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1 Logarithms

Logarithms are the solutions to equations like y = ex or y = 10x. Natural
logs, ln or loge, are logarithms base e (e = 2.718 . . .); common logs, log10, are
typically logarithms base 10. When you see just log it’s usually in a context
where the difference doesn’t matter (although in R log10 is log10 and loge is
log).

1. log(1) = 0. If x > 1 then log(x) > 0, and vice versa. log(0) = −∞ (more
or less); logarithms are undefined for x < 0.

2. Logarithms convert products to sums: log(ab) = log(a) + log(b).
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3. Logarithms convert powers to multiplication: log(an) = n log(a).

4. You can’t do anything with log(a + b).

5. Converting bases: logx(a) = logy(a)/ logy(x). In particular, log10(a) =
loge(a)/ loge(10) ≈ loge(a)/2.3 and loge(a) = log10(a)/ log10(e) ≈ log10(a)/0.434.
This means that converting between log bases just means multiplying or
dividing by a constant. You can prove this relationship as follows:

y = log10(x)
10y = x

loge(10y) = loge(x)
y loge(10) = loge(x)

y = loge(x)/ loge(10)

(compare the first and last lines).

6. The derivative of the logarithm, d(log x)/dx, equals 1/x. This is always
positive for x > 0 (which are the only values for which the logarithm
means anything anyway).

7. The fact that d(log x)/dx > 0 means the function is monotonic (always
either increasing or decreasing), which means that if x > y then log(x) >
log(y) and if x < y then log(x) < log(y). This in turn means that if you
find the maximum likelihood parameter, you’ve also found the maximum
log-likelihood parameter, and vice versa.

2 Differential calculus

1. Notation: differentation of a function f(x) with respect to x can be writ-
ten, depending on the context, as df

dx ; f ′; ḟ ; or fx. I will stick to the first
two notations, but you may encounter the others elsewhere.

2. Definition of the derivative:

df

dx
= lim

∆x→0

f(x + ∆x)− f(x)
(x + ∆x)− x

= lim
∆x→0

f(x + ∆x)− f(x)
∆x

. (1)

In words, the derivative is the slope of the line tangent to a curve at a
point, or the “instantaneous” slope of a curve. The second derivative,
d2f/dx2, is the rate of change of the slope, or the curvature.

3. The derivative of a constant (which is a flat line if you think about it as
being a curve) is zero (zero slope).

4. The derivative of a line, y = ax, is the slope of the line, a.

5. Derivatives of polynomials: d(xn)
dx = nxn−1.
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6. Derivatives of sums: d(f+g)
dx = df

dx + dg
dx (and d(

∑
i yi)/dx =

∑
i(dyi/dx)).

7. Derivatives times constants: d(cf)
dx = c df

dx , if c is a constant ( dc
dx = 0).

8. Derivative of the exponential: d(exp(ax))
dx = a exp(ax), if a is a constant.

(If not, use the chain rule.)

9. Derivative of logarithms: d(log(x))
dx = 1

x .

10. Chain rule: d(f(g(x)))
dx = df

dg ·
dg
dx (thinking about this as “multiplying frac-

tions” is a good mnemonic but don’t use that in general!) Example:

d(exp(x2))
dx

=
d(exp(x2))

d(x2)
· dx2

dx
= exp(x2) · 2x. (2)

Another example: people sometimes express the proportional change in x,
(dx/dt)/x, as d(log(x))/dt. Can you see why?

11. Critical points (maxima, minima, and saddle points) of a curve f have
df/dx = 0. The sign of the second derivative determines the type of a
critical point (positive = minimum, negative = maximum, zero = saddle).

3 Partial differentiation

1. Partial differentiation acts just like regular differentiation except that you
hold all but one variable constant, and you use a curly d ∂ instead of
a regular d. So, for example, ∂(xy)/∂(x) = y. Geometrically, this is
taking the slope of a surface in one particular direction. (Second partial
derivatives are curvatures in a particular direction.)

2. You can do partial differentiation multiple times with respect to different
variables: order doesn’t matter, so ∂(f)

∂(x)∂(y) = ∂(f)
∂(y)∂(x) .

4 Integral calculus

For the material in this book, I’m not asking you to remember very much cal-
culus, but it would be useful to remember that

1. the (definite) integral of f(x) from a to b,
∫ b

a
f(x) dx, represents the area

under the curve between a and b; the integral is a limit of the sum∑b
xi=a f(xi)∆x as ∆x → 0.

2. You can take a constant out of an integral (or put one in):
∫

af(x) dx =
a
∫

f(x) dx.

3. Integrals are additive:
∫

(f(x) + g(x)) dx =
∫

f(x) dx +
∫

g(x) dx.
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5 Factorials and the gamma function

A factorial, written as (say) k!, means k × k − 1 × . . . 1. For example, 2! = 2,
3! = 6, and 6! = 720 (in R a factorial is factorial() — you can’t use the
shorthand ! notation, especially since != means “not equal to”. Factorials come
up in probability calculations all the time, e.g. as the number of permutations
with k elements. The gamma function, usually written as Γ (gamma() in R)
is a generalization of factorials. For integers, Γ(x) = (x − 1)!. Factorials are
only defined for integers, but for positive, non-integer x (e.g. 2.7), Γ(x) is still
defined and it is still true that Γ(x + 1) = x · Γ(x).

Factorials and gamma functions get very large, and you often have to com-
pute ratios of factorials or gamma functions (as in the binomial coefficient,
k!/(N !(N − k)!). Numerically, it is more efficient and accurate to compute the
logarithms of the factorials first, add and subtract them, and then exponenti-
ate the result: exp(log k! − log N ! − log(N − k)!). R provides the log-factorial
(lfactorial()) and log-gamma (lgamma()) functions for this purpose.

About the only reason that the gamma function ever comes up in ecology
is that it is the normalizing constant (see ch. 4) for the gamma distribution,

which is usually denoted as Gamma (not Γ): Gamma(x, a, s) = 1/(saΓ(a))
x

(
a −

1)e−(x/s).
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6 Probability

1. Probability distributions always add or integrate to 1 over all possible
values.

2. Probabilities of independent events are multiplied: p(A and B) = p(A)p(B).

3. The binomial coefficient, (
N

k

)
=

N !
k!(N − k)!

, (3)

is the number of different ways of choosing k objects out of a set of N ,
without regard to order. ! denotes a factorial: n! = n× n− 1× ...× 2× 1.
(Proof: think about picking k objects out of N , without replacement but
keeping track of order. The number of different ways to pick the first
object is N . The number of different ways to pick the second object is
N − 1, the third N − 2, and so forth, so the total number of choices is
N ×N − 1× ...N − k + 1 = N !/(N − k)!. The number of possible orders
for this set (permutations) is k! by the same argument (k choices for the
first element, k− 1 for the next . . . ). Since we don’t care about the order,
we divide the number of ordered ways (N !/(N − k)!) by the number of
possible orders (k!) to get the binomial coefficient.)

7 The delta method: formula and derivation

The formula for the delta method of approximating variances is:

Var(f(x, y)) ≈
(

∂f

∂x

)2

Var(x) +
(

∂f

∂y

)2

Var(y) + 2
(

∂f

∂x

∂f

∂y

)
Cov(x, y) (4)

Lyons [?] gives a very readable alternative description of the delta method;
Oehlert [?] gives a short technical description of the formal assumptions neces-
sary for the delta method to apply.

This formula is exact in a bunch of simple cases:

• Multiplying by a constant: Var(ax) = a2Var(x)

• Sum or difference of independent variables: Var(x± y) = Var(x) + Var(y)

• Product or ratio of independent variables: Var(x·y) = y2Var(x)+x2Var(y) =
x2y2

(
Var(x)

x2 + Var(y)
y2

)
: this also implies that (CV(x · y))2 = (CV(x))2 +

(CV(y))2

• I believe (check!!) that the formula is exact if P (x, y) is bivariate normal
(and the function is not too weird??)
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You can also extend the formula to more than two variables if you like.
Derivation: use the (multivariable) Taylor expansion of f(x, y) including

linear terms only :

f(x, y) ≈ f(x̄, ȳ) +
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)

where the derivatives are evaluated at (x̄, ȳ).
Substitute this in to the formula for the variance of f(x, y):

Var(f(x, y)) =
∫

P (x, y)(f(x, y)− f(x̄, ȳ))2 dx dy (5)

=
∫

P (x, y)
(

f(x̄, ȳ) +
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)− f(x̄, ȳ)

)2

dx dy (6)

=
∫

P (x, y)
(

∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)

)2

dx dy (7)

=
∫

P (x, y)

((
∂f

∂x

)2

(x− x̄)2 +
(

∂f

∂y

)2

(y − ȳ)2 + 2
∂f

∂x

∂f

∂y
(x− x̄)(y − ȳ)

)
dx dy

(8)

=
∫

P (x, y)
(

∂f

∂x

)2

(x− x̄)2 dx dy

+
∫

P (x, y)
(

∂f

∂y

)2

(y − ȳ)2 dx dy

+
∫

P (x, y) 2
∂f

∂x

∂f

∂y
(x− x̄)(y − ȳ) dx dy (9)

=
(

∂f

∂x

)2 ∫
P (x, y)(x− x̄)2 dx dy

+
(

∂f

∂y

)2 ∫
P (x, y)(y − ȳ)2 dx dy

+ 2
∂f

∂x

∂f

∂y

∫
P (x, y)(x− x̄)(y − ȳ) dx dy (10)

=
(

∂f

∂x

)2

Var(x) +
(

∂f

∂y

)2

Var(y) + 2
∂f

∂x

∂f

∂y
Cov(x, y) (11)
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