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1 Summary

This chapter first covers the mathematical tools and R functions that you need
in order to figure out the shape and properties of a mathematical function from
its formula. It then presents a broad range of commonly used functions and
explains their general properties and ecological uses.

2 Introduction

You’ve now learned how to start exploring the patterns in your data. The meth-
ods introduced in Chapter 2 provide only qualitative descriptions of patterns:
when you explore your data, you don’t want to commit yourself too soon to any
particular description of those patterns. In order to tie the patterns to ecologi-
cal theory, however, we often want to use particular mathematical functions to
describe the deterministic patterns in the data. Sometimes phenomenological
descriptions, intended to describe the pattern as simply and accurately as pos-
sible, are sufficient. Whenever possible, however, it’s better to use mechanistic
descriptions with meaningful parameters, derived from a theoretical model that
you or someone else has invented to describe the underlying processes driving
the pattern. (Remember from Chapter ?? that the same function can be either
phenomenological or mechanistic depending on context.) In any case, you need
to know something about a wide range of possible functions, and even more
to learn (or remember) how to discover the properties of a new mathematical
function. This chapter first presents a variety of analytical and computational
methods for finding out about functions, and then goes through a “bestiary” of
useful functions for ecological modeling. The chapter uses differential calculus
heavily. If you’re rusty, it would be a good idea to look at the Appendix for
some reminders.

For example, look again at the data introduced in Chapter 2 on predation
rate of tadpoles as a function of tadpole size (Figure 1). We need to know what
kinds of functions might be suitable for describing these data. The data which
are humped in the middle and slightly skewed to the right, which probably
reflects the balance between small tadpoles’ ability to hide from (or be ignored
by) predators large tadpoles’ ability to escape them or be too big to swallow.

1



●

●

●

● ●

●

●●

●

●

0 10 20 30 40

0

1

2

3

4

5

Tadpole Size (TBL in mm)

N
um

be
r 

ki
lle

d

Ricker
power−Ricker
modified logistic

Figure 1: Tadpole predation as a function of size, with some possible functions
fitted to the data.
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What functions could fit this pattern? What do their parameters mean in terms
of the shapes of the curves? In terms of ecology? How do we “eyeball” the data
to obtain approximate parameter values, which we will need as a starting point
for more precise estimation and as a check on our results?

The Ricker function, y = axe−bx, is a standard choice for hump-shaped
ecological patterns that are skewed to the right, but Figure 1 shows that it
doesn’t fit well. Two other choices, the power-Ricker (Persson et al., 1998) and
a modified logistic equation (Vonesh and Bolker, 2005) and fit pretty well: later
in the chapter we will explore some strategies for modifying standard functions
to make them more flexible.

3 Finding out about functions numerically

3.1 Calculating and plotting curves

You can use R to experiment numerically with different functions. It’s better
to experiment numerically after you’ve got some idea of the mathematical and
ecological meanings of the parameters: otherwise you may end up using the
computer as an expensive guessing tool. It really helps to have some idea what
the parameters of a function mean, so you can eyeball your data first and get a
rough idea of the appropriate values (and know more about what to tweak, so
you can do it intelligently). Nevertheless, I’ll show you first some of the ways
that you can use R to compute and draw pictures of functions so that you can
sharpen your intuition as we go along.

As examples, I’ll use the (negative) exponential function, ae−bx (R uses
exp(x) for the exponential function ex) and the Ricker function, axe−bx. Both
are very common in ecological modeling.

As a first step, you can simply use R as a calculator to plug values into
functions: e.g. 2.3*exp(1.7*2.4). Since most functions in R operate on vectors
(or “are vectorized”, ugly as the expression is), you can calculate values for a
range of inputs or parameters with a single command.

Next simplest, you can use the curve function to have R compute and plot
values for a range of inputs: use add=TRUE to add curves to an existing plot
(Figure 2). (Remember the differences between mathematical and R notation:
the exponential is ae−bx or a exp(−bx) in math notation, but it’s a*exp(-b*x)
in R. Using math notation in a computer context will give you an error. Using
computer notation in a math context is just ugly.)

If you want to keep the values of the function and do other things with
them, you may want to define your own vector of x values (with seq: call
it something like xvec) and then use R to compute the values (e.g., xvec =
seq(0,7,length=100)).

If the function you want to compute does not work on a whole vector at
once, then you can’t use either of the above recipes. The easiest shortcut in this
case, and a worthwhile thing to do for other reasons, is to write your own small
R function that computes the value of the function for a given input value, then
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Figure 2: Negative exponential (y = ae−bx) and Ricker (y = axe−bx) functions:
curve
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use sapply to run the function on all of the values in your x vector. When you
write such an R function, you would typically make the input value (x) be the
first argument, followed by all of the other parameters. It often saves time if
you assign default values to the other parameters: in the following example, the
default values of both a and b are 1.

> ricker = function(x, a = 1, b = 1) {

+ a * x * exp(-b * x)

+ }

> yvals = sapply(xvec, ricker)

(in this case, since ricker only uses vectorized operations, ricker(xvec) would
work just as well).∗

3.2 Plotting surfaces

Things get a bit more complicated when you consider a function of two (or more)
variables: R’s range of 3D graphics is more limited, it is harder to vectorize op-
erations over two different parameters, and you may want to compute the value
of the function so many times that you start to have to worry about computa-
tional efficiency (this is our first hint of the so-called curse of dimensionality,
which will come back to haunt us later).

Base R doesn’t have exact multidimensional analogues of curve and sapply,
but I’ve supplied some in the emdbook package: curve3d and apply2d. The
apply2d function takes an x vector and a y vector and computes the value of
a function for all of the combinations, while curve3d does the same thing for
surfaces that curve does for curves: it computes the function value for a range
of values and plots it†. The basic function for plotting surfaces in R is persp.
You can also use image or contour to plot 2D graphics, or wireframe [lattice
package], or persp3d [rgl package] as alternatives to persp. With persp and
wireframe, you may want to play with the viewing point for the 3D perspective
(modify theta and phi for persp and screen for wireframe); the rgl package
lets you use the mouse to move the viewpoint.

For example, Vonesh and Bolker (2005) suggested a way to combine size- and
density-dependent tadpole mortality risk by using a variant logistic function of
size as in Figure 1 to compute an attack rate α(s), then assuming that per capita
mortality risk declines with density N as α(s)/(1 + α(s)HN), where H is the
handling time (Holling type II functional response). Supposing we already have
a function attackrate that computes the attack rate as a function of size, our
mortality risk function would be:

> mortrisk = function(N, size, H = 0.84) {

+ a <- attackrate(size)

∗The definition of “input values” and “parameters” is flexible. You can also compute
the values of the function for a fixed value of x and a range of one of the parameters, e.g.
ricker(1,a=c(1.1,2.5,3.7)).

†For simple functions you can use the built-in outer function, but outer requires vectorized
functions: apply2d works around this limitation.
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Figure 3: Perspective plot for the mortality risk function used in Vonesh and
Bolker (2005): curve3d(mortrisk(N=x,size=y),to=c(40,30),theta=50).

+ a/(1 + a * N * H)

+ }

The H=0.84 in the function definition sets the default value of the handling time
parameter: if I leave H out (e.g. mortrisk(N=10,size=20)) then R will fill in
the default values for any missing parameters. Specifying reasonable defaults
can save a lot of typing.

4 Finding out about functions analytically

Exploring functions numerically is quick and easy, but limited. In order to really
understand a function’s properties, you must explore it analytically — i.e., you
have to analyze its equation mathematically. To do that and then translate
your mathematical intuition into ecological intuition, you must remember some
algebra and calculus. In particular, this section will explain how to take limits
at the ends of the range of the function; understand the behavior in the middle
of the range; find critical points; understand what the parameters mean and
how they affect the shape of the curve; and approximate the function near an
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arbitrary point (Taylor expansion). These tools will probably tell you everything
you need to know about a function.

4.1 Taking limits: what happens at either end?

Function values You can take the limit of a function as x gets large (x→∞)
or small (x → 0, or x → −∞ for a function that makes sense for negative x
values). The basic principle is to throw out lower-order terms. As x grows, it
will eventually grow much larger than the largest constant term in the equation.
Terms with larger powers of x will dwarf smaller powers, and exponentials will
dwarf any power. If x is very small then you apply the same logic in reverse;
constants are bigger than (positive) powers of x, and negative powers (x−1 =
1/x, x−2 = 1/x2, etc.) are bigger than any constants. (Negative exponentials go
to 1 as x approaches zero, and 0 as x approaches ∞.) Exponentials are stronger
than powers: x−nex eventually gets big and xne−x eventually gets small as x
increases, no matter how big n is.

Our examples of the exponential and the Ricker function are almost too
simple: we already know that the negative exponential function approaches
1 (or a, if we are thinking about the form ae−bx) as x approaches 0 and 0
as x becomes large. The Ricker is slightly more interesting: for x = 0 we can
calculate the value of the function directly (to get a ·0 ·e−b·0 = 0 ·1 = 0) or argue
qualitatively that the e−bx part approaches 1 and the ax part approaches zero
(and hence the whole function approaches zero). For large x we have a concrete
example of the xne−x example given above (with n = 1) and use our knowledge
that exponentials always win to say that the e−bx part should dominate the ax
part to bring the function down to zero in the limit. (When you are doing this
kind of qualitative reasoning you can almost always ignore the constants in the
equation.)

As another example, consider the Michaelis-Menten function (f(x) = ax/(b+
x)). We see that as x gets large we can say that x� b, no matter what b is (�
means “is much greater than”), so b + x ≈ x, so

ax

b + x
≈ ax

x
= a : (1)

the curve reaches a constant value of a. As x gets small, b� x so

ax

b + x
≈ ax

b
: (2)

the curve approaches a straight line through the origin, with slope a/b. As x goes
to zero you can see that the value of the function is exactly zero (a×0)/(b+0) =
0/b = 0).

For more difficult functions that contain a fraction whose numerator and
denominator both approach zero or infinity in some limit (and thus make it
hard to find the limiting value), you can try L’Hôpital’s Rule, which says that
the limit of the function equals the limit of the ratio of the derivatives of the
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numerator and the denominator:

lim
a(x)
b(x)

= lim
a′(x)
b′(x)

. (3)

(a’(x) is an alternative notation for da
dx ).

Derivatives As well as knowing the limits of the function, we also want to
know how the function increases or decreases toward them: the limiting slope.
Does the function shoot up or down (a derivative that “blows up” to positive
or negative infinity), change linearly (a derivative that reaches a positive or
negative constant limiting value), or flatten out (a derivative with limit 0)? To
figure this out, we need to take the derivative with respect to x and then find
its limit at the edges of the range.

The derivative of the exponential function f(x) = ae−bx is easy (if it isn’t,
review the Appendix): f ′(x) = −abe−bx. When x = 0 this becomes ab, and
when x gets large the e−bx part goes to zero, so the answer is zero. Thus (as you
may already have known), the slope of the (negative) exponential is negative at
the origin (x = 0) and the curve flattens out as x gets large.

The derivative of the Ricker is only a little harder (use the product rule):

daxe−bx

dx
= (a · e−bx + ax · −be−bx) = (a− abx) · e−bx = a(1− bx)e−bx. (4)

At zero, this is easy to compute: a(1 − b · 0)e−b·0 = a · 1 · 1 = a. As x goes
to infinity, the (1 − bx) term becomes negative (and large in magnitude) and
the e−bx term goes toward zero, and we again use the fact that exponentials
dominate linear and polynomial functions to see that the curve flattens out,
rather than becoming more and more negative and crashing toward negative
infinity. (In fact, we already know that the curve approaches zero, so we could
also have deduced that the curve must flatten out and the derivative must
approach zero.)

In the case of the Michaelis-Menten function it’s easy to figure out the slope
at zero (because the curve becomes approximately (a/b)x for small x), but in
some cases you might have to take the derivative first and then set x to 0. The
derivative of ax/(b + x) is (using the quotient rule)

(b + x) · a− ax · 1
(b + x)2

=
ab + ax− ax

(b + x)2
=

ab

(b + x)2
(5)

which (as promised) is approximately a/b when x ≈ 0 (following the rule that
(b + x) ≈ b for x ≈ 0). Using the quotient rule often gives you a complicated
denominator, but when you are only looking for points where the derivative is
zero, you can calculate when the numerator is zero and ignore the derivative.

4.2 What happens in the middle? Scale parameters and
half-maxima

It’s also useful to know what happens in the middle of a function’s range.
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Figure 4: (Left) Half-lives and e-folding times for a negative exponential func-
tion. (Right) Half-maximum and characteristic scales for a Michaelis-Menten
function.

For unbounded functions (functions that increase to ∞ or decrease to −∞
at the ends of their range), such as the exponential, we may not be able to find
special points in the middle of the range, although it’s worth trying out special
cases such as x = 1 (or x = 0 for functions that range over negative and positive
values) just to see if they have simple and interpretable answers.

In the exponential function ae−bx, b is a scale parameter. In general, if a
parameter appears in a function in the form of bx or x/c, its effect is to scale the
curve along the x-axis — stretching it or shrinking it, but keeping the qualitative
shape the same. If the scale parameter is in the form bx then b has inverse-x
units (if x is a time measured in hours, then b is a rate per hour with units
hour−1). If it’s in the form x/c then c has the same units as x, and we can call
c a “characteristic scale”. Mathematicians often choose the form bx because it
looks cleaner, while ecologists may prefer x/c because it’s easier to interpret the
parameter when it has the same units as x. Mathematically, the two forms are
equivalent, with b = 1/c; this is an example of changing the parameterization of
a function (see p. 11).

For the negative exponential function ae−bx, the characteristic scale 1/b is
also sometimes called the e-folding time (or e-folding distance if x measures
distance rather than time). The value of the function drops from a at x = 0
to a/e = ae−1 when x = 1/b, and drops a further factor of e = 2.718 . . . ≈ 3
every time x increases by 1/b (Figure 4). Exponential-based functions can also
be described in terms of the half-life (for decreasing functions) or doubling time
(for increasing functions), which is T1/2 = ln 2/b. When x = T1/2, y = a/2, and
every time x increases by T1/2 the function drops by another factor of 2.)

For the Ricker function, we already know that the function is zero at the
origin and approaches zero as x gets large. We also know that the derivative is
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positive at zero and negative (but the curve is flattening out, so the derivative
is increasing toward zero), as x gets large. We can deduce∗ that the derivative
must be zero and the function must reach a peak somewhere in the middle; we
will calculate the location and height of this peak in the next section.

For functions that reach an asymptote, like the Michaelis-Menten, it’s useful
to know when the function gets “halfway up”—the half-maximum is a point on
the x-axis, not the y-axis. We figure this out by figuring out the asymptote
(=a for this parameterization of the Michaelis-Menten function) and solving
f(x1/2) = asymptote/2. In this case

ax1/2

b + x1/2
=

a

2

ax1/2 =
a

2
· (b + x1/2)(

a− a

2

)
x1/2 =

ab

2

x1/2 =
2
a
· ab

2
= b.

The half-maximum b is the characteristic scale parameter for the Michaelis-
Menten: we can see this by dividing the numerator and denominator by b to get
f(x) = a · (x/b)/(1 + x/b). As x increases by half-maximum units (from x1/2

to 2x1/2 to 3x1/2), the function first reaches 1/2 its asymptote, then 2/3 of its
asymptote, then 3/4 . . . (Figure 4).

We can calculate the half-maximum for any function that starts from zero
and reaches an asymptote, although it may not be a simple expression.

4.3 Critical points and inflection points

We might also be interested in the critical points—maxima and minima — of
a function. To find the critical points of f , remember from calculus that they
occur where f ′(x) = 0; calculate the derivative, solve it for x, and plug that
value for x into f(x) to determine the value (peak height/trough depth) at that
point∗. The exponential function is monotonic: it is always either increasing
or decreasing depending on the sign of b (its slope is always either positive or
negative for all values of x) — so it never has any critical points.

The Michaelis-Menten curve is also monotonic: we figured out above that
its derivative is ab/(b + x)2. Since the denominator is squared, the derivative
is always positive. (Strictly speaking, this is only true if a > 0. Ecologists
are usually sloppier than mathematicians, who are careful to point out all the
assumptions behind a formula (like a > 0, b > 0, x ≥ 0). I’m acting like
an ecologist rather than a mathematician, assuming parameters and x values
are positive unless otherwise stated.) While remaining positive, the derivative

∗Because the Ricker function has continuous derivatives
∗The derivative is also zero at saddle points, where the function temporarily flattens on

its way up or down.
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decreases to zero as x → ∞ (because a/(1 + bx)2 ≈ a/(bx)2 ∝ 1/x2); such a
function is called saturating.

We already noted that the Ricker function, axe−bx, has a peak in the middle
somewhere: where is it? Using the product rule:

d(axe−bx)
dx

= 0

ae−bx + ax(−be−bx) = 0
(1− bx)ae−bx = 0

The left-hand side can only be zero if 1 − bx = 0, a = 0 (a case we’re ignoring
as ecologists), or e−bx = 0. The exponential part e−bx is never equal to 0, so
we simply solve (1− bx) = 0 to get x = 1/b. Plugging this value of x back into
the equation tells us that the height of the peak is (a/b)e−1. (You may have
noticed that the peak location, 1/b, is the same as the characteristic scale for
the Ricker equation.)

4.4 Understanding and changing parameters

Once you know something about a function (its value at zero or other special
points, value at ∞, half-maximum, slope at certain points, and the relationship
of these values to the parameters), you can get a rough idea of the meanings of
the parameters. You will find, alas, that scientists rarely stick to one parameter-
ization. Reparameterization seems like an awful nuisance — why can’t everyone
just pick one set of parameters and stick to it? — but, even setting aside his-
torical accidents that make different fields adopt different parameterizations,
different parameterizations are useful in different contexts. Different parame-
terizations have different mechanistic interpretations. For example, we’ll see in
a minute that the Michaelis-Menten function can be interpreted (among other
possibilities) in terms of enzyme reaction rates and half-saturation constants or
in terms of predator attack rates and handling times. Some parameterizations
make it easier to estimate parameters by eye. For example, half-lives are eas-
ier to see than e-folding times, and peak heights are easier to see than slopes.
Finally, some sets of parameters are strongly correlated, making them harder
to estimate from data. For example, if you write the equation of a line in the
form y = ax + b, the estimates of the slope a and the intercept b are negatively
correlated, but if you instead say y = a(x − x̄) + ȳ, estimating the mean value
of y rather than the intercept, the estimates are uncorrelated. You just have to
brush up your algebra and learn to switch among parameterizations.

We know the following things about the Michaelis-Menten function f(x) =
ax/(b + x): the value at zero f(0) = 0; the asymptote f(∞) = a; the initial
slope f ′(0) = a/b; and the half-maximum (the characteristic scale) is b.

You can use these characteristics crudely estimate the parameters from the
data. Find the asymptote and the x value at which y reaches half of its maximum
value, and you have a and b. (You can approximate these values by eye, or use
a more objective procedure such as taking the mean of the last 10% of the data
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to find the asymptote.) Or you can estimate the asymptote and the initial slope
(∆y/∆x), perhaps by linear regression on the first 20% of the data, and then
use the algebra b = a/(a/b) = asymptote/(initial slope) to find b.

Equally important, you can use this knowledge of the curve to translate
among algebraic, geometric, and mechanistic meanings. When we use the
Michaelis-Menten in community ecology as the Holling type II functional re-
sponse, its formula is P (N) = αN/(1 + αHN), where P is the predation rate,
N is the density of prey, α is the attack rate, and H is the handling time. In
this context, the initial slope is α and the asymptote is 1/H. Ecologically, this
makes sense because at low densities the predators will consume prey at a rate
proportional to the attack rate (P (N) ≈ αN) while at high densities the pre-
dation rate is entirely limited by handling time (P (N) ≈ 1/H). It makes sense
that the predation rate is the inverse of the handling time: if it takes half an
hour to handle (capture, swallow, digest, etc.) a prey, and essentially no time to
locate a new one (since the prey density is very high), then the predation rate is
1/(0.5 hour) = 2/hour. The half-maximum in this parameterization is 1/(αH).

On the other hand, biochemists usually parameterize the function more as we
did above, with a maximum rate vmax and a half-maximum Km: as a function
of concentration C, f(C) = vmaxC/(Km + C).

As another example, recall the following facts about the Ricker function
f(x) = axe−bx: the value at zero f(0) = 0; the initial slope f ′(0) = a; the
horizontal location of the peak is at x = 1/b; and the peak height is a/(be). The
form we wrote above is algebraically simplest, but it might be more convenient
to parameterize the curve in terms of its peak location (let’s say p = 1/b):
y = axe−x/p. Fisheries biologists often use another parameterization, R =
Se−a3−bS , where a3 = ln a (Quinn and Deriso, 1999).

4.5 Transformations

Beyond changing the parameterization, you can also change the scales of the x
and y axes, or in other words transform the data. For example, in the Ricker
example just given (R = Se−a3−bS), if we plot − ln(R/S) against S, we get the
line − ln(R/S) = a3 + bS, which makes it easy to see that a3 is the intercept
and b is the slope.

Log transformations of x or y or both are common because they make ex-
ponential relationships into straight lines. If y = ae−bx and we log-transform y
we get ln y = ln a− bx (a semi-log plot). If y = axb and we log-transform both
x and y we get ln y = ln a + b lnx (a log-log plot).

Another example: if we have a Michaelis-Menten curve and plot x/y against
y, the relationship is

x/y =
x

ax/(b + x)
=

b + x

a
=

1
a
· x +

b

a
,

which represents a straight line with slope 1/a and intercept b/a.
All of these transformations are called linearizing transformations. Re-

searchers often used them in the past to fit straight lines to data when when
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computers were slower. Linearizing is not recommended when there is another
alternative such as nonlinear regression, but transformations are still useful.
Linearized data are easier to eyeball, so you can get rough estimates of slopes
and intercepts by eye, and it is easier to see deviations from linearity than from
(e.g.) an exponential curve. Log-transforming data on geometric growth of a
population lets you look at proportional changes in the population size (a dou-
bling of the population is always represented by the distance on the y axis).
Square-root-transforming data on variances lets you look at standard devia-
tions, which are measured in the same units as the original data and may thus
be easier to understand.

The logit or log-odds function, logit(x) = log(x/(1 − x))∗ (qlogis(x) in
R) is another common linearizing transformation. If x is a probability then
x/(1 − x) is the ratio of the probability of occurrence (x) to the probability of
non-occurrence 1−x, which is called the odds (for example, a probability of 0.1
or 10% corresponds to odds of 0.1/0.9 = 1/9). The logit transformation makes
a logistic curve, y = ea+bx/(1 + ea+bx), into a straight line:

y = ea+bx/(1 + ea+bx)(
1 + ea+bx

)
y = ea+bx

y = ea+bx(1− y)
y

1− y
= ea+bx

log
(

y

1− y

)
= a + bx

(6)

4.6 Shifting and scaling

Another way to change or extend functions is to shift or scale them. For example,
let’s start with the simplest form of the Michaelis-Menten function, and then
see how we can manipulate it (Figure 5). The function y = x/(1 + x) starts at
0, increases to 1 as x gets large, and has a half-maximum at x = 1.

� We can stretch, or scale, the x axis by dividing x by a constant — this
means you have to go farther on the x axis to get the same increase in
y. If we substitute x/b for x everywhere in the function, we get y =
(x/b)/(1 + x/b). Multiplying the numerator and denominator by b shows
us that y = x/(b + x), so b is just the half-maximum, which we identified
before as the characteristic scale. In general a parameter that we multiply
or divide x by is called a scale parameter because it changes the horizontal
scale of the function.

� We can stretch or scale the y axis by multiplying the whole right-hand
side by a constant. If we use a, we have y = ax/(b + x), which as we have
seen above moves the asymptote from 1 to a.

∗Throughout this book I use log(x) to mean the natural logarithm of x, also called ln(x)
or loge(x). If you need a refresher on logarithms, see the Appendix.
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Figure 5: Scaled, shifted Michaelis-Menten function y = a(x−c)/((x−c)+b)+d.

� We can shift the whole curve to the right or the left by subtracting or
adding a constant location parameter from x throughout; subtracting a
(positive) constant from x shifts the curve to the right. Thus, y = a(x−
c)/(b + (x − c)) hits y = 0 at c rather than zero. (You may want in this
case to specify that y = 0 if y < c — otherwise the function may behave
badly [try curve(x/(x-1),from=0,to=3) to see what might happen].)

� We can shift the whole curve up or down by adding or subtracting a
constant to the right-hand side: y = a(x− c)/(b+(x− c))+ d would start
from y = d, rather than zero, when x = c (the asymptote also moves up
to a + d).

These recipes can be used with any function. For example, Emlen (1996) wanted
to describe a relationship between the prothorax and the horn length of horned
beetles where the smallest beetles in his sample had a constant, but non-zero,
horn length. He added a constant to a generalized logistic function to shift the
curve up from its usual zero baseline.
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4.7 Taylor series approximation

The Taylor series or Taylor approximation is the single most useful, and used,
application of calculus for an ecologist. Two particularly useful applications
of Taylor approximation are understanding the shapes of goodness-of-fit sur-
faces (Chapter ??) and the delta method for estimating errors in estimation
(Chapter ??).

The Taylor series allows us to approximate a complicated function near a
point we care about, using a simple function — a polynomial with a few terms,
say a line or a quadratic curve. All we have to do is figure out the slope (first
derivative) and curvature (second derivative) at that point. Then we can con-
struct a parabola that matches the complicated curve in the neighborhood of
the point we are interested in. (In reality the Taylor series goes on forever — we
can approximate the curve more precisely with a cubic, then a 4th-order poly-
nomial, and so forth — but in practice ecologists never go beyond a quadratic
expansion.)

Mathematically, the Taylor series says that, near a given point x0,

f(x) ≈ f(x0)+
df

dx

∣∣∣∣
x0

·(x−x0)+
d2f

dx2

∣∣∣∣
x0

· (x− x0)2

2
+. . .+

dnf

dxn

∣∣∣∣
x0

· (x− x0)n

n!
+. . .

(7)
(the notation df

dx

∣∣∣
x0

means “the derivative evaluated at the point x = x0”).

Taylor approximation just means dropping terms past the second or third.
Figure 6 shows a function and the constant, linear, quadratic, and cubic

approximations (Taylor expansion using 1, 2, or 3 terms). The linear approx-
imation is bad but the quadratic fit is good very near the center point, and
the cubic accounts for some of the asymmetry in the function. In this case one
more term would match the function exactly, since it is actually a 4th-degree
polynomial.

the exponential function The Taylor expansion of the exponential, erx,
around x = 0 is 1+rx+(rx)2/2+(rx)3/(2 ·3) . . .. Remembering this fact rather
than working it out every time may save you time in the long run — for example,
to understand how the Ricker function works for small x we can substitute
(1 − bx) for e−bx (dropping all but the first two terms!) to get y ≈ ax − abx2:
this tells us immediately that the function starts out linear, but starts to curve
downward right away.

the logistic curve Calculating Taylor approximations is often tedious (all
those derivatives), but we usually try to do it at some special point where a lot
of the complexity goes away (such as x = 0 for a logistic curve).

The general form of the logistic (p. 26) is ea+bx/(1 + ea+bx), but doing the
algebra will be simpler if we set a = 0 and divide numerator and denominator
by ebx to get f(x) = 1/(1 + e−bx). Taking the Taylor expansion around x = 0:

� f(0) = 1/2
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Figure 6: Taylor series expansion of a 4th-order polynomial.
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� f ′(x) = be−bx

(1+e−bx)2
(writing the formula as (1+e−bx)−1 and using the power

rule and the chain rule twice) so f ′(0) = (b · 1)/((1 + 1)2) = b/4∗

� Using the quotient rule and the chain rule:

f ′′(0) =
(1 + e−bx)2(−b2e−bx)− (be−bx)(2(1 + e−bx)(−be−bx))

(1 + e−bx)4

∣∣∣∣
x=0

=
(1 + 1)2(−b2)− (b)(2(1 + 1)(−b))

(1 + 1)4

=
(−4b2) + (4b2)

16
= 0

(8)

R will actually compute simple derivatives for you (using D: see p. 33), but
it won’t simplify them at all. If you just need to compute the numerical value
of the derivative for a particular b and x, it may be useful, but there are often
general answers you’ll miss by doing it this way (for example, in the above case
that f ′′(0) is zero for any value of b).

Stopping to interpret the answer we got from all that tedious algebra: we
find out that the slope of a logistic function around its midpoint is b/2, and
its curvature (second derivative) is zero: that means that the midpoint is an
inflection point (where there is no curvature, or where the curve switches from
being concave to convex), which you might have known already. It also means
that near the inflection point, the logistic can be closely approximated by a
straight line. (For y near zero, exponential growth is a good approximation;
for y near the asymptote, exponential approach to the asymptote is a good
approximation.)

5 Bestiary of functions

The remainder of the chapter describes different families of functions that are
useful in ecological modeling: Table 1 gives an overview of their qualitative
properties. This section includes little R code, although the formulas should
be easy to translate into R. You should skim through this section on the first
reading to get an idea of what functions are available. If you begin to feel bogged
down you can skip ahead and use the section for reference as needed.

5.1 Functions based on polynomials

A polynomial is a function of the form y =
∑n

i=0 aix
i.

∗We calculate f ′(x) and evaluate it at x = 0. We don’t calculate the derivative of f(0),
because f(0) is a constant value (1/2 in this case) and its derivative is zero.
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Function Range Left end Right end Middle

Polynomials
Line {−∞,∞} y → ±∞, y → ±∞, monotonic

constant slope constant slope
Quadratic {−∞,∞} y → ±∞, y → ±∞, single max/min

accelerating accelerating
Cubic {−∞,∞} y → ±∞, y → ±∞, up to 2 max/min

accelerating accelerating
Piecewise polynomials
Threshold {−∞,∞} flat flat breakpoint
Hockey stick {−∞,∞} flat or linear flat or linear breakpoint
Piecewise linear {−∞,∞} linear linear breakpoint
Rational
Hyperbolic {0,∞} y →∞ y → 0 decreasing

or finite
Michaelis-Menten {0,∞} y = 0, linear asymptote saturating
Holling type III {0,∞} y = 0, accelerating asymptote sigmoid
Holling type IV (c < 0) {0,∞} y = 0, accelerating asymptote hump-shaped
Exponential-based
Neg. exponential {0,∞} y finite y → 0 decreasing
Monomolecular {0,∞} y = 0, linear y → 0 saturating
Ricker {0,∞} y = 0, linear y → 0 hump-shaped
logistic {0,∞} y small, accelerating asymptote sigmoid
Power-based
Power law {0,∞} y → 0 or →∞ y → 0 or →∞ monotonic
von Bertalanffy like logistic
Gompertz ditto
Shepherd like Ricker
Hassell ditto
Non-rectangular hyperbola like Michaelis-Menten

Table 1: Qualitative properties of bestiary functions.
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Examples

� linear: f(x) = a + bx, where a is the intercept (value when x = 0) and b
is the slope. (You know this, right?)

� quadratic: f(x) = a + bx + cx2. The simplest nonlinear model.

� cubics and higher-order polynomials: f(x) =
∑n

i aixi. The order or degree
of a polynomial is the highest power that appears in it (so e.g. f(x) =
x5 + 4x2 + 1 is 5th-order).

Advantages Polynomials are easy to understand. They are easy to reduce to
simpler functions (nested functions) by setting some of the parameters to zero.
High-order polynomials can fit arbitrarily complex data.

Disadvantages On the other hand, polynomials are often hard to justify
mechanistically (can you think of a reason an ecological relationship should
be a cubic polynomial?). They don’t level off as x goes to ±∞ — they al-
ways go to -∞ or ∞ as x gets large. Extrapolating polynomials often leads to
nonsensically large or negative values. High-order polynomials can be unstable:
following Forsythe et al. (1977) you can show that extrapolating a high-order
polynomial from a fit to US census data from 1900–2000 predicts a population
crash to zero around 2015!

It is sometimes convenient to parameterize polynomials differently. For ex-
ample, we could reparameterize the quadratic function y = a1 + a2x + a3x

2 as
y = a + c(x − b)2 (where a1 = a + cb2, a2 = 2cb, a3 = c). It’s now clear that
the curve has its minimum at x = b (because (x− b)2 is zero there and positive
everywhere else), that y = a at the minimum, and that c governs how fast the
curve increases away from its minimum. Sometimes polynomials can be partic-
ularly simple if some of their coefficients are zero: y = bx (a line through the
origin, or direct proportionality, for example, or y = cx2. Where a polynomial
actually represents proportionality or area, rather than being an arbitrary fit to
data, you can often simplify in this way.

The advantages and disadvantages listed above all concern the mathemat-
ical and phenomenological properties of polynomials. Sometimes linear and
quadratic polynomials do actually make sense in ecological settings. For exam-
ple, a population or resource that accumulates at a constant rate from outside
the system will grow linearly with time. The rates of ecological or physiological
processes (e.g. metabolic cost or resource availability) that depend on an or-
ganism’s skin surface or mouth area will be a quadratic function of its size (e.g.
snout-to-vent length or height).

5.1.1 Piecewise polynomial functions

You can make polynomials (and other functions) more flexible by using them as
components of piecewise functions. In this case, different functions apply over
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different ranges of the predictor variable. (See p. 32 for information on using
R’s ifelse function to build piecewise functions.)

Examples

� Threshold models: the simplest piecewise function is a simple threshold
model — y = a1 if x is less than some threshold T , and y = a2 if x is
greater. Hilborn and Mangel (1997) use a threshold function in an example
of the number of eggs a parasitoid lays in a host as a function of how many
she has left (her“egg complement”), although the original researchers used
a logistic function instead (Rosenheim and Rosen, 1991).

� The hockey stick function (Bacon and Watts, 1971, 1974) is a combination
of a constant and a linear piece: typically either flat and then increasing
linearly, or linear and then suddenly hitting a plateau. Hockey-stick func-
tions have a fairly long history in ecology, at least as far back as the
definition of the Holling type I functional response, which is supposed
to represent foragers like filter feeders that can continually increase their
uptake rate until they suddenly hit a maximum. Hockey-stick models
have recently become more popular in fisheries modeling, for modeling
stock-recruitment curves (Barrowman and Myers, 2000), and in ecology,
for detecting edges in landscapes (Toms and Lesperance, 2003)∗. Under
the name of self-excitable threshold autoregressive (SETAR) models, such
functions have been used to model density-dependence in population dy-
namic models of lemmings (Framstad et al., 1997), feral sheep (Grenfell
et al., 1998), and moose (Post et al., 2002); in another population dynamic
context, Brännström and Sumpter (2005) call them ramp functions.

� Threshold functions are flat (i.e., the slope is zero) on both sides of the
breakpoint, and hockey sticks are flat on one side. More general piecewise
linear functions have non-zero slope on both sides of the breakpoint s1:

y = a1 + b1x

for x < s1 and
y = (a1 + b1s1) + b2(x− s1)

for x > s1. (The extra complications in the formula for x > s1 ensure that
the function is continuous.)

� Cubic splines are a general-purpose tool for fitting curves to data. They
are piecewise cubic functions that join together smoothly at transition
points called knots. They are typically used as purely phenomenologi-
cal curve-fitting tools, when you want to fit a smooth curve to data but
don’t particularly care about interpreting its ecological meaning Wood
(2001, 2006). Splines have many of the useful properties of polynomials

∗It is surely only a coincidence that so much significant work on hockey-stick functions
has been done by Canadians.
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a1

a2

s1

threshold:
f((x)) == a1 if x << s1

== a2 if x >> s1

hockey stick:
f((x)) == ax if x << s1

== as1 if x >> s1

a

s1

as1

general piecewise linear:
f((x)) == ax if x << s1

== as1 −− b((x −− s1)) if x >> s1

−b
a

s1 ●

●

●

●

●

●

splines:
f(x) is complicated

Figure 7: Piecewise polynomial functions: the first three (threshold, hockey
stick, general piecewise linear) are all piecewise linear. Splines are piecewise cu-
bic; the equations are complicated and usually handled by software (see ?spline
and ?smooth.spline).

(adjustable complexity or smoothness; simple basic components) without
their instability.

Advantages Piecewise functions make sense if you believe there could be
a biological switch point. For example, in optimal behavior problems theory
often predicts sharp transitions among different behavioral strategies (Hilborn
and Mangel, 1997, ch. 4). Organisms might decide to switch from growth to
reproduction, or to migrate between locations, when they reach a certain size
or when resource supply drops below a threshold. Phenomenologically, using
piecewise functions is a simple way to stop functions from dropping below zero
or increasing indefinitely when such behavior would be unrealistic.

Disadvantages Piecewise functions present some special technical challenges
for parameter fitting, which probably explains why they have only gained at-
tention more recently. Using a piecewise function means that the rate of change
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Holling type III:
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a

b

a
2

Holling type IV (c<0):
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ax2

b ++ cx ++ x2

a

−− 2b
c

Figure 8: Rational functions.

(the derivative) changes suddenly at some point. Such a discontinuous change
may make sense, for example, if the last prey refuge in a reef is filled, but transi-
tions in ecological systems usually happen more smoothly. When thresholds are
imposed phenomenologically to prevent unrealistic behavior, it may be better to
go back to the original biological system and try to understand what properties
of the system would actually stop (e.g.) population densities from becoming
negative: would they hit zero suddenly, or would a gradual approach to zero
(perhaps represented by an exponential function) be more realistic?

5.1.2 Rational functions: polynomials in fractions

Rational functions are ratios of polynomials, (
∑

aix
i)/(

∑
bjx

j).

Examples

� The simplest rational function is the hyperbolic function, a/x; this is of-
ten used (e.g.) in models of plant competition, to fit seed production
as a function of plant density. A mechanistic explanation might be that
if resources per unit area are constant, the area available to a plant for
resource exploitation might be proportional to 1/density, which would
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translate (assuming uptake, allocation etc. all stay the same) into a hy-
perbolically decreasing amount of resource available for seed production.
A better-behaved variant of the hyperbolic function is a/(b + x), which
doesn’t go to infinity when x = 0 (Pacala and Silander, 1987, 1990).

� The next most complicated, and probably the most famous, rational func-
tion is the Michaelis-Menten function: f(x) = ax/(b + x). Michaelis
and Menten introduced it in the context of enzyme kinetics: it is also
known, by other names, in resource competition theory (as the Monod
function), predator-prey dynamics (Holling type II functional response),
and fisheries biology (Beverton-Holt model). It starts at 0 when x = 0 and
approaches an asymptote at a as x gets large. The only major caveat with
this function is that it takes surprisingly long to approach its asymptote:
x/(1 + x), which is halfway to its asymptote when x = 1, still reaches
90% of its asymptote when x = 9. The Michaelis-Menten function can
be parameterized in terms of any two of the asymptote, half-maximum,
initial slope, or their inverses.

The mechanism behind the Michaelis-Menten function in biochemistry and
ecology (Holling type II) is similar; as substrate (or prey) become more
common, enzymes (or predators) have to take a larger and larger fraction
of their time handling rather than searching for new items. In fisheries,
the Beverton-Holt stock-recruitment function comes from assuming that
over the course of the season the mortality rate of young-of-the-year is a
linear function of their density (Quinn and Deriso, 1999).

� We can go one more step, going from a linear to a quadratic function in
the denominator, and define a function sometimes known as the Holling
type III functional response: f(x) = ax2/(b2 + x2). This function is
sigmoid, or S-shaped. The asymptote is at a; its shape is quadratic near
the origin, starting from zero with slope zero and curvature a/b2; and its
half-maximum is at x = b. It can occur mechanistically in predator-prey
systems because of predator switching from rare to common prey, predator
aggregation, and spatial and other forms of heterogeneity (Morris, 1997).

� Some ecologists have extended this family still further to the Holling type
IV functional response: f(x) = ax2/(b + cx + x2). Turchin (2003) derives
this function (which he calls a“mechanistic sigmoidal functional response”)
by assuming that the predator attack rate in the Holling type II functional
response is itself an increasing, Michaelis-Menten function of prey density
– that is, predators prefer to pursue more abundant prey. In this case,
c > 0. If c < 0, then the Holling type IV function is unimodal or “hump-
shaped”, with a maximum at intermediate prey density. Ecologists have
used this version of the Holling type IV phenomenologically to describe
situations where predator interference or induced prey defenses lead to
decreased predator success at high predator density (Holt, 1983; Collings,
1997; Wilmshust et al., 1999; Chen, 2004). Whether c is negative or posi-
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tive, the Holling type IV reaches an asymptote at a as x → ∞. If c < 0,
then it has a maximum that occurs at x = −2b/c.

� More complicated rational functions are potentially useful but rarely used
in ecology. The (unnamed) function y = (a + bx)/(1 + cx) has been used
to describe species-area curves (Flather, 1996; Tjørve, 2003).

Advantages Like polynomials, rational functions are very flexible (you can al-
ways add more terms in the numerator or denominator) and simple to compute;
unlike polynomials, they can reach finite asymptotes at the ends of their range.
In many cases, rational functions make mechanistic sense, arising naturally from
simple models of biological processes such as competition or predation.

Disadvantages Rational functions can be complicated to analyze because the
quotient rule makes their derivatives complicated. Like the Michaelis-Menten
function they approach their asymptotes very slowly, which makes estimating
the asymptote difficult — although this problem really says more about the
difficulty of getting enough data rather than about the appropriateness of ratio-
nal functions as models for ecological systems. Section 5.3 shows how to make
rational functions even more flexible by raising some of their terms to a power,
at the cost of making them even harder to analyze.

5.2 Functions based on exponential functions

5.2.1 Simple exponentials

The simplest examples of functions based on exponentials are the exponential
growth (aebx) or decay (ae−bx) and saturating exponential growth (monomolec-
ular, a(1−e−bx)). The monomolecular function (so named because it represents
the buildup over time of the product of a single-molecule chemical reaction) is
also

� the catalytic curve in infectious disease epidemiology, where it represents
the change over time in the fraction of a cohort that has been exposed to
disease (Anderson and May, 1991);

� the simplest form of the von Bertalanffy growth curve in organismal biol-
ogy and fisheries, where it arises from the competing effects of changes in
catabolic and metabolic rates with changes in size (Essington et al., 2001);

� the Skellam model in population ecology, giving the number of offspring
in the next year as a function of the adult population size this year when
competition has a particularly simple form (Skellam, 1951; Brännström
and Sumpter, 2005).

These functions have two parameters, the multiplier a which expresses the start-
ing or final size depending on the function, and the exponential rate b or “e-
folding time” 1/b (the time it takes to reach e times the initial value, or the
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Figure 9: Exponential-based functions. “M-M” in the monomolecular figure is
the Michaelis-Menten function with the same asymptote and initial slope.

initial value divided by e, depending whether b is positive or negative). The
e-folding time can be expressed as a half-life or doubling time (ln(2)/b) as well.
Such exponential functions arise naturally from any compounding process where
the population loses or gains a constant proportion per unit time; one example
is Beers’ Law for the decrease in light availability with depth in a vegetation
canopy (Teh, 2006).

The differences in shape between an exponential-based function and its
rational-function analogue (e.g. the monomolecular curve and the Michaelis-
Menten function) are usually subtle. Unless you have a lot of data you’re un-
likely to be able to distinguish from the data which fits better, and will instead
have to choose on the basis of which one makes more sense mechanistically, or
possibly which is more convenient to compute or analyze (Figure 9).

5.2.2 Combinations of exponentials with other functions

Ricker function The Ricker function, ax exp(−bx), is a common model for
density-dependent population growth; if per capita fecundity decreases expo-
nentially with density, then overall population growth will follow the Ricker
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function. It starts off growing linearly with slope a and has its maximum at
x = 1/r; it’s similar in shape to the generalized Michaelis-Menten function
(RN/(1 + (aN)b)). It is used very widely as a phenomenological model for eco-
logical variables that start at zero, increase to a peak, and decrease gradually
back to zero.

Several authors (Hassell, 1975; Royama, 1992; Brännström and Sumpter,
2005) have derived Ricker equations for the dependence of offspring number
on density, assuming that adults compete with each other to reduce fecundity;
Quinn and Deriso (1999, p. 89) derive the Ricker equation in a fisheries context,
assuming that young-of-year compete with each other and increase mortality
(e.g. via cannibalism).

Logistic function There are two widely used parameterizations of the logistic
function. The first,

y =
ea+bx

1 + ea+bx
(9)

(or equivalently y = 1/(1 + e−(a+bx))) comes from a statistical or phenomeno-
logical framework. The function goes from 0 at −∞ to 1 at +∞. The location
parameter a shifts the curve left or right: the half-maximum (y = 0.5), which is
also the inflection point, occurs at x = −a/b when the term in the exponent is
0. The scale parameter b controls the steepness of the curve∗.

The second parameterization comes from population ecology:

n(t) =
K

1 +
(

K
n0
− 1

)
e−rt

(10)

where K is the carrying capacity, n0 the value at t = 0, and r the initial per
capita growth rate. (The statistical parameterization is less flexible, with only
two parameters: it has K = 1, n0 = ea/(1 + ea), and r = b.)

The logistic is popular because it’s a simple sigmoid function (although its
rational analogue the Holling type III functional response is also simple) and
because it’s the solution to one of the simplest population-dynamic models, the
logistic equation:

dn

dt
= rn

(
1− n

K

)
, (11)

which says that per capita growth rate ((dn/dt)/n) decreases linearly from a
maximum of r when n is much less than K to zero when n = K. Getting from the
logistic equation (11) to the logistic function (10) involves solving the differential
equation by integrating by parts, which is tedious but straightforward (see any
calculus book, e.g. Adler (2004)).

In R you can write out the logistic function yourself, using the exp function,
as exp(x)/(1+exp(x)), or you can also use the plogis function. The hyperbolic

∗If we reparameterized the function as exp(b(x−c))/(1+exp(b(x−c))), the half-maximum
would be at c. Since b is still the steepness parameter, we could then shift and steepen the
curve independently.
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tangent (tanh) function is another form of the logistic. Its range extends from
-1 as x→ −∞ to 1 as x→∞ instead of from 0 to 1.

Gompertz function The Gompertz function, f(x) = e−ae−bx

, is an alterna-
tive to the logistic function. Similar to the logistic, it is accelerating at x = 0
and exponentially approaches 1 as x gets large, but it is asymmetric — the
inflection point or change in curvature occurs 1/e ≈ 1/3 of the way up to the
asymptote, rather than halfway up. In this parameterization the inflection point
occurs at x = 0; you may want to shift the curve c units to the right by using
f(x) = e−aeb(x−c)

. If we derive the curves from models of organismal or popu-
lation growth, the logistic assumes that growth decreases linearly with size or
density while the Gompertz assumes that growth decreases exponentially.

5.3 Functions involving power laws

So far the polynomials involved in our rational functions have been simple linear
or quadratic functions. Ecological modelers sometimes introduce an arbitrary
(fractional) power as a parameter (xb) instead of having all powers as fixed
integer values (e.g. x, x2 x3); using power laws in this way is often a phe-
nomenological way to vary the shape of a curve, although these functions can
also be derived mechanistically.

Here are some categories of power-law functions.

� Simple power laws f(x) = axb (for non-integer b; otherwise the function
is just a polynomial: Figure 10a) often describe allometric growth (e.g.
reproductive biomass as a function of diameter at breast height (Niklas,
1993), or mass as a function of tarsus length in birds); or quantities re-
lated to metabolic rates (Etienne et al., 2006); or properties of landscapes
with fractal geometry (Halley et al., 2004); or species-area curves (Tjørve,
2003).

� The generalized form of the von Bertalanffy growth curve, f(x) = a(1 −
exp(−k(a − d)t))1/(1−d), (Figure 10b) allows for energy assimilation to
change as a function of mass (assimilation = massd). The parameter d is
often taken to be 2/3, assuming that energy assimilation is proportional
to length2 and mass is proportional to length3 (Quinn and Deriso, 1999).

� A generalized form of the Michaelis-Menten function, f(x) = ax/(b +
xc) (Figure 10c), describes ecological competition (Maynard-Smith and
Slatkin, 1973; Brännström and Sumpter, 2005). This model reduces to
the standard Michaelis-Menten curve when c = 1; 0 < c < 1 corresponds
to “contest” (undercompensating) competition, while c > 1 corresponds
to “scramble” (overcompensating) competition (the function has an inter-
mediate maximum for finite densities if c > 1). In fisheries, this model is
called the Shepherd function. Quinn and Deriso (1999) show how the Shep-
herd function emerges as a generalization of the Beverton-Holt function
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when the density-dependent mortality coefficient is related to the initial
size of the cohort.

� A related function, f(x) = ax/(b + x)c, is known in ecology as the Has-
sell competition function (Hassell, 1975; Brännström and Sumpter, 2005);
it is similar to the Shepherd/Maynard-Smith/Slatkin model in allowing
Michaelis-Menten (c = 1), undercompensating (c < 1) or overcompensat-
ing (c > 1) dynamics.

� Persson et al. (1998) used a generalized Ricker equation, y = A( x
x0

exp(1−
x
x0

))α, to describe the dependence of attack rate y on predator body
mass x (Figure 1 shows the same curve, but as a function of prey body
mass). In fisheries, Ludwig and Walters proposed this function as a stock-
recruitment curve (Quinn and Deriso, 1999). Bellows (1981) suggested a
slightly different form of the generalized Ricker, y = x exp(r(1− (a/x)α))
(note the power is inside the exponent instead of outside), to model
density-dependent population growth.

� Emlen (1996) used a generalized form of the logistic, y = a + b/(1 +
c exp(−dxe)) extended both to allow a non-zero intercept (via the a pa-
rameter, discussed above under “Scaling and shifting”) and also to allow
more flexibility in the shape of the curve via the power exponent e.

� The non-rectangular hyperbola (Figure 10, lower right), based on first prin-
ciples of plant physiology, describes the photosynthetic rate P as a function
of light availability I:

P (I) =
1
2θ

(
αI + pmax −

√
(αI + pmax)2 − 4θαIpmax

)
,

where α is photosynthetic efficiency (and initial slope); pmax is the maxi-
mum photosynthetic rate (asymptote); and θ is a sharpness parameter. In
the limit as θ → 0, the function becomes a Michaelis-Menten function: in
the limit as θ → 1, it becomes piecewise linear (a hockey stick: Thornley,
2002).

Advantages Functions incorporating power laws are flexible, especially since
the power parameter is usually added to an existing model that already allows
for changes in location, scale, and curvature. In many mechanistically derived
power-law functions the value of the exponent comes from intrinsic geometric
or allometric properties of the system and hence does not have to be estimated
from data.

Disadvantages Many different mechanisms can lead to power-law behavior
(Mitzenmacher, 2003). It can be tempting but is often misguided to reason
backward from an observed pattern to infer something about the meaning of a
particular estimated parameter.
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power laws:
f((x)) == axb

0 << b << 1

b >> 1
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a

Ricker

Shepherd, Hassell:
f((x)) ==

ax

b ++ xc,,  f((x)) ==
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((b ++ x))c

H

S

non−rectangular
hyperbola:

M−M

Figure 10: Power-based functions. The lower left panel shows the Ricker func-
tion for comparison with the Shepherd and Hassell functions. The lower right
shows the Michaelis-Menten function for comparison with the non-rectangular
hyperbola.
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Despite the apparent simplicity of the formulas, estimating exponents from
data can be numerically challenging — leading to poorly constrained or unsta-
ble estimates. The exponent of the non-rectangular hyperbola, for example, is
notoriously difficult to estimate from reasonable-size data sets (Thornley, 2002).
(We will see another example when we try to fit the Shepherd model to data in
Chapter 5.)

5.4 Other possibilities

Of course, there is no way I can enumerate all the functions used even within
traditional population ecology, let alone fisheries, forestry, ecosystem, and phys-
iological ecology. Haefner (1996, pp. 90-96) gives an alternative list of function
types, focusing on functions used in physiological and ecosystem ecology, while
Turchin (2003, Table 4.1, p. 81) presents a variety of predator functional re-
sponse models. Some other occasionally useful categories are:

� curves based on other simple mathematical functions: for example, trigono-
metric functions like sines and cosines (useful for fitting diurnal or seasonal
patterns), and functions based on logarithms.

� generalized or “portmanteau” functions: these are complex, highly flexible
functions that reduce to various simpler functions for particular parameter
values. For example, the four-parameter Richards growth model

y =
k1(

1 +
(

k1
k2
− 1

)
e−k3k4x

)1/k4
(12)

includes the monomolecular, Gompertz, von Bertalanffy, and logistic equa-
tion as special cases (Haefner, 1996; Damgaard et al., 2002). Schnute
(1981) defines a still more generalized growth model.

� Functions not in closed form: sometimes it’s possible to define the dynam-
ics of a population, but not to find an analytical formula (what mathe-
maticians would call a “closed-form solution”) that describes the resulting
population density.

– The theta-logistic or generalized logistic model (Nelder, 1961; Richards,
1959; Thomas et al., 1980; Sibly et al., 2005) generalizes the logistic
equation by adding a power (θ) to the logistic growth equation given
above (11):

dn

dt
= rn

(
1−

( n

K

)θ
)

. (13)

When θ = 1 this equation reduces to the logistic equation, but when
θ 6= 1 there is no closed-form solution for n(t) — i.e., no solution we
can write down in mathematical notation. You can use the odesolve
library in R to solve the differential equation numerically and get a
value for a particular set of parameters.
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– the Rogers random-predator equation (Rogers, 1972; Juliano, 1993)
describes the numbers of prey eaten by predators, or the numbers
of prey remaining after a certain amount of time in situations where
the prey population becomes depleted. Like the theta-logistic, the
Rogers equation has no closed-form solution, but it can be written
in terms of a mathematical function called the Lambert W function
(Corless et al., 1996). (See ?lambertW in the emdbook package.)

6 Conclusion

The first part of this chapter has shown you (or reminded you of) some basic
tools for understanding the mathematical functions used in ecological modeling
— slopes, critical points, derivatives, and limits — and how to use them to
figure out the basic properties of functions you come across in your work. The
second part of the chapter briefly reviewed some common functions. You will
certainly run across others, but the tools from the first part should help you
figure out how they work.
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7 R supplement

7.1 Plotting functions in various ways

Using curve:
Plot a Michaelis-Menten curve:

> curve(2 * x/(1 + x))

You do need to specify the parameters: if you haven’t defined a and b
previously curve(a*x/(b+x)) will give you an error. But if you’re going to
use a function a lot it can be helpful to define a function:

> micmen <- function(x, a = 2, b = 1) {

+ a * x/(b + x)

+ }

Now plot several curves (being more specific about the desired x and y
ranges; changing colors; and adding a horizontal line (abline(h=...)) to show
the asymptote).

> curve(micmen(x), from = 0, to = 8, ylim = c(0, 10))

> curve(micmen(x, b = 3), add = TRUE, col = 2)

> curve(micmen(x, a = 8), add = TRUE, col = 3)

> abline(h = 8)

Sometimes you may want to do things more manually. Use seq to define x
values:

> xvec <- seq(0, 10, by = 0.1)

Then use vectorization (yvec=micmen(xvec)) or sapply (yvec=sapply(xvec,micmen))
or a for loop (for i in (1:length(xvec)) { yvec[i]=micmen(xvec[i])})
to calculate the y values. Use plot(xvec,yvec,...), lines(xvec,yvec,...),
etc. (with options you learned Chapter 2) to produce the graphics.

7.2 Piecewise functions using ifelse

The ifelse function picks one of two numbers (or values from one of two vec-
tors) depending on a logical condition. For example, a simple threshold function:

> curve(ifelse(x < 5, 1, 2), from = 0, to = 10)

or a piecewise linear function:

> curve(ifelse(x < 5, 1 + x, 6 - 3 * (x - 5)), from = 0,

+ to = 10)

You can also nest ifelse functions to get more than one switching point:

> curve(ifelse(x < 5, 1 + x, ifelse(x < 8, 6 - 3 *

+ (x - 5), -3 + 2 * (x - 8))), from = 0, to = 10)

32



7.3 Derivatives

You can use D or deriv to calculate derivatives (although R will not simplify the
results at all): D gives you a relatively simple answer, while deriv gives you a
function that will compute the function and its derivative for specified values of
x (you need to use attr(...,"grad") to retrieve the derivative — see below).
To use either of these functions, you need to use expression to stop R from
trying to interpret the formula.

> D(expression(log(x)), "x")

1/x

> D(expression(x^2), "x")

2 * x

> logist <- expression(exp(x)/(1 + exp(x)))

> dfun <- deriv(logist, "x", function.arg = TRUE)

> xvec <- seq(-4, 4, length = 40)

> y <- dfun(xvec)

> plot(xvec, y)

> lines(xvec, attr(y, "grad"))

Use eval to fill in parameter values:

> d1 <- D(expression(a * x/(b + x)), "x")

> d1

a/(b + x) - a * x/(b + x)^2

> eval(d1, list(a = 2, b = 1, x = 3))

[1] 0.125
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