Exponential Continuous 0,inf Right Survival time, infectious

duration
Gamma Continuous 0,inf Right Survival time, infectious duration
Beta Continuous 0,1 Any Random probabilities
Lognormal Continuous 0,inf Right Product of arbitrary random

events, size, mass

3.3 Likelihood curves
In the second approach to examining the binomial probability model, rather
than using x as the dependent variable, assume that x is known and plot the
probability as function of p:

5

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

Per capita probability seropositive (p)

Li
ke

lih
oo

d
p̂

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

Per capita probability seropositive (p)
N

eg
at

ive
 lo

g−
lik

el
ih

oo
d

p̂

• the maximum likelihood estimate (MLE) is the value of the parameter
that makes the data most likely to have occurred. In the particular case
of binomial data, we could do a little bit of calculus to show that the
MLE in this case is (number seropositive)/(total), which requires either
common sense or a little bit of calculus (i.e. calculate (d logL/dp) and
solve for p̂ such that (d logL/dp)(p̂) = 0).

• the maximum likelihood or maximum log-likelihood is the (log) probability
of the data given that the parameter is set to the MLE. Perhaps surpris-
ingly, this is usually not a number we care about much (but the ratios or
differences between likelihoods are interesting).

• the likelihood curve shows the likelihood for a range of possible parameter
values. We often draw the negative log-likelihood curve (which has its
minimum in the same place, at p̂), or the curve of −2 logL (called the
deviance), for various computational and historical reasons.

Exercise. Use dbinom to calculate that the maximum likelihood is 0.191.

4 From data points to data sets
If we have more than one data point (we hope so!), and if the data points
are independent (which we usually hope, or assume . . .), then according to
basic probability theory the likelihood of the full data set is the product of the
likelihoods for the individual points, and the (negative) log-likelihood is the sum
of the (negative) log-likelihoods.

Condense the gopher tortoise data set to numbers and numbers seropositive
at each size (the ddply function in the plyr package takes a data frame, splits
it into chunks according a specified variable, applies a specified function to

6

condense each chunk, and sticks the chunks back together; in this case we are
just computing the total number of individuals and the total number seropositive
in each size category):

> library(plyr)
> sizetab <- ddply(dat,"size",

function(x) c(tot=nrow(x),pos=sum(x$status)))

(When you do this yourself you should sanity-check the results with some
combination of summary(), head(), tail(), and str() — and even plot some
summaries if you have time.)

Calculate the overall fraction seropositive:

> (prob0 <- with(sizetab,sum(pos)/sum(tot)))

[1] 0.744

Calculate − logL for the whole dataset, if every individual had the same
probability p0 of seropositivity:

∑A
a=1 log Binom(xa|p0, N):

> with(sizetab,-sum(dbinom(pos,size=tot,prob=prob0,log=TRUE)))

[1] 114.6869

(this corresponds to a tiny probability: more on this in a moment).
Define an R function to compute this value for any specified value of prob:

> NLLfun_binom0 <- function(prob,dat=sizetab) {
with(dat,-sum(dbinom(pos,size=tot,prob=prob,log=TRUE)))

}

Define a vector of probabilities from 0 to 1 and compute − logL for each
(using sapply for compactness: we could also use a for loop).

> pvec <- seq(0,1,length=201)
> NLLvec <- sapply(pvec,NLLfun_binom0)

Plot the likelihood curve:

> plot(pvec,NLLvec,type="l",
xlab=xlabstr,ylab="Negative log likelihood")

7

0.0 0.2 0.4 0.6 0.8 1.0

200

400

600

800

Per capita probability seropositive (p)

N
eg

at
ive

 lo
g

lik
el

ih
oo

d

If we compare this plot with the previous curve (based only on the individuals
between 230 and 240 mm), we see that:

• the minimum is much higher. Since we are looking at negative log-
likelihood this means that the probability of the data is much lower, by
many orders of magnitude (113 log-likelihood units ≈ a factor of 10−50

(!)));the difference in height is not particularly important; with more data,
the probability of any particular outcome will decrease (getting 26 out of
31 is more probable than getting 186 out of 250).

• the curve has its minimum (MLE) at a slightly different place. This is not
surprising; the overall fraction seropositive (and hence the MLE) differs
between the 230–240 mm individuals and the whole population (later on,
the inferential tools that we develop will apply only to comparing different
models to the same data set, not the same (or different) models to different
data sets).

• The curve is much steeper. This is most important, because (as we will
see) the width of the curve (inversely related to the steepness) determines
the confidence interval.

In general the effect of increasing the size of a data set by a proportion C
(say doubling it) will be to (approximately) multiply the entire log-likelihood
curve by C, which increases both the minimum negative log likelihood and the
steepness of the curve by a factor of C.

Exercise. (1) use NLLfun_binom0 to compute the likelihood curve for the
230–240 mm data (hint #1 : construct a miniature data frame by taking the
subset of sizetab that is includes sizes between 230 mm and 240 mm and use
it in NLLfun_binom0. hint #2 : use the ylim= argument to plot to make sure

8

the y-axis range is large enough to accommodate both curves. (2) subtract the
minimum (min()) from each curve and plot the adjusted curves on the same
plot to emphasize the difference in steepness rather than the difference in overall
height.

5 MLE fitting
In this case we know that the MLE p̂ is equal to the overall fraction seropositive,
but we can also use R to do minimize the negative log-likelihood for us. We have
to specify a reasonable starting guess for the probability: for complex problems
this can be tricky. 7

R has a function, optim(), that accesses a range of algorithms for finding
the minimum of a given function. Here, we are looking to find the minimum
of a function that returns the negative log-likelihood. In lay terms, a call to
optim will make many repeated evaluations of the function to minimize until
it finds the values that give the minimum. There are many possible arguments
to optim, but the three most crucial are the starting value par, the function to
minimize fn, and the algorithm to use method; here we use the meth="Brent",
which is specifically designed for optimizing a function with only one parameter
(here p). method="Brent" additionally requires that we give lower and upper
ranges over which to search for the minimum. The key outputs of optim are the
parameter value that yields the minimum, $par, and the value of the function
at the minimum, $value.

> m0<-optim(par=05,fn=NLLfun_binom0,method="Brent",lower=0,upper=1)
> m0

$par
[1] 0.744

$value
[1] 114.6869

$counts
function gradient

NA NA

$convergence
[1] 0

$message
NULL

7The best strategies for guessing reasonable starting values are (1) know what the pa-
rameters of your model mean, and what units they are measured in so that you can
guess at reasonable orders of magnitude and (2) if possible do some initial graphical explo-
ration to confirm that your starting guesses are OK. At the very least, you should input your
starting guesses into your negative log-likelihood function (e.g. NLLfun_binom0(startguess))
to make sure that you get finite values . . .

9

While optim is generic, the bbmle package finds the MLE if we specify the
negative log-likelihood function and a starting value. It does this by making a
call to optim8 and formatting the outputs in useful ways (as we’ll see):

> library(bbmle)
> (m1 <- mle2(NLLfun_binom0,start=list(prob=0.5)))

Call:
mle2(minuslogl = NLLfun_binom0, start = list(prob = 0.5))

Coefficients:
prob

0.7439994

Log-likelihood: -114.69

This command produces a bunch of warning messages. It is OK to ignore
warning messages and proceed if, AND ONLY IF, you know what
they mean and you are confident that the condition that is triggering
them is not affecting your answers in an important way. Always
stop and figure out what warning messages mean before proceeding.
Ask for help if necessary! In this case they are caused because by the
minimization function trying values of prob that don’t make sense (≤ 0 or ≥ 1).
It’s generally OK for the function to visit bad values on the way to its final
answer, so you can usually ignore this particular type of warning provided that
the final fit is reasonable. To be 100% sure, you should re-do the fit in a way
that eliminates the warnings (see exercise below).

For simple problems like this one, you can also use a formula interface that
constructs the negative log-likelihood function automatically. This is quicker
than writing a new negative log-likelihood function every time you want to
change the model a little bit, and enables some additional functionality (such
as calculating predicted values of the responses or simulating from the fitted
model, and making parameters vary across groups in a convenient way), but is
sometimes impractical for more complex models.

For example:

> m1F <- mle2(pos~dbinom(prob=prob,size=tot),
start=list(prob=0.5),data=sizetab)

• the left-hand side of the formula specifies the response variable (pos in
this case)

• the right-hand side of the formula consists of a probability distribution or
density function that R knows (see ?Distributions for a long list), not
including the first argument (corresponding to the response) but including
all the other parameters required to define the distribution. These can be

8Importantly, this means that you may need to look to the help files for optim for some
issues do to with implementation of mle2

10

expressed in terms of an arbitrary expression, say prob=a+b*size (see
examples below)

• an optional (but highly recommended) data argument, usually a data
frame, contains the variables that R will look for in computing − logL

• the start argument must contain values for all the parameters — any
variable in the formula that is not built into R or specified in data

This works easily, but it is actually a terrible model for the data:

> with(sizetab,plot(size,pos/tot,cex=tot,
xlab="size",ylab="status/fraction seropositive"))

> abline(h=prob0,col=2)

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

size

st
at

us
/fr

ac
tio

n
se

ro
po

si
tiv

e

It does not capture the obvious increase in the probability of seropositivity
with size.

A general point here:
Always look at pictures of your results! (1) Likelihood surface, or

profiles (if feasible); (2) Best fit of model to data (with confidence
intervals on predictions, if feasible)

Exercise. Redo the mle2 fit in at least one of the following ways:

• specify a minimization algorithm that allows minimization with box con-
straints (i.e., set lower and/or upper bounds on parameters); one such
example is the “L-BFGS-B” option in mle2. Specify method="L-BFGS-B"
and use lower=, upper= (all as arguments — i.e. within the mle2 call). It
is often useful to set the constraints slightly within the feasible bounds —

11

say lower=0.002 and upper=0.998 — rather than setting them exactly
on the boundaries.9

• alternatively, you can change the scale on which the parameters are es-
timated. For example, suppose that rather than using the probability of
seropositivity as a parameter (which must be between 0 and 1), we use the
logit of the probability — the logit, log(p/(1−p)) (qlogis in R), can range
from −∞ to ∞. The logistic, 1/(1+exp(−x)) (plogis in R), is the inverse
transformation. Thus, we can use logitprob as our parameter and write
our formula as pos~dbinom(prob=plogis(logitprob),size=tot). (This
approach is often easier than introducing bounds, and may have other nice
statistical properties10, but will behave badly in cases where the MLE is
actually on the boundary.) The trickiest part to this is remembering that
when you specify the starting value it must be sensible on the logit scale.

6 Inference I: confidence intervals
Coming back to the likelihood curve: since height on the negative log-likelihood
corresponds to decreasing goodness of fit, we can define confidence intervals by
picking a reference level of “badness of fit”, drawing a horizontal line at this level
corresponding to fits that are a particular amount worse than the best fit, and
finding the intersections of the curve with that reference level.

One might pick a cutoff like 2 log-likelihood units (corresponding to fits that
make the likelihood e2 (≈ 8) times worse than the maximum likelihood); one
can also derive a frequentist confidence interval based on half of the 95% upper
critical value of the χ2

1 distribution, which turns out to be ≈ 1.92. Confidence
intervals derived in this way are called profile confidence intervals, and you can
get them via confint(m1). 11

9Some other options are (a) use method="Brent" with lower0.002 and upper=0.998 as in
the call to optim (b) using optimizer="optimize" (a specialized, derivative-free minimizer for
one-dimensional (single-parameter) problems) or (c) optimizer="optimx", method="bobyqa"
(you will need to library("optimx") first; this is a derivative-free method that allows
constraints).

10The negative log-likelihood surface may be closer to quadratic (see below for why this
matters) for the transformed than for the original parameters

11Profile confidence intervals can be difficult to compute for complex models. The Wald
confidence intervals are an easier-to-compute approximation to profile intervals. They assume
the likelihood surface is quadratic, which can sometimes be a bad assumption. You can
computed them via confint(m1,method="quad") — they are also the basis of the p values you
get with summary().

12

0.60 0.65 0.70 0.75 0.80 0.85 0.90

114

115

116

117

118

119

120

Per capita probability seropositive (p)

N
eg

at
ive

 lo
g

lik
el

ih
oo

d

Exercise. Add horizontal lines to the (fraction seropositive vs. size) figure
above corresponding to the lower and upper profile confidence intervals for p
(abline may be helpful).

In addition to computing confidence intervals, you can also use the Likeli-
hood Ratio Test (LRT) to test a particular null hypothesis. Null hypotheses
correspond to null values of parameters; for example, to test the null hypothesis
that p0 = 0.5 we can calculate the (log-)likelihood ratio statistic

2(L(p̂) − L(p0)) :

> (s <- 2*(c(logLik(m1))-(-NLLfun_binom0(0.5)))) ## test statistic

[1] 62.15793

(the c in the command above is used to throw out some extra junk that’s
associated with the logLik function; note also that we use -NLLfun_binom0 to
get the log-likelihood [the negative of the negative log likelihood] . . .)

Next we compare it to the upper tail of the χ2
1 distribution:

> pchisq(s,df=1,lower.tail=FALSE)

[1] 3.169882e-15

We can reject this null hypothesis pretty conclusively . . . this is equivalent
to seeing that p0 = 0.5 is well outside the 95% confidence interval for p.

Remember that the LRT is based only on differences between log-likelihoods
(i.e. likelihood ratios), not on the absolute value of the log-likelihood. This
means that (1) the actual value of the minimum negative log-likelihood, which
increases with data set size, is irrelevant; (2) when computing the log-likelihood,
you can leave out the normalization constants (which generally depend on the
data and not on the parameters), as long as you consistently exclude them for
all the models you consider.

13

7 Multi-parameter models: likelihood surfaces
Now let’s make the model more realistic (i.e. allowing seropositivity to increase
with size). We’ll make the increase linear, but we have to do something to
prevent unrealistic (< 0 or > 1) probabilities, so we will simply cut off the
probabilities at 0.001 and 0.999.

We start by defining a utility function that chops values at 0.001 and 0.999:

> cfun <- function(x,min=0.001,max=0.999) {
ifelse(x<min,min,ifelse(x>max,max,x))

}

The other trick that is generally useful is to center the size variable at
some reasonable value, so that our intercept is meaningful — we don’t need
to be predicting seropositivity for individuals of carapace length 0! Centering
predictors generally improves both estimation and interpretability.

> (m1L <- mle2(pos~dbinom(prob=cfun(a+b*(size-200)),
size=tot),start=list(a=0.5,b=0.001),data=sizetab))

Call:
mle2(minuslogl = pos ~ dbinom(prob = cfun(a + b * (size - 200)),

size = tot), start = list(a = 0.5, b = 0.001), data = sizetab)

Coefficients:
a b

0.579666662 0.004187887

Log-likelihood: -79.45

We can see that these answers are reasonable: 58% seropositivity at size=200,
and an increase of about 0.4% in seropositivity per 1 mm increase (4% per 10
mm increase may be easier to think about).

We should plot the predicted graph. We could compute the predictions by
hand fairly easily, but mle2 also offers a predict function (but it only works with
problems specified via the formula interface). We construct a new data frame
specifying the variable ranges for which we want to compute predictions (we
have to specify values for all of the variables used in the model, which includes
tot in this case: we specify tot=1 here to get predictions for the probabilities):

> pp1 <- data.frame(size=70:310,tot=1)
> pp1$pred <- predict(m1L,pp1)

Plotting these predictions:

14

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

size

st
at

us
/fr

ac
tio

n
se

ro
po

si
tiv

e

Now that we have two parameters (slope and intercept), the likelihood curve
becomes a likelihood surface:

We’ll use the curve3d function in the emdbook package as an easy way to
construct a plot of the likelihood surface. (The less-magic way to do this would
be to construct a matrix; use nested for loops to fill in the values; and use
image and contour to draw the plots.) The one other bit of magic we need,
because we never defined the negative log-likelihood function explicitly, is to
use m1L@minuslogl to pull out the function from the fitted mle2 object. We
then use contour (with the object returned from curve3d, which is a list with
elements x, y, and z) and points to overlay contours and the MLE on the plot.

15

0.45 0.50 0.55 0.60 0.65

0.002

0.003

0.004

0.005

0.006

intercept

sl
op

e

 80

 85

 90
 90

 95

 95

 100

 100

 105
 110

 115

> library(emdbook)
> cc <- curve3d(m1L@minuslogl(x,y),

xlim=c(0.45,0.65),ylim=c(0.002,0.006),
sys3d="image", xlab="intercept",ylab="slope")

> contour(ccx,ccy,cc$z,add=TRUE)
> points(coef(m1L)[1],coef(m1L)[2],pch=16)

Remember that every point on this surface represents a separate fit to the
data: here x is the intercept, y is the slope, and z (the height of the surface) is
the negative log-likelihood (badness of fit).

To get confidence intervals on individual parameters, we can ask R to com-
pute (and plot) the likelihood profile (a sort of cross-section of the likelihood sur-
face, too complicated to explain here). R plots the square root of the change in
log-likelihood, which will be symmetrical and V-shaped if the surface is quadratic
(not absolutely necessary but generally convenient):

> plot(profile(m1L))

16

0.55 0.60 0.65

0.0

0.5

1.0

1.5

2.0

2.5

Likelihood profile: a

a

z

99%

95%

90%

80%

50%

0.0030 0.0035 0.0040 0.0045

0.0

0.5

1.0

1.5

2.0

2.5

Likelihood profile: b

b

z

99%

95%

90%

80%

50%

Compute confidence intervals based on these profiles:

> confint(m1L)

Profiling...
2.5 % 97.5 %

a 0.536052561 0.651043225
b 0.003336967 0.004540122

(you may get a warning here: it’s OK to ignore it, especially since you’ve already
looked at the profile to see if the answer was reasonable).

The likelihood surface above is a bit wonky because of the sharp cutoffs in
our likelihood. A more standard to way to model changes in probability is as
a logistic function, rather than a linear function — we have already seen the
plogis function, and it is easy to switch to this alternative:

> m1L2 <- mle2(pos~dbinom(prob=plogis(a+b*(size-200)),
size=tot),start=list(a=0.5,b=0.001),data=sizetab)

The likelihood surface is much smoother, with elliptical contours indicating
a quadratic surface:

17

−1.0 −0.5 0.0 0.5 1.0

0.01

0.02

0.03

0.04

0.05

intercept

sl
op

e

 80

 90

 90

 100
 110

 120
 130 140

 150

The profile looks better too (more V-shaped, more [although not entirely]
symmetrical):

> plot(profile(m1L2))

−0.4 0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

Likelihood profile: a

a

z

99%

95%

90%

80%

50%

0.020 0.030 0.040

0.0

0.5

1.0

1.5

2.0

2.5

Likelihood profile: b

b

z

99%

95%

90%

80%

50%

Prediction:

> pp2 <- pp1
> pp2$pred <- predict(m1L2,pp2)

A plot of the results:

18

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

size

st
at

us
/fr

ac
tio

n
se

ro
po

si
tiv

e

linear
logistic

8 Inference II: multi-variable models
We can use the LRT to do typical sorts of hypothesis testing. In general we can
do hypothesis testing for nested models, i.e. those where one model is a special
case of the other, in which a smaller number of parameters is fitted — often
called the “reduced” (simpler) and “full” (more complex) models. For example,
consider the logistic model above. A sensible question (although one we really
don’t need statistics for) is whether seropositivity changes significantly with
size. This is equivalent to asking whether b is significantly different from 0, or
whether the confidence interval of b includes 0, or whether the logistic model
fits significantly better than the constant model we fitted above.

A particularly simple way to do this comparison is using the anova function
in R, using the two models as input12.

> anova(m1L2,m1)

Likelihood Ratio Tests
Model 1: m1L2, pos~dbinom(prob=plogis(a+b*(size-200)),size=tot)
Model 2: m1, [NLLfun_binom0]: prob
Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 147.36
2 1 229.37 82.017 1 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

12why anova? For classical linear models, the analogue of this sort of model comparison is
ANOVA. Thus the anova function has been co-opted for model comparison in general: analysis
of variance for linear models (lm), analysis of deviance for generalized linear models (glm), and
likelihood ratio tests for general maximum likelihood fitting.

19

If you compare nested models with more than one parameter held constant
then we base inference χ2

∆p where ∆p is the difference in the number of pa-
rameters. For example, if we were going to compare the two-parameter logistic
model with a fixed seropositivity probability, e.g p0 = 0.5, we would use the χ2

2

distribution (the anova function does this automatically).
Another way to compare models, especially non-nested models, is the AIC

(Akaike Information Criterion): −2 logL+ 2k where k is the number of param-
eters. We don’t have time to cover this in detail, except to say that

• like negative log-likelihoods, smaller is better (even when the AIC values
are negative, smaller still means “more negative”)

• some general rules of thumb are that ∆AIC < 2 is “nearly equivalent”;
∆AIC > 10 is “extremely different”

• rather than the standard null-hypothesis testing framework of LRT (i.e.
identifying deviations of a reference statistic that would be unlikely under
some null hypothesis), AIC is based on estimating the model with the best
expected predictive accuracy for future data sets

• like the LRT, AIC-based inference depends only on differences in AIC and
not on the overall value of AIC

• R has the AIC function available for most models in R (including mle2 fits,
and the AICtab function in the bbmle package that provides a convenient
way to compare AIC values. By default, AICtab reports only ∆ AIC and
the number of parameters (df).

> AICtab(m1,m1L,m1L2)

dAIC df
m1L2 0.0 2
m1L 11.5 2
m1 80.0 1

Exercise. Re-do the fit with the function p = 1 − eb(size−s0); wrap the
whole thing in the cfun function defined above to prevent the probability going
negative. What are reasonable starting values? Compare the fit to the other
models fitted so far.

20

9 Summary of methods for mle2 fits
Function Purpose
coef(m1) extract coefficients (MLEs)
summary(m1) summary information: coefficients, standard errors, Wald tests
logLik(m1) log-likelihood
deviance(m1) −2 logL
AIC(m1) AIC
AICtab(m1,m2,...) AIC table
stdEr(m1) standard errors of coefficients
vcov(m1) variance-covariance matrix of coefficients
anova(m1,m2) likelihood ratio test
profile(m1) calculate likelihood profiles
confint(m1) profile confidence intervals
confint(m1,method="quad") Wald confidence intervals
* residuals(m1) residuals
* predict(m1) predicted (fitted) values
* predict(m1,newdata) predicted values for new set of predictors
* simulate(m1) simulated values from the fitted model

* only available for models fitted with the formula interface

21

