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1 Summary

This chapter covers both the practical details and the broader philosophy of
(1) reading data into R and (2) doing exploratory data analysis, in particular
graphical analysis. To get the most out of the chapter you should already have
some basic knowledge of R’s syntax and commands (see the R supplement of
the previous chapter).

2 Introduction

One of the basic tensions in all data analysis and modeling is how much you have
all your questions framed before you begin to look at your data. In the classical
statistical framework, you’re supposed to lay out all your hypotheses before you
start, run your experiments, come back to your office and test those (and only
those) hypotheses. Allowing your data to suggest new statistical tests raises
the risk of “fishing expeditions” or “data-dredging” — indiscriminately scanning
your data for patterns∗. Data-dredging is a serious problem. Humans are noto-
riously good at detecting apparent patterns even when they don’t exist. Strictly
speaking, interesting patterns that you find in your data after the fact should
not be treated statistically, only used as input for the next round of observa-
tions and experiments†. Most statisticians are leery of procedures like stepwise
regression that search for the best predictors or combinations of predictors from
among a large range of options, even though some have elaborate safeguards to
avoid overestimating the significance of observed patterns (Whittingham et al.,
2006). The worst part about using such techniques is that in order to use them
you must be conservative and discard real patterns, patterns that you originally
had in mind, because you are screening your data indiscriminately (Nakagawa,
2004).

∗“Bible Codes”, where people find hidden messages in the Bible, illustrate an extreme form
of data-dredging. Critics have pointed out that similar procedures will also detect hidden
messages in War and Peace or Moby Dick (McKay et al., 1999).

†Or you should apply a post hoc procedure [see ?TukeyHSD and the multcomp package in R]
that corrects for the fact that you are testing a pattern that was not suggested in advance —
however, even these procedures only apply corrections for a specific set of possible comparisons,
not all possible patterns that you could have found in your data.
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But these injunctions may be too strict for ecologists. Unexpected patterns
in the data can inspire you to ask new questions, and it is foolish not to ex-
plore your hard-earned data. Exploratory data analysis (EDA: Tukey, 1977;
Hoaglin et al., 2000, 2006; Cleveland, 1993) is a set of graphical techniques for
finding interesting patterns in data. EDA was developed in the late 1970s when
computer graphics first became widely available. It emphasizes robust and non-
parametric methods, which make fewer assumptions about the shapes of curves
and the distributions of the data and hence are less sensitive to nonlinearity and
outliers. Most of the rest of this book will focus on models that, in contrast
to EDA, are parametric (i.e., they specify particular distributions and curve
shapes) and mechanistic. These methods are more powerful and give more eco-
logically meaningful answers, but are also susceptible to being misled by unusual
patterns in the data.

The big advantages of EDA are that it gets you looking at and thinking about
your data (whereas stepwise approaches are often substitutes for thought), and
that it may reveal patterns that standard statistical tests would overlook because
of their emphasis on specific models. However, EDA isn’t a magic formula for
interpreting your data without the risk of data dredging. Only common sense
and caution can keep you in the zone between ignoring interesting patterns
and over-interpreting them. It’s useful to write down a list of the ecological
patterns you’re looking for and how they relate your ecological questions before
you start to explore your data, so that you can distinguish among (1) patterns
you were initially looking for, (2) unanticipated patterns that answer the same
questions in different ways, and (3) interesting (but possibly spurious) patterns
that suggest new questions.

The rest of this chapter describes how to get your data into R and how to
make some basic graphs in order to search for expected and unexpected patterns.
The text covers both philosophy and some nitty-gritty details. The supplement
at the end of the chapter gives a sample session and more technical details.

3 Getting data into R

3.1 Preliminaries

Electronic format Before you can analyze your data you have to get them
into R. Data come in a variety of formats — in ecology, most are either plain
text files (space- or comma-delimited) or Excel files.∗ R prefers plain text files
with “white space” (arbitrary numbers of tabs or spaces) or commas between
columns. Text files are less structured and may take up more disk space than
more specialized formats, but they are the lowest common denominator of file
formats and so can be read by almost anything (and, if necessary, examined
and adjusted in any text editor). Since plain text formats are readable with a
wide variety of text editors, they are unlikely to be made obsolete by changes in

∗Your computer may be set up to open comma-delimited (.csv) files in Excel, but under-
neath they are just text files.
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technology (you could say they’re already obsolete), and less likely to be made
unusable by corruption of a few bits of the file; only hard copy is better†.

R is platform-agnostic. While text files do have very slightly different formats
on Unix, Microsoft Windows, and Macintosh operating systems, R handles these
differences. If you later save data sets or functions in R’s own format (using save
to save and load to load them), you will be able to exchange them freely across
platforms.

Many ecologists keep their data in Excel spreadsheets. The read.xls func-
tion in the gdata package allows R to read Excel files directly, but the best thing
to do with an Excel file (if you have access to a copy of Excel, or if you can open
it in an alternative spreadsheet program) is to save the worksheet you want as
a .csv (comma-separated values) file. Saving as a .csv file will also force you
to go into the worksheet and clean up any random cells that are outside of the
main data table — R won’t like these. If your data are in some more exotic form
(e.g. within a GIS or database system), you’ll have to figure out how to extract
them from that particular system into a text file. There are ways of connecting
R directly with databases or GIS systems, but they’re beyond the scope of this
book. If you have trouble exporting data or you expect to have large quantities
of data (e.g. more than tens of thousands of observations) in one of these exotic
forms, you should look for advice at the R Data Import/Export manual, which
is accessible through Help in the R menus.

Metadata Metadata is the information that describes the properties of a data
set: the names of the variables, the units they were measured in, when and
where the data were collected, etc.. R does not have a structured system for
maintaining metadata, but it does allow you to include a good deal of this
metadata within your data file, and it is good practice to keep as much of this
information as possible associated with the data file. Some tips on metadata in
R:

� Column names are the first row of the data set. Choose names that
compromise between convenience (you will be typing these names a lot)
and clarity; larval_density or larvdens are better than either x or
larval_density_per_m3_in_ponds. Use underscores or dots to separate
words in variable names, not spaces.

� R will ignore any information on a line following a #. I usually use this
comment character to include general metadata at the beginning of my
data file, such as where and when the data were collected, what units it is
measured in, and so forth — anything that can’t easily be encoded in the
variable names. I also use comments before, or at the ends of, particular
lines in the data set that might need annotation, such as the circumstances
surrounding questionable data points. You can’t use # to make a comment

†Unless your data are truly voluminous, you should also save a hard-copy, archival version
of your data (Gotelli and Ellison, 2004).
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in the middle of a line: use a comment like # pH calibration failed at
the end of the line to indicate that a particular field in that line is suspect.

� if you have other metadata that can’t easily be represented in plain-text
format (such as a map), you’ll have to keep it separately. You can reference
the file in your comments, keep a separate file that lists the location of data
and metadata, or use a system like Morpho (from ecoinformatics.org)
to organize it.

Whatever you do, make sure that you have some workable system for maintain-
ing your metadata. Eventually, your R scripts — which document how you read
in your data, transformed it, and drew conclusions from it — will also become
a part of your metadata. As mentioned in Chapter ??, this is one of the advan-
tages of R over (say) Excel: after you’ve done your analysis, if you were careful
to document your work sufficiently as you went along, you will be left with a set
of scripts that will allow you to verify what you did; make minor modifications
and re-run the analysis; and apply the same or similar analyses to future data
sets.

Shape Just as important as electronic or paper format is the organization or
shape of your data. Most of the time, R prefers that your data have a single
record (typically a line of data values) for each individual observation. This
basically means that your data should usually be in“long”(or“indexed”) format.
For example, the first few lines of the seed removal data set look like this, with
a line giving the number of seeds present for each station/date combination:

station date dist species seeds
1 1 1999-03-23 25 psd 5
2 1 1999-03-27 25 psd 5
3 1 1999-04-03 25 psd 5
4 2 1999-03-23 25 uva 5
5 2 1999-03-27 25 uva 5
6 2 1999-04-03 25 uva 5

Because each station has seeds of only one species and can only be at a single
distance from the forest, these values are repeated for every date. During the
first two weeks of the experiment no seeds of psd or uva were taken by predators,
so the number of seeds remained at the initial value of 5.

Alternatively, you will often come across data sets in“wide” format, like this:

station species dist seeds.1999-03-23 seeds.1999-03-27
1 1 psd 25 5 5
2 2 uva 25 5 5
3 3 pol 25 5 4
4 4 dio 25 5 5
5 5 cor 25 5 4
6 6 abz 25 5 5
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(I kept only the first two date columns in order to make this example narrow
enough to fit on the page.)

Long format takes up more room, especially if you have data (such as dist
above, the distance of the station from the edge of the forest) that apply to
each station independent of sample date or species (which therefore have to be
repeated many times in the data set). However, you’ll find that this format is
typically what statistical packages request for analysis.

It is possible to read data into R in wide format and then convert it to long
format. R has several different functions — reshape and stack/unstack in the
base package, and melt/cast/recast in the reshape package∗ — that will let
you switch data back and forth between wide and long formats. Because there
are so many different ways to structure data, and so many different ways you
might want to aggregate or rearrange them, software tools designed to reshape
arbitrary data are necessarily complicated (Excel’s pivot tables, which are also
designed to restructure data, are as complicated as reshape).

� stack and unstack are simple but basic functions — stack converts from
wide to long format and unstack from long to wide; they aren’t very
flexible.

� reshape is very flexible and preserves more information than stack/unstack,
but its syntax is tricky: if long and wide are variables holding the data
in the examples above, then

> reshape(wide, direction = "long", timevar = "date",

+ varying = 4:5)

> reshape(long, direction = "wide", timevar = "date",

+ idvar = c("station", "dist", "species"))

convert back and forth between them. In the first case (wide to long) we
specify that the time variable in the new long-format data set should be
date and that columns 4–5 are the variables to collapse. In the second
case (long to wide) we specify that date is the variable to expand and that
station, dist and species should be kept fixed as the identifiers for an
observation.

� the reshape package contains the melt, cast, and recast functions, which
are similar to reshape but sometimes easier to use: e.g.

> library(reshape)

> recast(wide, formula = ... ~ ., id.var = c("station",

+ "dist", "species"))

> recast(long, formula = station + dist + species ~

+ ..., id.var = c("station", "dist", "species",

+ "date"))

∗If you don’t know what a package is, go back and read about them in the R supplement
for Chapter ??.
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in the formulas above, ... denotes “all other variables” and . denotes
“nothing”, so the formula ...~. means“separate out by all variables”(long
format) and station+dist+species~... means “separate out by station,
distance, and species, put the values for each date on one line”

In general you will have to look carefully at the examples in the documentation
and play around with subsets of your data until you get it reshaped exactly the
way you want. Alternatively, you can manipulate your data in Excel, either with
pivot tables or by brute force (cutting and pasting). In the long run, learning
to reshape data will pay off, but for a single project it may be quicker to use
brute force.

3.2 Reading in data

Basic R commands The basic R commands for reading in a data set, once
you have it in a long-format text file, are read.table for space-separated data
and read.csv for comma-separated data. If there are no complications in your
data, you should be simply be able to say (e.g.)

> data = read.table("mydata.dat", header = TRUE)

(if your file is actually called mydata.dat and includes a first row with the
column names) to read your data in (as a data frame — see p. 8) and assign it
to the variable data.

There are several potential complications to reading in files, which are more
fully covered in the R supplement: (1) finding your data file on your computer
system (i.e., telling R where to look for it); (2) checking that every line in the file
has the same number of variables, or fields — R won’t read it otherwise; and (3)
making sure that R reads all your variables as the right data types (discussed
in the next section).

4 Data types

When you read data into a computer, the computer stores those data as some
particular data type. This is partly for efficiency — it’s more efficient to store
numbers as strings of bits rather than as human-readable character strings —
but its main purpose is to maintain a sort of metadata about variables, so the
computer knows what to do with them. Some operations only make sense with
particular types — what should you get when you try to compute 2+"A"? "2A"?
If you try to do something like this in Excel you get an error code — #VALUE!;
if you do it in R you get the message Error ...non-numeric argument to
binary operator∗.

Computer packages vary in how they deal with data. Some lower-level lan-
guages like C are strongly typed ; they insist that you specify exactly what type
every variable should be, and require you to convert variables between types

∗the + symbol is called a “binary operator” because it is used to combine two values
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(say integer and real, or floating-point) explicitly. Languages or packages like R
or Excel are looser, and try to guess what you have in mind and convert vari-
ables between types (coerce) automatically as appropriate. For example, if you
enter 3/25 into Excel, it automatically converts the value to a date — March
25 of the current year.

R makes similar guesses as it reads in your data. By default, if every entry
in a column is a valid number (e.g. 234, -127.45, 1.238e3 [computerese for
1.238 ×103]), then R guesses the variable is numeric. Otherwise, it makes it a
factor — an indexed list of values used to represent categorical variables, which
I will describe in more detail shortly. Thus, any error in a numeric variable
(extra decimal point, included letter, etc.) will lead R to classify that variable
as a factor rather than a number. R also has a detailed set of rules for dealing
with missing values (internally represented as NA, for Not Available). If you
use missing-value codes (such as * or -9999) in your data set you have to tell R
about it or it will read them naively as strings or numbers.

While R’s standard rules for guessing about input data are pretty simple and
only allow you two options (numeric or factor), there are a variety of ways for
specifying more detail either as R reads in your data or after it has read them
in: these are covered in more detail in the accompanying material.

4.1 Basic data types

R’s basic (or atomic) data types are integer, numeric (real numbers), logical
(TRUE or FALSE), and character (alphanumeric strings). (There are a few more,
such as complex numbers, that you probably won’t need.) At the most basic
level, R organizes data into vectors of one of these types, which are just ordered
sets of data. Here are a couple of simple (numeric and character) vectors:

> 1:5

[1] 1 2 3 4 5

> c("yes", "no", "maybe")

[1] "yes" "no" "maybe"

More complicated data types include dates (Date) and factors (factor). Factors
are R’s way of dealing with categorical variables. A factor’s underlying structure
is a set of (integer) levels along with a set of the labels associated with each level.

One advantage of using these more complex types, rather than converting
your categorical variables to numeric codes, is that it’s much easier to remember
the meaning of the levels as you analyze your data: for example north and
south rather than 0 and 1. Also, R can often do the right things with your
data automatically if it knows what types they are (this is an example of crude-
vs.-sophisticated where a little more sophistication may be useful). Much of
R’s built-in statistical modeling software depends on these types to do the right
analyses. For example, the command lm(y~x) (meaning “fit a linear model of
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y as a function of x”, analogous to SAS’s PROC GLM) will do an ANOVA if x
is categorical (i.e., stored as a factor) or a linear regression if x is numeric.
If you want to analyze variation in population density among sites designated
with integer codes (e.g. 101, 227, 359), and haven’t specified that R should
interpret the codes as categorical rather than numeric values, R will try to fit a
linear regression rather than doing an ANOVA. Many of R’s plotting functions
will also do different things depending on what type of data you give them. For
example, R can automatically plot date axes with appropriate labels. To repeat,
data types are a form of metadata; the more information about the meaning of
your data that you can retain in your analysis, the better.

4.2 Data frames and matrices

R can organize data at a higher level than simple vectors. A data frame is a table
of data that combines vectors (columns) of different types (e.g. character, factor,
and numeric data). Data frames are a hybrid of two simpler data structures:
lists, which can mix arbitrary types of data but have no other structure, and
matrices, which have rows and columns but usually contain only one data type
(typically numeric). Treating the data frame as a list, there are a variety of
different ways of extracting columns of data from the data frame to work with:

> SeedPred[[2]]

> SeedPred[["species"]]

> SeedPred$species

all extract the second column (a factor containing species abbreviations) from
the data frame SeedPred. You can also treat the data frame as a matrix and
use square brackets [] to extract (e.g.) the second column

> SeedPred[, 2]

> SeedPred[, "species"]

or rows 1 through 10

> SeedPred[1:10, ]

(SeedPred[i,j] extracts the matrix element in row(s) i and column(s) j; leav-
ing the columns or rows specification blank, as in SeedPred[i,] or SeedPred[,j],
takes row i (all columns) or column j (all rows) respectively). There are a few
operations, such as transposing or calculating a variance-covariance matrix, that
you can only do with a matrix (not with a data frame); R will usually convert
(coerce) the data frame to a matrix automatically when it makes sense to, but
you may sometimes have to use as.matrix to manually convert a data frame
to a matrix∗.

∗Matrices and data frames can appear identical but behave differently. If x is a data
frame, either colnames(x) or names(x) will tell you the column names. If x has a column
called a, either x$a or x[["a"]] or x[,"a"] will retrieve it. If x is a matrix, you must use
colnames(x) to get the column names and x[,"a"] to retrieve a column (the other commands
will give errors). Use is.data.frame or class to tell matrices and data frames apart.
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4.3 Checking data

Now suppose you’ve decided on appropriate types for all your data and told
R about it. Are the data you’ve read in actually correct, or are there still
typographical or other errors?

summary First check the results of summary. For a numeric variable summary
will list the minimum, first quartile, median, mean, third quartile, and maxi-
mum. For a factor it will list the numbers of observations with each of the first
six factor levels, then the number of remaining observations. (Use table on a
factor to see the numbers of observations at all levels.) It will list the number
of NAs for all types.

For example:

> summary(SeedPred[, 1:4])

station dist species date
1 : 74 10:5883 abz :1480 Min. :1999-03-23
2 : 74 25:5920 cd :1480 1st Qu.:1999-05-23
3 : 74 cor :1480 Median :1999-07-24
4 : 74 dio :1480 Mean :1999-07-25
5 : 74 pol :1480 3rd Qu.:1999-09-28
6 : 74 psd :1480 Max. :1999-11-28
(Other):11359 (Other):2923

(to keep the output short, I’m only looking at the first four columns of the data
frame: summary(SeedPred) would summarize the whole thing).

Check the following points:

� Is there the right number of observations overall? Is there the right number
of observations in each level for factors?

� Do the summaries of the numeric variables — mean, median, etc. —
look reasonable? Are the minimum and maximum values about what you
expected?

� Are there reasonable numbers of NAs in each column? If not (especially
if you have extra mostly-NA columns), you may want to go back a few
steps and look at using count.fields or fill=FALSE to identify rows
with extra fields . . .

str The command str tells you about the structure of an R variable: it is
slightly less useful than summary for dealing with data, but it may come in
handy later on for figuring out more complicated R variables. Applied to a
data frame, it tells you the total number of observations (rows) and variables
(columns) and prints out the names and classes of each variable along with the
first few observations in each variable.
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> str(SeedPred)

'data.frame': 11803 obs. of 9 variables:
$ station : Factor w/ 160 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ dist : Factor w/ 2 levels "10","25": 1 1 1 1 1 1 1 1 1 1 ...
$ species : Factor w/ 8 levels "abz","cd","cor",..: 7 7 7 7 7 7 7 7 7 7 ...
$ date :Class 'Date' num [1:11803] 10675 10678 10685 10692 10699 ...
$ seeds : int 5 5 5 5 0 0 0 0 0 0 ...
$ tcum : num 0 3 10 17 24 31 39 46 53 60 ...
$ tint : num NA 3 7 7 7 7 8 7 7 7 ...
$ taken : int NA 0 0 0 5 0 0 0 0 0 ...
$ available: int NA 5 5 5 5 0 0 0 0 0 ...

class The command class prints out the class (numeric, factor, Date,
logical, etc.) of a variable. class(SeedPred) gives "data.frame"; sapply(SeedPred,class)
applies class to each column of the data individually.

> class(SeedPred)

[1] "data.frame"

> sapply(SeedPred, class)

station dist species date seeds tcum
"factor" "factor" "factor" "Date" "integer" "numeric"

tint taken available
"numeric" "integer" "integer"

head The head command just prints out the beginning of a data frame; by
default it prints the first six rows, but head(data,10) (for example) will print
out the first 10 rows.

> head(SeedPred)

station dist species date seeds tcum tint taken available
1 1 10 psd 1999-03-25 5 0 NA NA NA
2 1 10 psd 1999-03-28 5 3 3 0 5
3 1 10 psd 1999-04-04 5 10 7 0 5
4 1 10 psd 1999-04-11 5 17 7 0 5
5 1 10 psd 1999-04-18 0 24 7 5 5
6 1 10 psd 1999-04-25 0 31 7 0 0

The tail command prints out the end of a data frame.
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table table is R’s command for cross-tabulation; it can be useful when read-
ing in data for checking that you have appropriate numbers of observations in
different factor combinations.

> table(SeedPred$station, SeedPred$species)

abz cd cor dio mmu pol psd uva
1 0 0 0 0 0 0 74 0
2 0 0 0 0 0 0 0 74
3 0 0 0 0 0 74 0 0
4 0 0 0 74 0 0 0 0
5 0 0 74 0 0 0 0 0
6 74 0 0 0 0 0 0 0

(just the first six lines are shown): apparently, each station only has seeds of
a single species. The $ extracts variables from the data frame SeedPred, and
table says we want to count the number of instances of each combination of
station and species: we could also do this with a single factor or with more than
two.

Dealing with NAs Missing values are a nuisance, but a fact of life. Throwing
out or ignoring missing values is tempting, but can be dangerous. Ignoring
missing values can bias your analyses, especially if the pattern of missing values
is not completely random. R is conservative by default, and assumes that, for
example, 2+NA equals NA — if you don’t know what the missing value is, then
the sum of it and any other number is also unknown. Almost any calculation
you make in R will be contaminated by NAs, which is logical but annoying.
Perhaps most difficult is that you can’t just do what comes naturally and say
(e.g.) x = x[x!=NA] to remove values that are NA from a variable, because even
comparisons to NA result in NA!

� You can use the special function is.na to count the number of NA val-
ues (sum(is.na(x))) or to throw out the NA values in a vector (x =
x[!is.na(x)]).

� To convert NA values to a particular value, use x[is.na(x)]=value; e.g. to
set NAs to zero x[is.na(x)]=0, or to set NAs to the mean value x[is.na(x)]=mean(x,na.rm=TRUE).
Don’t do this unless you have a very good, and defensible, reason.

� na.omit will drop NAs from a vector (na.omit(x)), but it is also smart
enough to do the right thing if x is a data frame instead, and throw
out all the cases (rows) where any variable is NA; however, this may
be too stringent if you are analyzing a subset of the variables. For ex-
ample, you might have a really unreliable soil moisture meter that pro-
duces lots of NAs, but you don’t necessarily need to throw away all of
these data points while you’re analyzing the relationship between light
and growth. (complete.cases returns a logical vector that says which
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rows have no NAs; if x is a data frame, na.omit(x) is equivalent to
x[complete.cases(x),]).

� Functions such as mean, var, sd, sum (and probably others) have an op-
tional na.rm argument: na.rm=TRUE drops NA values before doing the
calculation. Otherwise if x contains any NAs, mean(x) will result in NA
and sd(x) will give an error about missing observations.

� Calculations of covariance and correlation (cov and cor) have more com-
plicated options: use="all.obs", use="complete.obs", or use="pairwise.complete.obs".
all.obs uses all of the data (but the answer will contain NAs every time
either variable contains one); complete.obs uses only the observations
for which none of the variables are NA (but may thus leave out a lot of
data); and pairwise.complete.obs computes the pairwise covariance/-
correlations using the observations where both of each particular pair of
variables are non-NA (but may lead in some cases to incorrect estimates
of the correlations).

As you discover errors in your data, you may have to go back to your original
data set to correct errors and then re-enter them into R (using the commands
you have saved, of course). Or you can change a few values in R, e.g.

> SeedPred[24, "species"] = "mmu"

to change the species in the 24th observation from psd to mmu. Whatever you do,
document this process as you go along, and always maintain your original data
set in its original, archival, form, even including data you think are errors (this
is easier to remember if your original data set is in the form of field notebooks).
Keep a log of what you modify so conflicting versions of your data don’t confuse
you.

5 Exploratory data analysis and graphics

The next step in checking your data is to graph them, which leads on naturally
to exploring patterns. Graphing is the best way to understand not only data,
but also the models that you fit to data; as you develop models you should graph
the results frequently to make sure you understand how the model is working.

R gives you complete control of all aspects of graphics (Figure ??) and lets
you save graphics in a wide range of formats. The only major nuisance of doing
graphics in R is that R constructs graphics as though it were drawing on a
static page, not by adding objects to a dynamic scene. You generally specify
the positions of all graphics on the command line, not with the mouse (although
the locator and identify functions can be useful). Once you tell R to draw a
point, line, or piece of text there is no way to erase or move it. The advantage of
this procedure, like logging your data manipulations, is that you have a complete
record of what you did and can easily recreate the picture with new data.
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R actually has two different coexisting graphics systems. The base graphics
system is cruder and simpler, while the lattice graphics system (in the lattice
package) is more sophisticated and complex. Both can create scatterplots, box-
and-whisker plots, histograms, and other standard graphical displays. Lattice
graphics do more automatic processing of your data and produce prettier graphs,
but the commands are harder to understand and customize. In the realm of 3D
graphics, there are several more options, at different stages of development.
Base graphics and lattice graphics both have some 3D capabilities (persp in
base, wireframe and cloud in lattice); the scatterplot3d package builds on
base to draw 3D point clouds; the rgl package (still under development) allows
you to rotate and zoom the 3D coordinate system with the mouse; and the
ggobi package is an interface to a system for visualizing multidimensional point
data.

5.1 Seed removal data: discrete numeric predictors, dis-
crete numeric responses

As described in Chapter ??, the seed removal data set from Duncan and Dun-
can (2000) gives information on the rate at which seeds were removed from
experimental stations set up in a Ugandan grassland. Seeds of 8 species were
set out at stations along two transects different distances from the forest and
monitored every few days for more than 8 months. We have already seen a
subset of these data in a brief example, but we haven’t really examined the
details of the data set. There are a total of 11803 observations, each containing
information on the station number (station), distance in meters from the for-
est edge (dist), the species code (species∗), the date sampled (date), and the
number of seeds present (seeds). The remaining columns in the data set are
derived from the first five: the cumulative elapsed time (in days) since the seeds
were put out (tcum); the time interval (in days) since the previous observation
(tint); the number of seeds removed since the previous observation (taken);
and the number of seeds present at the previous observation (available).

5.1.1 Decrease in numbers over time

The first thing to look at is the mean number of seeds remaining over time
(Figure 1). I also plotted the mean on a logarithmic scale; if seeds were removed
at a constant per capita rate (a reasonable null hypothesis), the means should
decrease exponentially over time and the lines should be straight on a log scale.
(It’s much easier to see differences from linearity than to tell whether a curve
is decreasing faster or slower than exponentially.) They are not: it looks like
the seeds that remain after July are taken at a much slower rate. (See the R
supplement, p. 39, for the code to create the figure.)

∗abz=Albizia grandibracteata, cd=Celtis durandii, cor=Cordia abyssinica, dio=Diospyros
abyssinica, mmu=Mimusops bagshawei, pol=Polyscias fulva, psd=Pseudospondias microcarpa,
uva=Uvariopsis congensis.
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Figure 1: Seed removal data: mean seeds remaining by species over time. Func-
tions: (main plot) matplot, matlines; (annotation) axis, axis.Date, legend,
text, points.
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Figure 1 also reveals differences among species larger than the differences
between the two distances from the forest. However, it also seems that some
species may have a larger difference between distances from the forests; C.
durandii (cd, 4) disappears 10 times faster near than far from the forest. Like
all good graphics, the figure raises many questions (only some of which can be
answered from the data at hand): is the change in disappearance rate indicated
by the flattening out of the curves driven by the elapsed time since the seeds
were set out, the season, or the declining density of seeds? Or is there variation
within species, such that predators take all the tasty seeds at a station and
leave the non-tasty ones? Is the change in rate a gradual decrease or an abrupt
change? Does it differ among species? Are the overall differences in removal
rate among species, between distances from the forest, and their interaction (i.e.
the fact that cd appears to be more sensitive to differences in distance) real or
just random fluctuations? Are they related to seed mass or some other known
characteristic of the species?

5.1.2 Number taken out of number available

Plotting the mean number remaining over time shows several facets of the data
(elapsed time, species, distance from edge) and asks and answers important
ecological questions, but it ignores another facet — the variability or distribution
of the number of seeds taken. To explore this facet, I’ll now look at the patterns
of the number of seeds taken as a function of the number available.

The simplest thing is to plot the number taken between each pair of sam-
ples (on the y axis) as a function of the number available (on the x axis). If
x and y are numeric variables, plot(x,y) draws a scatterplot. Here we use
plot(SeedPred$available,SeedPred$taken). The lattice package equiv-
alent would be xyplot(taken~available,data=SeedPred). The scatterplot
turns out not to be very informative in this case (try it and see!); all the re-
peated points in the data overlap, so that all we see in the plot is that any
number of seeds up to the number available can be taken.

One quick-and-dirty way to get around this problem is to use the jitter
command, which adds a bit of random variation so that the data points don’t
all land in exactly the same place: Figure 2(a) shows the results, which are ugly
but do give some idea of the patterns.

sizeplot, from the plotrix package, deals with repeated data points by
making the the area of plotting symbols proportional to the number of obser-
vations falling at a particular point (Figure 2(b); in this case I’ve used the
text command to add text to the circles with the actual numbers from cross-
tabulating the data by number available and number taken (table(SeedPred$available,SeedPred$taken)).
More generally, bubble plots superimpose a third variable on an x-y scatterplot
by changing symbol sizes: in R, you can either use the symbols command, or
just set cex to a vector in a plot command (e.g. plot(x,y,cex=z) plots y vs.
x with symbol sizes proportional to z). sizeplot is a special-case bubble plot;
it counts the number of points with identical x and y values and makes the area
of the circle proportional to that number. If (as in this case) these x and y val-
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Figure 2: (a) Jittered scatterplot of number of seeds taken as a function of
number of seeds available: all species and dates combined. (b) Bubble plot of
combined seed removal data (sizeplot: (0,0) category dropped for clarity).

ues come from a cross-tabulation, two other ways to plot the data are a mosaic
plot (e.g. mosaicplot( available+taken,data=SeedPred)) or a balloon plot
(balloonplot in the gplots package: balloonplot(table(SeedPred$available,SeedPred$taken)).
You could also try dotchart on the results of table; dot charts are an invention
of W. Cleveland that perform approximately the same function as bar charts.
(Try these and see for yourself.)

R is object-oriented, which in this context means that it will try to “do the
right thing” when you ask it to do something with a variable. For example, if
you simply say plot(t1) R knows that t1 is a two-way table, and it will plot
something reasonably sensible — in this case the mosaic plot mentioned above.

Barplots are another way to visualize the distribution of number of seeds
taken. (Figure 3). The barplot command can plot either a vector (as single
bars) or a matrix (as stacked bars, or as grouped sets of bars). Here we want to
plot groups of stacked bars, one group for each number of available seeds. The
only remaining trick here is that barplot plots each column of the matrix as a
group, whereas we want our barplot grouped by number available, which are the
rows of our table. We could go back and recalculate table(taken,available),
which would switch the order of rows and columns. However, it’s easier to use
the transpose command t to exchange rows and columns of the table.

I also decided to put the plot on a logarithmic scale, since the data span a
wide range of numbers of counts. Since the data contain zeros, taking logarithms
of the raw data may cause problems; since they are count data, it is reasonable
to add 1 as an offset. I decided to use logarithms base 10 (log10) rather than
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Figure 3: Bar plot of observations of number of seeds taken, subdivided by
number available.

natural logarithms (log) since I find them easier to interpret. (Many of R’s
plot commands, including barplot, have an argument log that can be used to
specify that the x, y, or both axes are logarithmic (log="x", log="y", log="xy"
— this has the additional advantage of plotting an axis with the original, more
interpretable values labeled but unevenly spaced. In this particular case the
figure is slightly prettier the way I’ve done it.)

The main conclusions from Figures 2 and 3 and the table, which have really
shown essentially the same thing in four different ways, are that (1) the number
of seeds taken increases as the number of seeds available increases (this is not
surprising); (2) the distribution of number of seeds taken is bimodal (has two
peaks) with one mode at zero (which is very common), and the maxima are
at zero and at the total number of seeds available — all or nothing — which
is slightly surprising; (3) the distribution of the number of seeds taken looks
roughly constant as the number of seeds available increases. Observation #2 in
particular starts to suggest some ecological questions: it makes sense for there
to be a mode at zero (when seed predators don’t find the seeds at all) and one
away from zero (when they do), but why would seed predators take either few
or many but not an intermediate number? Perhaps this pattern, which appears
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Figure 4: 3D graphics: lollipop plot produced in rgl (plot3d(...,type="s")
to plot spheres, followed by plot3d(...,type="h") to plot stems).

at the level of the whole data set, emerges from variability among low- and
high-vulnerability sites or species, or perhaps it has something to do with the
behavior of the seed predators.

Yet another graphical approach would be to try to visualize these data in
three dimensions, as a 3D barplot or “lollipop plot” (adding stems to a 3D
scatterplot to make it easier to locate the points in space: Figure 4). 3D graphics
do represent a wide new range of opportunities for graphing data, but they are
often misused and sometimes actually convey less information than a carefully
designed 2D plot; it’s hard to design a really good 3D plot. To present 3D
graphics in print you also have to pick a single viewpoint, although this is
not an issue for exploratory graphics. Finally, R’s 3D capabilities are less well
developed than those of MATLAB or Mathematica (although the rgl package,
which is used in Figure 4 and has been partially integrated with the Rcmdr and
vegan packages, is under rapid development). A package called ggobi allows
you to explore scatterplots of high-dimensional/multivariate data sets.

5.1.3 Fraction of seeds taken

It may make more sense to try to work with the fraction of seeds taken, and to
see how this varies with number available (is it constant? or does the fraction of
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seeds taken increase with the density of seeds (predator attraction) or decrease
(predator saturation) or vary among species?

> frac.taken = SeedPred$taken/SeedPred$available

Plotting the fraction taken directly (e.g. as a function of number available:
plot(SeedPred$available,frac.taken)) turns out to be uninformative, since
all of the possible values (e.g. 0/3, 1/3, 2/3, 1) appear in the data set and so
there is lots of overlap: we could use sizeplot or jitter again,

Suppose we want to calculate the mean fraction taken for each number of
seeds available. The command

> mean.frac.by.avail = tapply(frac.taken, available,

+ mean, na.rm = TRUE)

computes the mean fraction taken (frac.taken) for each different number of
seeds available (available: R temporarily converts available into a factor
for this purpose). (The tapply command is discussed in more detail in the R
supplement.)

We can also use tapply to calculate the standard errors, σ/
√

n:

> n.by.avail = table(available)

> sd.by.avail = tapply(frac.taken, available, sd, na.rm = TRUE)

> se.by.avail = sd.by.avail/sqrt(n.by.avail)

I’ll use a variant of barplot, barplot2 (from the gplots package) to plot
these values with standard errors (R does not supply error-bar plotting as a
built-in function, but you can use the barplot2 (gplots package) or plotCI
(gplots or plotrix package) functions to add error bars to a plot: see the R
supplement.

While a slightly larger fraction of available seeds is removed when 5 seeds are
available, there is not much variation overall (Figure 5). We can use tapply to
cross-tabulate by species as well: the following commands would show a barplot
of the fraction taken for each combination of number available and species:

> mean.frac.by.avail.sp = tapply(frac.taken, list(available,

+ species), mean, na.rm = TRUE)

> mean.frac.by.avail.sp = na.omit(mean.frac.by.avail.sp)

> barplot(mean.frac.by.avail.sp, beside = TRUE)

It’s often better to use a box plot (or box-and-whisker plot) to compare con-
tinuous data in different groups. Box plots show more information than bar
plots, and show it in a robust form (see p. 23 for an example). However, in this
case the box plot is dominated by zeros and so is not very informative.

One more general plotting strategy small multiples (Tufte, 2001), or breaking
the plot into an array of similar plots comparing patterns at different levels (by
species, in this case). To make small multiples in base graphics, I would use
par=mfrow(c(r,c)) to divide the plot region up into a grid with r rows and c
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Figure 6: Small multiples: bar plots of number of seeds taken by number avail-
able and species. (barchart( frac.taken|species))

columns and then draw a plot for each level separately. The lattice package
handles small multiples automatically, and elegantly. In this case, I used the
command

> nz = subset(SeedPred, taken > 0)

to separate out the cases where at least 1 seed was removed, and then

> barchart(table(nz$available, nz$species, nz$taken),

+ stack = FALSE)

to plot bar charts showing the distribution of the number of seeds taken for
each number available, subdivided by species. (barchart(...,stack=FALSE)
is the lattice equivalent of barplot(...,beside=TRUE).) In other contexts,
the lattice package uses a vertical bar | to denote a small-multiple plot. For
example, bwplot(frac.taken~available|species), would draw an array of
box plots, one for each species, of the fraction of seeds taken as a function of
the number available (see p. 24 for an example).

Figure 6 shows that the all-or-nothing distribution shown in Figure 3 is not
just an artifact of lumping all the species together, but holds up at the individual
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species level. The patterns are slightly different, since in Figure 3 we chose to
handle the large number of zero cases by log-transforming the number of counts
(to compress the range of number of counts), while here we have just dropped
the zero cases. Nevertheless, it is still more likely that a small or large fraction
of the available seeds will disappear, rather than an intermediate fraction.

We could ask many more questions about these data.

� Is the length of time available for removal important? although most
stations were checked every 7 days, the interval ranged from 3 to 10
(table(tint)). Would separating the data by tint, or standardizing
to a removal rate (tint/taken), show any new patterns?

� Do the data contain more information about the effects of distance from
the forest? Would any of Figures 2–6 show different patterns if we sepa-
rated the data by distance?

� Do the seed removal patterns vary along the transects (remember that
the stations are spaced every 5 m along two transects)? Are neighboring
stations more likely to be visited by predators? Are there gradients in
removal rate from one end of the transect to the other?

However, you may be getting tired of seeds by now. The remaining examples
in this chapter show more kinds of graphs and more techniques for rearranging
data.

5.2 Tadpole predation data

The next example data set describes the survival of tadpoles of an African
treefrog, Hyperolius spinigularis, in field predation trials conducted in large
tanks. Vonesh and Bolker (2005) present the full details of the experiment; the
goal was to understand the tradeoffs that H. spinigularis face between avoiding
predation in the egg stage (eggs are attached to tree leaves above ponds, and
are exposed to predation by other frog species and by parasitoid flies) and in
the larval stage (tadpoles drop into the water and are exposed to predation by
many aquatic organisms including larval dragonflies). In particular, juveniles
may face a trade-off between hatching earlier (and hence smaller) to avoid egg
predators and surviving as tadpoles, since smaller tadpoles are at higher risk
from aquatic predators.∗ Here, we’re just going to look at the data as an exam-
ple of dealing with continuous predictor variables (i.e., exploring how predation
risk varies with tadpole size and density).

Since reading in these data is straightforward, we’ll take a shortcut and use
the data command to pull the data into R from the emdbook package. There
are three data sets corresponding to three different experiments:

∗In fact, the study found that smaller, earlier-hatched tadpoles manage to compensate
for this risk by growing faster through the size range in which they are vulnerable to aquatic
predators.
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� ReedfrogPred: results of a factorial experiment that quantified the num-
ber of tadpoles surviving for 16 weeks (surv: survprop gives the propor-
tion surviving) with and without predators (pred), with three different
tadpole densities (density), at two different initial tadpole sizes (size);

� ReedfrogSizepred: data from a more detailed experiment on the effects of
size (TBL, for tadpole body length) on survival over 3 days (Kill, number
killed out of 10);

� ReedfrogFuncresp: data from a more detailed experiment on the effects
of initial tadpole density (Initial) on the number killed over 14 days
(Killed).

5.2.1 Factorial predation experiment (ReedfrogPred)

What are the overall effects of predation, size, density, and their interactions on
survival? Figure 7 uses boxplot(propsurv~size*density*pred) to display the
experimental results (bwplot is the lattice equivalent of boxplot). Box plots
show more information than barplots. In general, you should prefer boxplots
to barplots unless you are particularly interested in comparing values to zero
(barplots are anchored at zero, which emphasizes this comparison).

Specifically, the line in the middle of each box represents the median; the
ends of the boxes (“hinges”) are the first and third quartiles (approximately: see
?boxplot.stats for gory details); the “whiskers” extend to the most extreme
data point in either direction that is within a factor of 1.5 of the hinge; any
points beyond the whiskers (there happen to be none in Figure 7) are considered
outliers and are plotted individually. It’s clear from the picture that predators
significantly lower survival (not surprising). Density and tadpole size also have
effects, and may interact (the effect of tadpole size in the predation treatment
appears larger at high densities).∗ The order of the factors in the boxplot
formula doesn’t really change the answers, but it does change the order in which
the bars are presented, which emphasizes different comparisons. In general, you
should organize barplots and other graphics to focus attention on the most
important or most interesting question: in this case, the effect of predation is
so big and obvious that it’s good to separate predation from no-predation first
so we can see the effects of size and density. I chose size*density*pred to
emphasize the effects of size by putting the big- and small-tadpole bars within
a density treatment next to each other; density*size*pred would emphasize
the effects of density instead.

Boxplots are also implemented in the lattice package:
∗An analysis of variance on the arcsine-square root transformed proportion surviving (Ta-

ble 1 in Vonesh and Bolker (2005)) identifies significant effects of density, predator, density ×
predator and size × predator interactions (i.e. density and size matter only when predators
are present), but not a significant density × size × predator interaction. Either the apparent
increase in size effect at high densities in the presence of a predator is by chance alone, or the
statistical test was not powerful enough to distinguish it from chance.
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Figure 7: Results of factorial experiment on H. spinigularis predation:
boxplot(propsurv~size*density*pred,data=ReedfrogPred).

> bwplot(propsurv ~ density | pred * size, data = ReedfrogPred,

+ horizontal = FALSE)

gives a boxplot. Substituting dotplot for bwplot would produce a dot-plot
instead, which shows the precise value for each experimental unit — good for
relatively small data sets like this one, although in this particular example sev-
eral points fall on top of each other in the treatments where there was high
survival.

5.2.2 Effects of density and tadpole size

Once the factorial experiment had established the qualitative effects of density
and tadpole size on predation, Vonesh ran more detailed experiments to explore
the ecological mechanisms at work: how, precisely, do density and size affect
predation rate, and what can we infer from these effects about tadpole life
history choices?

Figure 8 shows the relationship between (a) initial density and (b) tadpole
size and the number of tadpoles killed by aquatic predators. The first relation-
ship shows the predator functional response — how the total number of prey
eaten increases, but saturates, as prey density increases. The second relation-
ship demonstrates a size refuge — small tadpoles are protected because they
are hidden or ignored by predators, while large tadpoles are too big to be eaten
or big enough to escape predators.

Questions about the functional relationship between two continuous vari-
ables are very common in ecology; we’re asking how one ecological variable
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Figure 8: H. spinigularis tadpole predation by dragonfly larvae as a function of
(a) initial density of tadpoles (b) initial size of tadpoles.

affects another. Chapter ?? will present a wide variety of plausible mathe-
matical functions to describe such relationships. When we do exploratory data
analysis, on the other hand, we want ways of“connecting the dots”that are plau-
sible but that don’t make too many assumptions. Typically we’re interested in
smooth, continuous functions. For example, we think that a small change in
initial density should not lead to an abrupt change in the number of tadpoles
eaten.

The pioneers of exploratory data analysis invented several recipes to describe
such smooth relationships.

� R incorporates two slightly different versions of robust locally weighted re-
gression (lowess and loess). This algorithm runs linear or quadratic
regressions on successive chunks of the data to produce a smooth curve.
lowess has an adjustable smoothness parameter (in this case the propor-
tion of points included in the “neighborhood” of each point when smooth-
ing) that lets you choose curves ranging from smooth lines that ignore a lot
of the variation in the data to wiggly lines that pass through every point:
in Figure 8a, I used the default value (lines(lowess(Initial,Killed))).

� Figure 8a also shows a spline fit to the data which uses a series of cubic
curves to fit the data. Splines also have a smoothing parameter, the degrees
of freedom or number of different piecewise curves fitted to the data; in
this case I set the degrees of freedom to 5 (the default here would be 2) to
get a slightly more wiggly curve (smooth.spline(Initial, Killed,df
= 5)).

25



� Simpler possibilities include just drawing a straight line between the mean
values for each initial density (using tapply(Killed,Initial,mean) to
calculate the means and unique(Initial) to get the non-repeated values
of the initial density), or plotting the results of a linear or quadratic re-
gression of the data (not shown: see the R supplement). I plotted straight
lines between the means in Figure 8b because local robust regression and
splines worked poorly.

To me, these data present fewer intriguing possibilities than the seed removal
data — primarily because they represent the results of a carefully targeted
experiment, designed to answer a very specific question, rather than a more
general set of field observations. The trade-off is that there are fewer loose
ends; in the end we were actually able to use the detailed information about the
shapes of the curves to explain why small tadpoles experienced higher survival,
despite starting out at an apparent disadvantage.

5.3 Damselfish data

The next example comes from Schmitt et al.’s (1999) work on a small reef fish,
the three-spot damselfish (Dascyllus trimaculatus), in French Polynesia. Like
many reef fish, Dascyllus’s local population dynamics are open. Pelagic larval
fish immigrate from outside the area, settling when they arrive on sea anemones.
Schmitt et al. were interested in understanding how the combination of larval
supply (settler density), density-independent mortality, and density-dependent
mortality determines local population densities.

The data are observations of the numbers of settlers found on previously
cleared anemones after settlement pulses and observations of the number of sub-
adults recruiting (surviving after 6 months) in an experiment where densities
were artificially manipulated.

The settlement data set, DamselSettlement, includes 600 observations at
10 sites, across 6 different settlement pulses in two years. Each observation
records the site at which settlement was observed (site), the month (pulse)
and the number (obs) and density per 0.1 m2 (density) of settling larvae. The
first recruitment data set, DamselRecruitment, gives the anemone area in 0.1
m2 (area), the initial number of settlers introduced (init), and the number
of recruits (sub-adults surviving after 6 months: surv). The second recruit-
ment data set, DamselRecruitment_sum, gives information on the recruitment
according to target densities (the densities the experimenters were trying to
achieve), rather than the actual experimental densities, and are summarized by
category. It includes the target settler density (settler.den), the mean recruit
density in that category after 6 months (surv.den), and the standard error of
recruit density (SE).

5.3.1 Density-recruitment experiment

The relationship between settler density and recruit density (Figure 9) is eco-
logically interesting, but does not teach us many new graphical or data analysis

26



●

●

●

●

●

●

●

●

●● ● ●

●

●

●
●

●

●

●

●

●

●

●

●●● ●●●● ●●● ●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

Initial density(( 0.1m2))

R
ec

ru
it 

de
ns

ity
 (

6 
m

on
th

s)

0

5

10

0.5 5.0 50.0 500.0

●
●

● ● ●

●

●

●
● ●

●

●

●

actual
target
lowess

Figure 9: Recruit (sub-adult) D. trimaculatus density after 6 months, as a
function of experimentally manipulated settler density. Black points show actual
densities and survivorship; gray points with error bars show the recruit density,
± 1 SE, by the target density category; line is a lowess fit.

tricks. I did plot the x axis on a log scale, which shows the low-density data
more clearly but makes it harder to see whether the curve fits any of the stan-
dard ecological models (for example, purely density-independent survival would
produce a straight line on a regular (linear) scale). Nevertheless, we can see that
the number recruiting at high densities levels off (evidence of density-dependent
survival) and there is even a suggestion of overcompensation — a decreasing
density of recruits at extreme densities.

Settlement data The reef fish data also provide us with information about
the variability in settlement density across space and time. Schmitt et al.
lumped all of these data together, to find out how the distribution of settle-
ment density affects the relative importance of density-independent and density-
dependent factors (Figure 10).

Figure 10 shows a histogram of the settlement densities. Histograms (hist
in basic graphics or histogram in lattice graphics) resemble barplots but are
designed for continuous rather than discrete distributions. They break the data
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Figure 10: Overall distribution of settlement density of D.trimaculatus across
space and time (only values < 200/(0.1m2); 8 values excluded).
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up into evenly spaced categories and plot the number or proportion of data
points that fall into each bin. You can use histograms for discrete data, if you’re
careful to set the breaks between integer values (e.g. at seq(0,100,by=0.5)),
but plot(table(x)) or barplot(table(x)) are generally better. Although
histograms are familiar to most ecologists, kernel density estimators (Venables
and Ripley, 2002, density:), which produce a smooth estimate of the probability
density rather than breaking the counts into discrete categories, are generally
better than histograms — especially for large data sets. While any form of
binning (including kernel density estimation) requires some choice about how
finely vs. coarsely to subdivide or smooth the data, density estimators have a
better theoretical basis and hence less ad hoc rules about how much to smooth.
It is also simpler to superimpose densities graphically to compare distributions.
The only case where I prefer histograms to densities is when I am interested
in the distribution near a boundary such as zero, when density estimation can
produce artifacts. Estimating the density and adding it to Figure 10 was as
simple as lines(density(setdens)).

The zero-settlement events are shown as a separate category by using breaks=c(0,seq(1,200,by=4)).
Rather than plot the number of counts in each category, the probability density
is shown, so that the area in each bar is proportional to the number of counts.
Perhaps the most striking feature of the histogram is the large number of zeros:
this aspect is downplayed by the original histogram in Schmitt et al. (1999),
which plots the zero counts separately but failed to increase the height of the
bar to compensate for its narrower width. The zero counts seem to fall into a
separate category; ecologically, one might wonder why there are so many zeros,
and whether there are any covariates that would predict where and when there
were no settlers. Depending on your ecological interests, you also might want
to replot the histogram without the zeros to focus attention on the shape of the
rest of the distribution.

The histogram also shows that the distribution is very wide (one might
try plotting a histogram of log(1 + x) to compress the distribution). In fact,
I actually excluded the 8 largest values from the histogram. (R’s histogram
function does not have a convenient way to lump “all larger values” into the
last bar, as in Schmitt et al.’s original figure.) The first part of the distribution
falls off smoothly (once we ignore the zeros), but there are enough extremely
large values to make us ask both what is driving these extreme events and what
effects they may be having.

Schmitt et al. did not explore the distribution of settlement across time and
space. We could use

> bwplot(log10(1 + density) ~ pulse | site, data = DamselSettlement,

+ horizontal = FALSE)

to plot box-and-whisker plots of settlement divided by pulse, with small multi-
ples for each site, for the damselfish settlement data. We can also use a pairs
plot (pairs) or scatterplot matrix (splom in the lattice package) to explore
the structure of multivariate data (many predictor variables, many response
variables, or both: Figure 11). The pairs plot shows a table of x-y plots, one
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for each pair of variables in the data set. In this case, I’ve used it to show the
correlations between settlement to a few of the different sites in Schmitt et al.’s
data set (each site contains multiple reefs where settlement is counted): because
the DamselSettlement data set is in long form, we first have to reshape it so
that we have a separate variable for each site:

> library(reshape)

> x2 = melt(DamselSettlement, measure.var = "density")

> x3 = cast(x2, pulse + obs ~ ...)

The first few rows and columns of the reshaped data set look like this:

pulse obs Cdina_density Hin_density Hout_density ...
1 1 1 2.7 0.0 0 ...
2 1 2 2.7 0.0 0 ...
3 1 3 2.7 0.0 0 ...
4 1 4 2.7 3.6 0 ...

and we can now use pairs(log10(1+x3[,3:5])) (or splom(log10(1+x3[,3:5]))
to use lattice graphics) to produce the scatterplot matrix (Figure 11).

5.4 Goby data

We can explore the effect of density on survival in more detail with another data
set on reef fish survivorship, this one on the marine gobies Elacatinus prochilos
and E. evelynae in St. Croix (Wilson, 2004). Like damselfish, larval marine
gobies also immigrate to a local site, although these species settle on coral
heads rather than on anemones. Wilson experimentally manipulated density in
a series of experiments across several years; she replaced fish as they died in
order to maintain the local density experienced by focal individuals∗.

Previous experiments and observations suggested that patch reefs with higher
natural settlement rate have lower mortality rates, once one accounts for the ef-
fects of density. Thus reefs with high natural settlement rates were deemed to
be of putatively high “quality”, and the natural settlement rate was taken as an
index of quality in subsequent experiments in which density was manipulated.

Reading from a comma-separated file, specifying that the first four columns
are factors and the last four numeric:

> gobydat = read.csv("GobySurvival.csv", colClasses = c(rep("factor",

+ 4), rep("numeric", 4)))

Left to its own devices, R would have guessed that the first two columns (ex-
periment number and year) were numeric rather than factors. I could then have
converted them back to factors via gobydat$exper=factor(gobydat$exper)
and gobydat$year=factor(gobydat$year).

∗Unlike the rest of the data sets in the book, I did not include this one in the emdbook

package, since all the analyses have not yet been published. I will include them as soon as
they become available; please feel free to contact me (BMB) in the meanwhile if you would
like access to them.
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Figure 11: Scatterplot matrix of settlement to three selected reefs
(logarithm(1 + x) scale), with points numbered according to pulse:
splom(log10(1+x3[,3:5]),groups=x3$pulse,pch=as.character(1:6))
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R has an attach command that gives direct access to the columns in a data
frame: if we say

> attach(gobydat)

we can then refer to year, exper, d1 rather than gobydat$year, gobydat$exper,
gobydat$d1 and so forth. attach can make your code easier to read, but it can
also be confusing: see p. 39 for some warnings.

For each individual monitored, the data give the experiment number (exper:
5 separate experiments were run between 2000 and 2002) and information about
the year and location of the experiment (year, site); information about the
location (coral head: head) of each individual and the corresponding density
(density) and quality (qual) of the coral head; and the fate of the individual
— the last day it was observed (d1) and the first day it was not seen (d2, set
to 70 if the fish was present on the last sampling day of the experiment. (In
survival analysis literature, individuals that are still alive when the study ends
are called right-censored). Since juvenile gobies of these species rarely disperse,
we will assume that a fish that disappears has died.

Survival data are challenging to explore graphically, because each individual
provides only a single discrete piece of information (its time of death or disap-
pearance, which we will approximate in this case by the average between the
last time it was observed and the first time it was not observed):

> meansurv = (d1 + d2)/2

For visualization purposes, it will be useful to define low- and high-density
and low- and high-quality categories. We will use the ifelse(val,a,b) com-
mand to assign value a if val is TRUE or b if val is FALSE), and the factor
command to make sure that level low is listed before high even though it is
alphabetically after it.

> dens.cat = ifelse(density > median(density), "high",

+ "low")

> dens.cat = factor(dens.cat, levels = c("low", "high"))

> qual.cat = ifelse(qual > median(qual), "high", "low")

> qual.cat = factor(qual.cat, levels = c("low", "high"))

Figure 12 shows an xyplot of the mean survival value, jittered and divided
into low- and high-quality categories, with linear-regression lines added to each
subplot. There is some mild evidence that mean survival declines with density
at low-quality sites, but much of the pattern is driven by the fish with meansurv
of > 40 (which are all fish that survived to the end of the experiment) and by
the large cluster of short-lived fish at low quality and high densities (> 10).

Let’s try calculating and plotting the mortality rate over time, and the pro-
portion surviving over time (the survival curve), instead.

Starting by taking all the data together, we would calculate these values by
first tabulating the number of individuals disappearing in each time interval:
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Figure 12: Mean survival time as a function of density, divided by quality
(background settlement) category.
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> survtab = table(meansurv)

> survtab

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
137 113 17 8 14 3 5 13 4 3 26 26

To calculate the number of individuals that disappeared on or after a given time,
reverse the table (rev) and take its cumulative sum (cumsum):

> csurvtab = cumsum(rev(survtab))

> csurvtab

41 40.5 11 10 9.5 9 7 6 5 3.5 2.5 1.5
26 52 55 59 72 77 80 94 102 119 232 369

Reversing the vector again sorts it into order of increasing time:

> csurvtab = rev(csurvtab)

To calculate the proportional mortality at each time step, divide the number
disappearing by the total number still present (I have rounded to 2 digits):

> survtab/csurvtab

meansurv
1.5 2.5 3.5 5 6 7 9 9.5 10 11 40.5 41
0.37 0.49 0.14 0.08 0.15 0.04 0.06 0.18 0.07 0.05 0.50 1.00

Figure 13 plots the proportion dying and survival curves by quality/density
category. The plot of proportion dying is very noisy, but does suggest that
the disappearance rate starts relatively high (≈ 50% per observation period)
and then decreases (the end of the experiment gets very noisy, and was left off
the plot). The survival curve is clearer. Since it is plotted on a logarithmic
scale, the leveling-off of the curves is an additional indication that the mortality
rate decreases with time (constant mortality would lead to exponential decline,
which would appear as a straight line on a logarithmic graph). As expected, the
low quality, high density treatment has the lowest proportion surviving, with
the other three treatments fairly closely clustered and not in the expected order
(we would expect the high quality, low density treatment to have the highest
survivorship).

6 Conclusion

This chapter has given an overview and examples of how to get data into R and
start plotting it in various ways to ask ecological questions. I have overlooked
a variety of special-case kinds of data (e.g. circular data such as directional
data or daily event times; highly multivariate data; spatial data and maps;
compositional data, where the sum of proportions in different categories adds
to 1.0); Table 1 gives some ideas for handling these data types, but you may
also have to search elsewhere, for example using RSiteSearch("circular") to
look for information on circular statistics.
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Predictors Response Plot choices
single categorical single categorical table, barplot , dotchart, barchart [L],

dotplot [L]
multiple categorical single categorical as above, plus mosaicplot, small multi-

ples (par(mfrow)/par(mfcol) or lattice
plots), sizeplot [plotrix] or 3D histogram
[scatterplot3d, rgl]

circular categorical rose.diag [CircStats]
circular continuous polar.plot [plotrix]
none compositional barplot(...,beside=FALSE),

barchart(...,stack=TRUE) [L], ternaryplot
[vcd], triax.plot [plotrix]

single categorical multiple continuous stars
none or single cate-
gorical

single continuous boxplot, bwplot [L], violin plots
(bwplot(...,panel=panel.violin) [L],
vioplot [vioplot], stripplot [L], barplot2
[gplot] for error bars

continuous+categorical single continuous scatterplot (plot , xyplot [L]) with categories
indicated by plotting symbols (pch), color (col),
size (cex) or (in lattice) groups argument

single continuous single continuous plot , xyplot [L]; lowess, supsmu,
smooth.spline for curves; plotCI [gplots
or plotrix] for error bars

multiple continuous multiple continuous conditioning plots (coplot or lattice plots),
3D scatter- or lollipop plots (cloud [L],
scatterplot3d [scatterplot3d] or plot3d
[rgl]

continuous (time or
1D space)

continuous plot/xyplot with type="l" or type="b"

continuous (2D
space)

continuous image, contour, persp, kde2d [MASS],
wireframe [L], surface3d [rgl], maps package,
maptools package, sp package

Table 1: Summary of graphical procedures. Square brackets denote functions
in packages; [L] denotes functions in the lattice package.
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Figure 13: Goby survival data: proportional mortality and fraction surviving
over time, for different quality/density categories

7 R supplement

All of the R code in this supplement is available from http://www.zoo.ufl.
edu/bolker/emdbook in an electronic format that will be easier to cut and paste
from, in case you want to try it out for yourself (you should).

7.1 Clean, reshape, and read in data

To let R know where your data files are located, you have a few choices:

� spell out the path, or file location, explicitly. (Use a single forward slash to
separate folders (e.g. "c:/Users/bolker/My Documents/R/script.R"):
this works on all platforms.)

� use filename=file.choose(), which will bring up a dialog box to let you
choose the file and set filename. This works on all platforms, but is only
useful on Windows and MacOS).

� Use menu commands to change your working directory to wherever the
files are located: File/Change dir (Windows) or Misc/Change Working
Directory (Mac).

� Change your working directory to wherever the file(s) are located using
the setwd (set working directory) function, e.g. setwd("c:/temp")
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Changing your working directory is more efficient in the long run, if you save
all the script and data files for a particular project in the same directory and
switch to that directory when you start work.

The seed removal data were originally stored in two separate Excel files,
one for the 10 m transect and one for the 25 m transect: After a couple of
preliminary errors I decided to include na.strings=" " (to turn blank cells
into NAs and comment="" (to deal with a # character in the column names —
although I could also have edited the Excel file to remove it):

> dat_10 = read.csv("duncan_10m.csv", na.strings = "?",

+ comment = "")

> dat_25 = read.csv("duncan_25m.csv", na.strings = "?",

+ comment = "")

str and summary originally showed that I had some extra columns and rows:
row 160 of dat_10, and columns 40–44 of dat_25, were junk. I could have gotten
rid of them this way:

> dat_10 = dat_10[1:159, ]

> dat_25 = dat_25[, 1:39]

(I could also have used negative indices to drop specific rows/columns: dat_10[-160),]
and dat_25[-(40:44),] would have the same effect).

Now we reshape the data, specifying id.var=1:2 to preserve the first two
columns, station and species, as identifier variables:

> library(reshape)

> dat_10_melt = melt(dat_10, id.var = 1:2)

Convert the third column to a date, using paste to append 1999 to each
date (sep="." separates the two pasted strings with a period):

> date_10 = paste(dat_10_melt[, 3], "1999", sep = ".")

Then use as.Date to convert the string to a date (%d means day, %b%
means three-letter month abbreviation, and %Y% means four-digit year; check
?strptime for more date format details).

> dat_10_melt[, 3] = as.Date(date_10, format = "X%d.%b.%Y")

Finally, rename the columns.

> names(dat_10_melt) = c("station", "species", "date",

+ "seeds")

Do the same for the 25-m transect data:

> dat_25_melt = melt(dat_25, id.var = 1:2)

> date_25 = paste(dat_25_melt[, 3], "1999", sep = ".")

> dat_25_melt[, 3] = as.Date(date_25, format = "X%d.%b.%Y")

> names(dat_25_melt) = c("station", "species", "date",

+ "seeds")

37



We’ve finished cleaning up and reformatting the data. Now we would like
to calculate some derived quantities: specifically, tcum (elapsed time from the
first sample), tint (time since previous sample), taken (number removed since
previous sample), and available (number available at previous sample). We’ll
split the data frame up into a separate chunk for each station:

> split_10 = split(dat_10_melt, dat_10_melt$station)

Now go through, and for each chunk, calculate the cumulative time by sub-
tracting the first date from all the dates; the time interval by taking the dif-
ference of successive dates (with diff) and putting an NA at the beginning;
the number of seeds lost by taking the negative of the difference of successive
numbers of seeds; and the number of seeds available at the previous time by
prepending NA and dropping the last element. Then put the new derived vari-
ables together with the original data and re-assign it.

for loops are a general way of executing similar commands many times. A
for loop runs for every value in a vector.

for (var in vec) {
commands

}

runs the R commands inside the curly brackets once for each element of vec,
each time setting the variable var to the corresponding element of vec. The
most common use of for loops is to run a set of commands n times by making
vec equal 1:n.

For example, the for loop below executes each statement inside the curly
brackets {}, setting i to each value between 1 and the number of stations:

> for (i in 1:length(split_10)) {

+ x = split_10[[i]]

+ tcum = as.numeric(x$date - x$date[1])

+ tint = as.numeric(c(NA, diff(x$date)))

+ taken = c(NA, -diff(x$seeds))

+ available = c(NA, x$seeds[-nrow(x)])

+ split_10[[i]] = data.frame(x, tcum, tint, taken,

+ available)

+ }

Now we want to stick all of the little bits of the data frame back together.
rbind (for row bind) combines columns, but normally we would say rbind(x,y,z)
to combine three matrices (or data frames) with the same number of columns.
If, as in this case, we have a list of matrices that we want to combine, we have
to use do.call("rbind",list to to apply rbind to the list:

> dat_10 = do.call("rbind", split_10)

This trick is useful whenever you have individuals or stations that have data
recorded only for the first observation of the individual. In some cases you can
also do these manipulations by working with the data in wide format.
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Do the same for the 25-m data (not shown):
Create new data frames with an extra column that gives the distance from

the forest (rep is the R command to repeat values); then stick them together.

> dat_10 = data.frame(dat_10, dist = rep(10, nrow(dat_10)))

> dat_25 = data.frame(dat_25, dist = rep(25, nrow(dat_25)))

> SeedPred = rbind(dat_10, dat_25)

Convert station and distance from numeric to factors:

> SeedPred$station = factor(SeedPred$station)

> SeedPred$dist = factor(SeedPred$dist)

Reorder columns:

> SeedPred = SeedPred[, c("station", "dist", "species",

+ "date", "seeds", "tcum", "tint", "taken", "available")]

> SeedPred_wide = reshape(SeedPred[order(SeedPred$date),

+ ], direction = "wide", timevar = "date", idvar = c("station",

+ "dist", "species"), drop = c("tcum", "tint",

+ "taken", "available"))

7.2 Plots: seed data

7.2.1 Mean number remaining with time

Attach the seed removal (predation) data:

> attach(SeedPred)

Using attach can make your code easier to read, since you don’t have to
put SeedPred$ in front of the column names, but it’s important to realize that
attaching a data frame makes a local copy of the variables. Changes that you
make to these variables are not saved in the original data frame, which can be
very confusing. Therefore, it’s best to use attach only after you’ve finished
modifying your data. attach can also be confusing if you have columns with
the same name in two different attached data frames: use search to see where
R is looking for variables. It’s best to attach just one data frame at a time —
and make sure to detach it when you finish.

Separate out the 10 m and 25 m transect data from the full seed removal
data set:

> SeedPred_10 = subset(SeedPred, dist == 10)

> SeedPred_25 = subset(SeedPred, dist == 25)

The tapply (for table apply, pronounced “t apply”) function splits a vector
into groups according to the list of factors provided, then applies a function
(e.g. mean or sd) to each group. To split the data on numbers of seeds present
by date and species and take the mean (na.rm=TRUE says to drop NA values):
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> s10_means = tapply(SeedPred_10$seeds, list(SeedPred_10$date,

+ SeedPred_10$species), mean, na.rm = TRUE)

> s25_means = tapply(SeedPred_25$seeds, list(SeedPred_25$date,

+ SeedPred_25$species), mean, na.rm = TRUE)

matplot (“matrix plot”) plots the columns of a matrix together against a
single x variable. Use it to plot the 10 m data on a log scale (log="y") with
both lines and points (type="b"), in black (col=1), with plotting characters 1
through 8, with solid lines (lty=1). Use matlines (“matrix lines”) to add the
25 m data in gray. (lines and points are the base graphics commands to add
lines and points to an existing graph.)

> matplot(s10_means, log = "y", type = "b", col = 1,

+ pch = 1:8, lty = 1)

> matlines(s25_means, type = "b", col = "gray", pch = 1:8,

+ lty = 1)

7.2.2 Seed data: distribution of number taken vs. available

Jittered plot:

> plot(jitter(SeedPred$available), jitter(SeedPred$taken))

Bubble plot: this differs from Figure 2 because I don’t exclude cases where
there are no seeds available. (I use xlim and ylim to extend the axes slightly.)
scale and pow can be tweaked to change the size and scaling of the symbols.

To plot the numbers in each category, I use text, row to get row numbers,
and col to get column numbers; I subtract 1 from the row and column numbers
to plot values starting at zero.

> library(plotrix)

> sizeplot(SeedPred$available, SeedPred$taken, scale = 0.5,

+ pow = 0.5, xlim = c(-2, 6), ylim = c(-2, 5))

> t1 = table(SeedPred$available, SeedPred$taken)

> text(row(t1) - 1, col(t1) - 1, t1)

Or you can use balloonplot from the gplots package:

> library(gplots)

> balloonplot(t1)

Finally, the default mosaic plot, either using the default plot command on
the existing tabulation

> plot(t1)

or using mosaicplot with a formula based on the columns of SeedPred:

> mosaicplot(~available + taken, data = SeedPred)

Bar plot:
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> barplot(t(log10(t1 + 1)), beside = TRUE, xlab = "Available",

+ ylab = "log10(1+# observations)")

or

> barplot(t(t1 + 1), log = "y", beside = TRUE, xlab = "Available",

+ ylab = "1+# observations")

Bar plot of mean fraction taken:

> mean.frac.by.avail = tapply(frac.taken, available,

+ mean, na.rm = TRUE)

> n.by.avail = table(available)

> se.by.avail = tapply(frac.taken, available, sd, na.rm = TRUE)/sqrt(n.by.avail)

> barplot2(mean.frac.by.avail, plot.ci = TRUE, ci.l = mean.frac.by.avail -

+ se.by.avail, ci.u = mean.frac.by.avail + se.by.avail,

+ xlab = "Number available", ylab = "Fraction taken")

Bar plot of mean fraction taken by species — in this case we use barplot,
saving the x locations of the bars in a variable b, and then add the confidence
intervals with plotCI.

> library(plotrix)

> frac.taken = SeedPred$taken/SeedPred$available

> mean.frac.by.avail.by.species = tapply(frac.taken,

+ list(available, species), mean, na.rm = TRUE)

> n.by.avail.by.species = table(available, species)

> se.by.avail.by.species = tapply(frac.taken, list(available,

+ species), sd, na.rm = TRUE)/sqrt(n.by.avail.by.species)

> b = barplot(mean.frac.by.avail.by.species, beside = TRUE)

> plotCI(b, mean.frac.by.avail.by.species, se.by.avail.by.species,

+ add = TRUE, pch = ".", gap = FALSE)

3D plots: using t1 from above, define the x, y, and z variables for the plot:

> avail = row(t1)[t1 > 0]

> taken = col(t1)[t1 > 0] - 1

> freq = log10(t1[t1 > 0])

The scatterplot3d library is a little bit simpler to use, but less interactive
— once the plot is drawn you can’t change the viewpoint. Plot -avail and
-taken to reverse the order of the axes and use type="h" (originally named for
a “high density” plot in R’s 2D graphics) to draw lollipops:

> library(scatterplot3d)

> scatterplot3d(-avail, -taken, freq, type = "h", angle = 50,

+ pch = 16)

With the rgl library: first plot spheres (type="s") hanging in space:
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> library(rgl)

> plot3d(avail, taken, freq, lit = TRUE, col.pt = "gray",

+ type = "s", size = 0.5, zlim = c(0, 4))

Then add stems and grids to the plot:

> plot3d(avail, taken, freq, add = TRUE, type = "h",

+ size = 4, col = gray(0.2))

> grid3d(c("x+", "y-", "z"))

Use the mouse to move the viewpoint until you like the result.

7.2.3 Histogram/small multiples

Using lattice graphics, as in the text:

> histogram(~frac.taken | species, xlab = "Fraction taken")

or with base graphics:

> op = par(mfrow = c(3, 3))

> for (i in 1:length(levels(species))) {

+ hist(frac.taken[species == levels(species)[i]],

+ xlab = "Fraction taken", main = "", col = "gray")

+ }

> par(op)

op stands for “old parameters”. Saving the old parameters in this way and using
par(op) at the end of the plot restores the original graphical parameters.

Clean up:

> detach(SeedPred)

7.3 Tadpole data

As mentioned in the text, reading in the data was fairly easy in this case:
read.table(...,header=TRUE) and read.csv worked without any tricks. I
take a shortcut, therefore, to load these datasets from the emdbook library:

> data(ReedfrogPred)

> data(ReedfrogFuncresp)

> data(ReedfrogSizepred)

7.3.1 Boxplot of factorial experiment

The boxplot is fairly easy:

> graycols = rep(rep(gray(c(0.4, 0.7, 0.9)), each = 2),

+ 2)

> boxplot(propsurv ~ size * density * pred, data = ReedfrogPred,

+ col = graycols)
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Play around with the order of the factors to see how useful the different plots
are.

graycols specifies the colors of the bars to mark the different density treat-
ments. gray(c(0.4,0.7,0.9)) produces a vector of colors; rep(gray(c(0.4,0.7,0.9)),each=2)
repeats each color twice (for the big and small treatments within each den-
sity treatment; and rep(rep(gray(c(0.4,0.7,0.9)),each=2),2) repeats the
whole sequence twice (for the no-predator and predator treatments).

7.3.2 Functional response values

I’ll attach the functional response data:

> attach(ReedfrogFuncresp, warn = FALSE)

A simple x-y plot, with an extended x axis and some axis labels:

> plot(Initial, Killed, xlim = c(0, 100), ylab = "Number killed",

+ xlab = "Initial density")

Adding the lowess fit (lines is the general command for adding lines to a
plot: points is handy too):

> lines(lowess(Initial, Killed))

Calculate mean values and corresponding initial densities, add to the plot
with a different line type:

> meanvals = tapply(Killed, Initial, mean)

> densvals = unique(Initial)

> lines(densvals, meanvals, lty = 3)

Fit a spline to the data using the smooth.spline command:

> lms = smooth.spline(Initial, Killed, df = 5)

To add the spline curve to the plot, I have to use predict to calculate the
predicted values for a range of initial densities, then add the results to the plot:

> ps = predict(lms, x = 0:100)

> lines(ps, lty = 2)

Equivalently, I could use the lm function with ns (natural spline), which is
a bit more complicated to use in this case but has more general uses:

> library(splines)

> lm1 = lm(Killed ~ ns(Initial, df = 5), data = ReedfrogSizepred)

> p1 = predict(lm1, newdata = data.frame(Initial = 1:100))

> lines(p1, lty = 2)

Finally, I could do linear or quadratic regression (I need to use I(Initial^2)
to tell R I really want to fit the square of the initial density); adding the lines
to the plot would follow the procedure above.
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> lm2 = lm(Killed ~ Initial, data = ReedfrogSizepred)

> lmq = lm(Killed ~ Initial + I(Initial^2), data = ReedfrogSizepred)

Clean up:

> detach(ReedfrogFuncresp)

The (tadpole size) vs. (number killed) plot follows similar lines, although I
did use sizeplot because there were overlapping points.

7.4 Damsel data

7.4.1 Survivors as a function of density

Load and attach data:

> data(DamselRecruitment)

> data(DamselRecruitment_sum)

> attach(DamselRecruitment)

> attach(DamselRecruitment_sum)

Plot surviving vs. initial density; use plotCI to add the summary data by
target density; and add a lowess-smoothed curve to the plot:

> plot(init.dens, surv.dens, log = "x")

> plotCI(settler.den, surv.den, SE, add = TRUE, pch = 16,

+ col = "darkgray", gap = 0)

> lines(lowess(init.dens, surv.dens))

Clean up:

> detach(DamselRecruitment)

> detach(DamselRecruitment_sum)

7.4.2 Distribution of settlement density

Plot the histogram (normally one would specify freq=FALSE to plot probabil-
ities rather than counts, but the uneven breaks argument makes this happen
automatically).

> attach(DamselSettlement)

> hist(density[density < 200], breaks = c(0, seq(1,

+ 201, by = 4)), col = "gray", xlab = "", ylab = "Prob. density")

> lines(density(density[density < 200], from = 0))

Some alternatives to try:

> hist(log(1 + density))

> hist(density[density > 0], breaks = 50)
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(you can use breaks to specify particular breakpoints, or to give the total num-
ber of bins to use).

If you really want to lump all the large values together:

> h1 = hist(density, breaks = c(0, seq(1, 201, by = 4),

+ 500), plot = FALSE)

> b = barplot(h1$counts, space = 0)

> axis(side = 1, at = b, labels = h1$mids)

(use hist to calculate the number of counts in each bin, but don’t plot anything;
use barplot to plot the values (ignoring the uneven width of the bins!), with
space=0 to squeeze them together).

Box and whisker plots:

> bwplot(log10(1 + density) ~ pulse | site, data = DamselSettlement,

+ horizontal = FALSE)

Other variations to try:

> densityplot(~density, groups = site, data = DamselSettlement,

+ xlim = c(0, 100))

> bwplot(density ~ site, horizontal = FALSE, data = DamselSettlement)

> bwplot(density ~ site | pulse, horizontal = FALSE,

+ data = DamselSettlement)

> bwplot(log10(1 + density) ~ site | pulse, data = DamselSettlement,

+ panel = panel.violin, horizontal = FALSE)

> boxplot(density ~ site * pulse)

Scatterplot matrices: first reshape the data.

> library(reshape)

> x2 = melt(DamselSettlement, measure.var = "density")

> x3 = cast(x2, pulse + obs ~ ...)

Scatterplot matrix of columns 3 to 5 (sites Cdina, Hin, and Hout) (pairs):

> pairs(log10(1 + x3[, 3:5]))

Scatterplot matrix of columns 3 to 5 (sites Cdina, Hin, and Hout) (splom):

> splom(log10(1 + x3[, 3:5]), groups = x3$pulse, pch = as.character(1:6),

+ col = 1)

> detach(DamselSettlement)

7.5 Goby data

Plotting mean survival by density subdivided by quality category:

> attach(gobydat)

> xyplot(jitter(meansurv, factor = 2) ~ jitter(density,

+ 2) | qual.cat, xlab = "Density", ylab = "Mean survival time")

The default amount of jittering is too small, so factor=2 doubles it — see
?jitter for details.
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7.5.1 Lattice plots with superimposed lines and curves

In order to add “extras” like extra points, linear regression lines, or loess fits
to lattice graphics, you have to write a new panel function, combining a a
default lattice panel function (usually called panel.xxx, e.g. panel.xyplot,
panel.densityplot, etc.) with components from ?panel.functions. For ex-
ample, here is a panel function that plots an x-y plot and adds a linear regression
line is:

> panel1 = function(x, y) {

+ panel.xyplot(x, y)

+ panel.lmline(x, y)

+ }

Then call the original lattice function with the new panel function:

> xyplot(jitter(meansurv, factor = 2) ~ jitter(density,

+ 2) | qual.cat, xlab = "Density", ylab = "Mean survival time",

+ panel = panel1)

> detach(gobydat)

7.5.2 Plotting survival curves

First set up categories for different combinations of quality and density by using
interaction, and count the number of observations in each combination.

> intcat = interaction(qual.cat, dens.cat)

> cattab = table(intcat)

Tabulate the number disappearing at each time in each category:

> survtab = table(meansurv, intcat)

Reverse order and calculate the cumulative sum by column (margin 2):

> survtab = survtab[nrow(survtab):1, ]

> csurvtab = apply(survtab, 2, cumsum)

Divide each column (survival curve per category) by the total number for
that category:

> cnsurvtab = sweep(csurvtab, 2, cattab, "/")

Calculate the fraction disappearing at each time:

> fracmort = survtab/csurvtab

Extract the time coordinate:

> days = as.numeric(rownames(csurvtab))

Plot survival curves by category:

> matplot(days, cnsurvtab, type = "s", xlab = "Time (days)",

+ ylab = "Proportion of cohort surviving", log = "y")
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