
Stochastic simulation and power analysis

©2006 Ben Bolker

August 3, 2007

Summary

This chapter introduces techniques and ideas related to simulating ecological
patterns. Its main goals are: (1) to show you how to generate patterns you
can use to sharpen your intuition and test your estimation tools; and (2) to
introduce statistical power and related concepts, and show you how to estimate
statistical power by simulation. This chapter and the supplements will also give
you more practice working with R.

1 Introduction

Chapters ?? and ??, gave a basic overview of functions to describe determinis-
tic patterns and probability distributions to describe stochastic patterns. This
chapter will show you how to use stochastic simulation to understand and test
your data. Simulation is sometimes called forward modeling, to emphasize that
you pick a model and parameters and work forward to predict patterns in the
data. Parameter estimation, or inverse modeling (the main focus of this book),
starts from the data and works backward to choose a model and estimate pa-
rameters.

Ecologists often use simulation to explore the patterns that emerge from
ecological models. Often they use theoretical models without accompanying
data, in order to understand qualitative patterns and plan future studies. But
even if you have data, models, but you might want to start by simulating your
system. You can use simulations to explore the functions and distributions
you chose to quantify your data. If you can choose parameters that make the
simulated output from those functions functions and distributions approximate
your data, you can confirm that the models are reasonable — and simultaneously
find a rough estimate of the parameters.

You can also use simulated “data” from your system to test your estimation
procedures. Chapters 6–8 will show you how to estimate parameters; in this
chapter I’ll work with more “canned”procedures like nonlinear regression. Since
you never know the true answer to an ecological question — you only have
imperfect measurements with which you’re trying to get as close to the answer
as possible — simulation is the only way to test whether you can correctly

1

estimate the parameters of an ecological system. It’s always good to test such a
best-case scenario, where you know that the functions and distributions you’re
using are correct, before you proceed to real data.

Power analysis is a specific kind of simulation testing where you explore how
large a sample size you would need to get a reasonably precise estimate of your
parameters. You can also also use power analysis to explore how variations in
experimental design would change your ability to answer ecological questions.

2 Stochastic simulation

Static ecological processes, where the data represent a snapshot of some ecologi-
cal system, are easy to simulate∗. For static data, we can use a single function to
simulate the deterministic process and then add heterogeneity. Often, however,
we will chain together several different mathematical functions and probability
distributions representing different stages in an ecological process to produce
surprisingly complex and rich descriptions of ecological systems.

I’ll start with three simple examples that illustrate the general procedure,
and then move on to two slightly more in-depth examples.

2.1 Simple examples

2.1.1 Single groups

Figure 1 shows the results of two simple simulations, each with a single group
and single continuous covariate.

The first simulation (Figure 1a) is a linear model with normally distributed
errors. It might represent productivity as a function of nitrogen concentration,
or predation risk as a function of predator density. The mathematical formula
is Y ∼ Normal(a+ bx, σ2), specifying that Y is a random variable drawn from a
normal distribution with mean a+ bx and variance σ2. The symbol ∼ means “is
distributed according to”. This model can also be written as yi = a + bxi + εi,
εi ∼ N(0, σ2), specifying that the ith value of Y , yi, is equal to a + bxi plus a
normally distributed error term with mean zero. I will always use the first form
because it is more general: normally distributed error is one of the few kinds
that can simply be added onto the deterministic model in this way. The two
lines on the plot show both the theoretical relationship between y and x and the
best-fit line (by linear regression, lm(y~x) (Section ??). The lines differ slightly
because of the randomness incorporated in the simulation.

A few lines of R code will run this simulation. Set up the values of x, and
specify values for the parameters a and b:

> x = 1:20

> a = 2

> b = 1

∗Dynamic processes are more challenging. See Chapter ??.

2

●●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

5 10 15 20

5

10

15

20

25

x

y

true
best fit

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

x

y

0 1 2 3 4 5

0

5

10

15
true
best fit

Figure 1: Two simple simulations: a linear function with normal errors (Y ∼
Normal(a + bx, σ2)), and a hyperbolic function with negative binomial errors
(Y ∼ NegBin(µ = ab/(b + x), k)).

Calculate the deterministic part of the model:

> y_det = a + b * x

Pick 20 random normal deviates with the mean equal to the deterministic
equation and σ = 2:

> y = rnorm(20, mean = y_det, sd = 2)

(you could also specify this as y = y_det+rnorm(20,sd=2), corresponding to
the additive model yi = a + bxi + εi, εi ∼ N(0, σ2) (the mean parameter is zero
by default). However, the additive form works only for the Normal, and not for
most of the other distributions we will be using).

The second simulation uses hyperbolic functions (y = ab/(b+x)) with nega-
tive binomial error: in symbols, Y ∼ NegBin(µ = ab/(b+x), k). The function is
parameterized so that a is the intercept term (when x = 0, y = ab/b = a). This
simulation might represent the decreasing fecundity of two different species with
increasing population density: the hyperbolic function is a natural expression
of the decreasing quantity of a limiting resource per individual.

In this case, we cannot express the model as the deterministic function “plus
error”. Instead, we have to incorporate the deterministic model as a control
on one of the parameters of the error distribution—in this case, the mean µ.
(Although the negative binomial is a discrete distribution, its parameters µ and
k are continuous.) Ecological models typically describe the differences in the

3

mean among groups or as covariates change, but we could also allow the variance
or the shape of the distribution to change.

The R code for this simulation is easy, too. Define parameters

> a = 20

> b = 1

> k = 5

How you simulate the x values depends on the experimental design you are
trying to simulate. In this case, we choose 50 x values randomly distributed
between 0 and 5 to simulate a study were the samples are chosen from natural
varying sites, in contrast to the previous simulation where x varied systemati-
cally (x=1:20), simulating an experimental or observational study that samples
from a gradient in the predictor variable x.

> x = runif(50, min = 0, max = 5)

Now we calculate the deterministic mean y_det, and then sample negative
binomial values with the appropriate mean and overdispersion:

> y_det = a * b/(b + x)

> y = rnbinom(50, mu = y_det, size = k)

2.1.2 Multiple groups

Ecological studies typically compare the properties of organisms in different
groups (e.g. control and treatment, parasitized and unparasitized, high and low
altitude).

Figure 2 shows a simulation that extends the hyperbolic simulation above to
compares the effects of a continuous covariate in two different groups (species
in this case). Both groups have the same overdispersion parameter k, but the
hyperbolic parameters a and b differ:

Y ∼ NegBin(µ = aibi/(bi + x), k) (1)

where i is 1 or 2 depending on the species of an individual.
Suppose we still have 50 individuals, but the first 25 are species 1 and the

second 25 are species 2. We use rep to set up a factor that describes the
group structure (the R command gl is also useful for more complicated group
assignments):

> g = factor(rep(1:2, each = 25))

Defining vectors of parameters, each with one element per species, or a single
parameter for k since the species are equivalent in this case:

> a = c(20, 10)

> b = c(1, 2)

> k = 5

4

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

x

y

0 1 2 3 4 5

0

5

10

15

20

● data (sp. 1)
true (sp. 1)
best fit (sp. 1)
data (sp. 2)
true (sp. 2)
best fit (sp. 2)

Figure 2: Simulation results from a hyperbolic/negative binomial model with
groups differing in both intercept and slope: Y ∼ NegBin(µ = aibi/(bi + x), k).
Parameters: a = {20, 10}, b = {1, 2}, k = 5.

R’s vectorization makes it easy to incorporate different parameters for dif-
ferent species into the formula, by using the group vector g to specify which
element of the parameter vectors to use for any particular individual.

> y_det = a[g]/(b[g] + x)

> y = rnbinom(50, mu = y_det, size = k)

2.2 Intermediate examples

2.2.1 Reef fish settlement

The damselfish settlement data from Schmitt et al. (1999) (p. ??) include ran-
dom variation in settlement density (the density of larvae arriving on a given
anemone) and random variation in density-dependent recruitment (number of
settlers surviving for 6 months on an anemone).

To simulate the variation in settlement density I took random draws from
a zero-inflated negative binomial (p. ??), although a non-inflated binomial, or

5

Settlers

F
re

qu
en

cy

0 50 100 150 200

0

50

100

150
●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●●

● ●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 50 100 150 200

0

2

4

6

8

10

12

14

Settlers
R

ec
ru

its

Figure 3: Damselfish recruitment: (a) distribution of settlers; (b) recruitment
as a function of settlement density

even a geometric distribution (i.e. a negative binomial with k = 1) might be
sufficient to describe the data.

Schmitt et al. modeled density-dependent recruitment with a Beverton-Holt
curve (equivalents to the Michaelis-Menten function). I have simulated this
curve with binomial error (for survival of recruits) superimposed. The model is

R ∼ Binom(N = S, p = a/(1 + (a/b)S)). (2)

(With the recruitment probability per settler p given as the hyperbolic function
a/(1 + (a/b)S), the mean number of recruits is Beverton-Holt: Np = aS/(1 +
(a/b)S).) The settlement density S is drawn from the zero-inflated negative
binomial distribution shown in Figure 3a.

Set up the parameters, including the number of samples (N):

> N = 603

> a = 0.696

> b = 9.79

> mu = 25.32

> zprob = 0.123

> k = 0.932

Define a function for the recruitment probability:

> recrprob = function(S) {

+ a/(1 + (a/b) * S)

+ }

Now simulate the number of settlers and the number of recruits, using
rzinbinom from the emdbook package:

6

●

●
●

●
●●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●●●
●●
●

●
●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●● ●
●

●

●

●●
●

●

●●

●
●

●
●●●● ●

●

●

● ●

●
● ●●●

●
●

●
●

●
●

●
●

●
●●
●

●

●
●

●

●

●●● ●●●

●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●

●
●

●●● ●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●●●
● ●● ●

●
●

●

●

●● ●●●●●●
●

●

●●
●

●
●
●

●

●
●

●

●●●
●

●

●

●

●

●

●
●●

●●
●

●
●

●

●

●●
●●

●
●

●

●●●

●
●

● ●●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

● ●●●●

●

●

●

●●

●

● ●●●
●

●
●●●

●●●
●●

●●●

●
●

●
●

●●●●
●

●

●
●

●●
●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●●
●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●
●●

●

●

●●

●

●
●

●

●●

●

●

●●
●●●

●

●

●

●

●

●●●
●

●
●
●

●

●●

●
●

●●

●●
●●

●

●

●●

●

●

●

●
●

●
●●●

●

●
●●

●●

●
●

●

●

●
●

●●
●

●

●

●
● ●

●
●

●

●●

●

●

●
●

●●

●
●

●

●●●
●●

●
●●

●●●
●

●

●●

● ●
●●
●

●

●

●
●
●

●●
●
●●●●
●

●

●

●
●●●

●
●
●●●●

●

● ●

●

●

●

●
●

●
●

●
●●

●

● ●

● ●
●

●

●●●
●

●

●

●
●

●●

●
●

●
●●●●● ●

●

●

●
●

●

●
●●●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●
●

●

●

●
●

●●

0 10 20 30

0

10

20

30

0 3 6 9 13 18 23 28

Number of neighbors

P
ro

po
rt

io
n

0.00

0.02

0.04

0.06

0.08

0.10

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●●●●●●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 20 40 60 80

1e−06

1e−04

1e−02

1e+00

Competition index

B
io

m
as

s
(g

)

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●

● ● ●●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●
●

●● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●● ● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

● ●

●●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

● ●●

●
●

● ●

●

●●●●●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●●

●●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

1e−06 1e−04 1e−02 1e+00

1

10

100

1000

10000

Mass

1+
S

ee
d

se
t

Figure 4: Pigweed simulations. (a) Spatial pattern (Poisson cluster process). (b)
Distribution of number of neighbors within 2 m. (c) End-of-year biomass, based
on a hyperbolic function of crowding index with a gamma error distribution. (d)
Seed set, proportional to biomass with a negative binomial error distribution.

> settlers = rzinbinom(N, mu = mu, size = k, zprob = zprob)

> recr = rbinom(N, prob = recrprob(settlers), size = settlers)

2.2.2 Pigweed distribution and fecundity

Pacala and Silander (1990) did a series of experiments quantifying the strength
and spatial scale of competition between the annual weeds velvetweed (Abu-
tilon theophrasti) and pigweed (Amaranthus retroflexus). They were interested
in neighborhood competition among nearby plants. Local dispersal of seeds
changes the distribution of the number of neighbors per plant. If plants were
randomly distributed we would expect a Poisson distribution of neighbors within
a given distance, but if seeds have a limited dispersal range so that plants are
spatially aggregated, we expect a distribution with higher variance (and a higher
mean number of neighbors for a given overall plant density) such as the negative
binomial. Neighbors increase local competition for nutrients, which in turn de-
creases plants’ growth rate, their biomass at the end of the growing season, and

7

their fecundity (seed set). Thus differences in dispersal and spatial patterning
within and among species can in theory change competitive outcomes Bolker
et al. (2003), although Pacala and Silander found that spatial structure had
little effect in their system.

To explore the patterns of competition driven by local dispersal and crowd-
ing, we can simulate this spatial competitive process.

Let’s start by simulating a spatial distribution of plants in an L × L plot
(L = 30m below). We’ll use a Poisson cluster process, where mothers are
located randomly in space at points {xp, yp} (called a Poisson process in spatial
ecology), and their children are distributed nearby (only the children, and not
the mothers, are included in the final pattern). The simulation includes N = 50
parents, for which we pick 50 x and 50 y values, each uniformly distributed
between 0 and L. The distance of each child from its parent is exponentially
distributed with rate=1/d (mean dispersal distance d), and the direction is
random — that is, uniformly distributed between 0 and 2π radians∗. I use a
little bit of trigonometry to calculate the offspring locations (Figure 4a).

The formal mathematical definition of the model for offspring location is:

parent locations xp, yp ∼ U(0, L)
distance from parent r ∼ Exp(0, 1/d)
dispersal angle θ ∼ U(0, 2π)
offspring x xc ∼ xp + r cos θ
offspring y yc ∼ yp + r sin θ.

In R, set up the parameters:

> set.seed(1001)

> L = 30

> nparents = 50

> offspr_per_parent = 10

> noffspr = nparents * offspr_per_parent

> dispdist = 2

Pick locations for the parents:

> parent_x = runif(nparents, min = 0, max = L)

> parent_y = runif(nparents, min = 0, max = L)

Pick angles and distances for dispersal:

> angle = runif(noffspr, min = 0, max = 2 * pi)

> dist = rexp(noffspr, 1/dispdist)

Add the offspring displacements to the parent coordinates (using
rep(...,each=offspr_per_parent)):

∗R, like most computer languages, works in radians rather than degrees; to convert from
degrees to radians, multiply by 2π/360. Since R doesn’t understand Greek letters, use pi to
denote π: radians=degrees*2*pi/360.

8

> offspr_x = rep(parent_x, each = offspr_per_parent) +

+ cos(angle) * dist

> offspr_y = rep(parent_y, each = offspr_per_parent) +

+ sin(angle) * dist

If you wanted to allow different numbers of offspring for each parent — for ex-
ample, drawn from a Poisson distribution — you could use offspr_per_parent=rpois(nparents,lambda)
and then rep(..., times=offspr_per_parent). Instead of specifying that
each parent’s coordinates should be repeated the same number of times, you
would be telling R to repeat each parent’s coordinates according to its number
of offspring.

Next we calculate the neighborhood density, or the number of individuals
within 2 m of each plant (not counting itself). Figure 4(b) shows this distribu-
tion, along with a fitted negative binomial distribution. This calculation reduces
the spatial pattern to a simpler non-spatial distribution of crowding.

> pos <- cbind(offspr_x, offspr_y)

> ndist <- as.matrix(dist(pos, upper = TRUE, diag = TRUE))

> nbrcrowd = apply(ndist < 2, 1, sum) - 1

Next we use a relationship that Pacala and Silander found between end-of-
year mass (M) and competition index (C). They fitted this relationship based
on a competition index estimated as a function of the neighborhood density
of conspecific (pigweed) and heterospecific (velvetleaf) competitors, C = 1 +
cppnp + cvpnv. For this example, I simply made up a proportionality constant
to match the observed range of competition indices. Pacala and Silander found
that biomass M ∼ Gamma(shape = m/(1 + C), scale = α), with m = 2.3 and
α = 0.49.

> ci = nbrcrowd * 3

> M = 2.3

> alpha = 0.49

> mass_det = M/(1 + ci)

> mass = rgamma(length(mass_det), scale = mass_det,

+ shape = alpha)

Finally, we simulate seed set as a function of biomass, again using a relation-
ship estimated by Pacala and Silander. Seed set is proportional to mass, with
negative binomial errors: S ∼ NegBin(µ = bM, k), with b = 271.6, k = 0.569.

> b = 271.6

> k = 0.569

> seed_det = b * mass

> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Figure 4c shows both mass and (1+seed set) on a logarithmic scale, along with
dashed lines showing the 95% confidence limits of the theoretical distribution.

9

The idea behind realistic static models is that they can link together simple
deterministic and stochastic models of each process in a chain of ecological
processes—in this case from spatial distribution to neighborhood crowding to
biomass to seed set. (Pacala and Silander actually went a step further and
computed the density-dependent survival probability. We could simulate this
using a standard model like survival ∼ Binom(N = 1, p = logistic(a + bC)),
where the logistic function allows the survival probability to be an increasing
function of competition index without letting it ever go above 1.)

Thus, although it’s hard to write down a simple function or distribution that
describes the relationship between competition index and the number surviving,
as shown here we can break the relationship down into stages in the ecological
process and use a simple model for each stage.

3 Power analysis

Power analysis in the narrow sense means figuring out the (frequentist) statis-
tical power, the probability of failing to reject the null hypothesis when it is
false (Figure 5). Power analysis is important, but the narrow frequentist def-
inition suffers from some of the problems that we are trying to move beyond
by learning new statistical methods, such as a focus on p values and on the
“truth” of a particular null hypothesis. Thinking about power analysis even in
this narrow sense is already a vast improvement on the naive and erroneous “the
null hypothesis is false if p < 0.05 and true if p > 0.05” approach. However, we
should really be considering a much broader question: How do the quality
and quantity of my data and the true properties (parameters) of my
ecological system affect the quality of the answers to my questions
about ecological systems?

For any real experiment or observation situation, we don’t know what is re-
ally going on (the“true”model or parameters), so we don’t have the information
required to answer these questions from the data alone. But we can approach
them by analysis or simulation. Historically, questions about statistical power
could only be answered by sophisticated analyses, and only for standard statis-
tical models and experimental designs such as one-way ANOVA or linear regres-
sion. Increases in computing power have extended power analyses to many new
areas, and R’s capability to run many repeated stochastic simulations is a great
help. Paradoxically, the mathematical difficulty of deriving power formulas is
a great equalizer: since even research statisticians typically use simulations to
estimate power, it’s now possible (by learning simulation, which is easier than
learning advanced mathematical statistics) to work on an equal footing with
even cutting-edge researchers.

The first part of the rather vague (but common-sense) question above is
about “quantity and quality of data and the true properties of the ecological
system”. These properties include:

� Number of data points (number of observations/sampling intensity)

10

−2 0 2 4

P
ro

ba
bi

lit
y

x

H0 H1

αα

Power
1 −− ββ

−4 0 2 4

0.2

0.4

0.6

0.8

1.0

Effect size

P
ow

er

●

σσ == 0.25

σσ == 0.75

σσ == 2

Figure 5: The frequentist definition of power. In the left-hand plot, the type I
(false positive) rate α is the area under the tails of the null hypothesis H0;
the type II error rate, β, is the area under the sampling distribution of the
alternative hypothesis (H1) between the tails of the null hypothesis; thus the
power 1−β is the gray area shown that lies above the upper critical value of the
null hypothesis curve. (There is also a tiny area where H1 overlaps the lower tail
of H0.) The right-hand plot shows power as a function of effect size (distance
between the means) and standard deviation; the point shows the situation (effect
size=2, σ = 0.75) illustrated in the left figure.

11

� Distribution of data (experimental design)

– Number of observations per site, number of sites

– Temporal and spatial extent (distance between the farthest samples,
controlling the largest scale you can measure) and grain (distance
between the closest samples, controlling the smallest scale you can
measure)

– Even or clustered distribution in space and/or time. Blocking. Bal-
ance (i.e., equal or similar numbers of observations in each treatment)

– Distribution of continuous covariates — mimicking the natural dis-
tribution, or stratified to sample evenly across the natural range of
values, or artificially extended to a wider range

� Amount of variation (measurement/sampling error, demographic stochas-
ticity, environmental variation). Experimental control or quantification of
variation.

� Effect size (small or large), or the distance of the true parameter from the
null-hypothesis value.

These properties will determine how much information you can extract from
your data. Large data sets are better than smaller ones; balanced data sets
with wide ranges are better than unbalanced data sets with narrow ranges; data
sets with large extent (maximum spatial and/or temporal range) and small grain
(minimum distance between samples) are best; and larger effects are obviously
easier to detect and characterize. There are obvious tradeoffs between effort
(measured in person-hours or dollars) and the number of samples, and in how
you allocate that effort. Would you prefer more information about fewer sam-
ples, or less information about more? More observations at fewer sites or fewer
at more sites? Should you spend your effort increasing extent or decreasing
grain?

Subtler tradeoffs also affect the value of an experiment. For example, con-
trolling extraneous variation allows a more powerful answer to a statistical ques-
tion — but how do we know what is “extraneous”? Variation actually affects
the function of ecological systems (Jensen’s inequality: Ruel and Ayres, 1999).
Measuring a plant in a constant laboratory environment may turn out to an-
swer the wrong question: we ultimately want to know how the plant performs
in the natural environment, not in the lab, and variability is an important part
of most environments. In contrast, performing “unrealistic” manipulations like
pushing population densities beyond their natural limits may help to identify
density-dependent processes that are real and important but undetectable at
ambient densities (Osenberg et al., 2002). There is no simple answer to these
questions, but they’re important to think about.

The quality of the answers we get from our analyses is as multifaceted as the
quality of the data. Precision specifies how finely you can estimate a parameter
— the number of significant digits, or the narrowness of the confidence interval

12

— while accuracy specifies how likely your answer is to be correct. Accurate but
imprecise answers are better than precise but inaccurate ones: at least in this
case you know that your answer is imprecise, rather than having misleadingly
precise but inaccurate answers. But you need both precision and accuracy to
understand and predict ecological systems.

More specifically, I will show how to estimate the following aspects of preci-
sion and accuracy for the damselfish system:

� Bias (accuracy): bias is the expected difference between the estimate and
the true value of the parameter. If you run a large number of simulations
with a true value of d and estimate a value of d̂ for each one, then the
bias is E[d̂ − d]. Most simple statistical estimators are unbiased, and so
most of us have come to expect (wrongly) that statistical estimates are
generally unbiased. Most statistical estimators are indeed asymptotically
unbiased, which means that in the limit of a large amount of data they
will give the right answer on average, but a surprisingly large number of
common estimators are biased (Poulin, 1996; Doak et al., 2005).

� Variance (precision): variance, or E[(d̂−E[d̂])2], measures the variability
of the point estimates (d̂) around their mean value. Just as an accurate
but imprecise answer is worthless, unbiased answers are worthless if they
have high variance. With low bias we know that we get the right answer
on average, but high variability means that any particular estimate could
be way off. With real data, we never know which estimates are right and
which are wrong.

� Confidence interval width (precision): the width of the confidence inter-
vals, either in absolute terms or as a proportion of the estimated value,
provides useful information on the precision of your estimate. If the con-
fidence interval is estimated correctly (see coverage, below) then the con-
fidence interval should be related to the variance among estimates.

� Mean squared error (MSE: accuracy and precision) combines bias and
variance as (bias2+variance). It represents the total variation around the
true value, rather than the average estimated value (E[d − d̂])2 + E[(d̂ −
E[d̂])2] = E[(d̂ − d)2]. MSE gives an overall sense of the quality of the
estimator.

� Coverage (accuracy): when we sample data and estimate parameters, we
try to estimate the uncertainty in those parameters. Coverage describes
how accurate those confidence intervals are, and (once again) can only
be estimated via simulation. If the confidence intervals (for a given con-
fidence level 1 − α) are dlow and dhigh, then the coverage describes the
proportion or percentage of simulations in which the confidence intervals
actually include the true value (Prob(dlow < d < dhigh)). Ideally, the ob-
served coverage should equal the nominal coverage of 1−α; values that are
too high are pessimistic, overstating the level of uncertainty, while values

13

that are too low are optimistic. (It often takes several hundred simula-
tions to get a reasonably precise estimate of the coverage, especially when
estimating the coverage for 95% confidence intervals.)

� Power (precision): finally, the narrow-sense power gives the probability
of correctly rejecting the null hypothesis, or in other words the fraction
of the times that the null-hypothesis value d0 will be outside of the confi-
dence limits: (Prob(d0 < dlow or d0 > dhigh)). In frequentist language, it
is 1− β, where β is the probability of making a type II error.

H0 true H0 false
accept H0 1− α β
reject H0 α 1− β

Typically you specify an alternative hypothesis H1, a desired type I error
rate α, and a desired power (1−β) and then calculate the required sample
size, or calculate (1− β) as a function of sample size, for some particular
H1. When the effect size is zero (the difference between the null and the
alternate hypotheses is zero — i.e. the null hypothesis is true), the power
is undefined, but it approaches α∗ as the effect size gets small (H1 → H0).

R has built-in functions for several standard cases (power of tests of dif-
ference between means of two normal populations [power.t.test], tests
of difference in proportions, [power.prop.test], and one-way, balanced
ANOVA [power.anova.test])†. For more discussion of these cases, or
for other fairly straightforward examples, you can look in any relatively
advanced biometry book (e.g. Sokal and Rohlf (1995)), or even find a
calculator on the web (search for “statistical power calculator”). For more
complicated and ecologically realistic examples, however, you’ll probably
have to find the answer through simulation, as demonstrated below.

3.1 Simple examples

3.1.1 Linear regression

Let’s start by estimating the statistical power of detecting the linear trend in
Figure 1a, as a function of sample size. In order to find out whether we can
reject the null hypothesis in a single “experiment”, we simulate a data set with
a given slope, intercept, and number of data points; run a linear regression;
extract the p-value; and see whether it is less than our specified α criterion
(usually 0.05). For example:

∗Not zero! even when the null hypothesis is true, we reject it a proportion α of the time:
thus we can expect to correctly reject the null hypothesis, even for very small effects, with
probability at least α.

†The Hmisc package, available on CRAN, has a few more power calculators.

14

> y_det = a + b * x

> y = rnorm(N, mean = y_det, sd = sd)

> m = lm(y ~ x)

> coef(summary(m))["x", "Pr(>|t|)"]

[1] 0.003615899

Extracting p-values from R analyses can be tricky. In this case, the coefficients
of the summary of the linear fit are a matrix including the standard error, t
statistic, and p-value for each parameter; I used matrix indexing to pull out the
specific value I wanted. More generally, you will have to use the names and str
commands to pick through the results of a test to find the p-value.

In order to estimate the probability of successfully rejecting the null hypoth-
esis when it is false (the power), we have to repeat this procedure many times
and calculate the proportion of the time that we reject the null hypothesis.

Specify the number of simulations to run (400 is a reasonable number if we
want to calculate a percentage — even 100 would do to get a crude estimate):

> nsim = 400

Set up a vector to hold the p-value for each simulation:

> pval = numeric(nsim)

Now repeat what we did above 400 times, each time saving the p-value in
the storage vector:

> for (i in 1:nsim) {

+ y_det = a + b * x

+ y = rnorm(N, mean = y_det, sd = sd)

+ m = lm(y ~ x)

+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]

+ }

Calculate the power:

> sum(pval < 0.05)/nsim

[1] 0.87

However, we don’t just want to know the power for a single experimental
design. Rather, we want to know how the power changes as we change some
aspect of the design such as the sample size or the variance. Thus we have
to repeat the entire procedure above multiple times, each time changing some
parameter of the simulation such as the slope, or the error variance, or the
distribution of the x values. Coding this in R usually involves nested for loops.
For example:

15

> bvec = seq(-2, 2, by = 0.1)

> power.b = numeric(length(bvec))

> for (j in 1:length(bvec)) {

+ b = bvec[j]

+ for (i in 1:nsim) {

+ y_det = a + b * x

+ y = rnorm(N, mean = y_det, sd = sd)

+ m = lm(y ~ x)

+ pval[i] = coef(summary(m))["x", "Pr(>|t|)"]

+ }

+ power.b[j] = sum(pval < 0.05)/nsim

+ }

The results would resemble a noisy version of the right subfigure in Figure 5.
The power equals α=0.05 when the slope is zero, rising to 0.8 for slope ≈ ±1.

You could repeat these calculations for a different set of parameters (e.g.
changing the sample size, or the number of parameters). If you were feeling
ambitious, you could calculate the power for many combinations of (e.g.) slope
and sample size, using yet another for loop; saving the results in a matrix; and
using contour or persp to plot the results.

3.1.2 Hyperbolic/negative binomial data

What about the power to detect the difference between the two groups shown
in Figure 1b with hyperbolic dependence on x, negative binomial errors, and
different intercepts and hyperbolic slopes?

In order to estimate the power of the analysis, we have to know how to test
statistically for a difference between the two groups. Jumping the gun a little
bit (this topic will be covered in much greater detail in Chapter 6), we can
define negative log-likelihood functions both for a null model that assumes the
intercept is the same for both groups as well as for a more complex model that
allows for differences in the intercept.

The mle2 command in the bbmle package lets us fit the parameters of these
models, and the anova command gives us a p-value for the difference between
the models (p. ??):

> m0 = mle2(y ~ dnbinom(mu = a * b * x/(b + x), size = k),

+ start = list(a = 15, b = 1, k = 5))

> m1 = mle2(y ~ dnbinom(mu = a * b * x/(b + x), size = k),

+ parameters = list(a ~ g, b ~ g), start = list(a = 15,

+ b = 1, k = 5))

> anova(m0, m1)[2, "Pr(>Chisq)"]

Without showing the details, we now run a for loop that simulates the sys-
tem above 200 times each for a range of sample sizes, uses anova to calculate the
p-values, and calculates the proportion of p-values < 0.05 for each sample size.
Figure 6 shows the results. For small sample sizes (< 20), the power is abysmal

16

●
●

●
●

●
●

●

●
● ●

●
●

●
● ● ● ● ●

Sample size

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

10 20 50 100 200 500

Figure 6: Statistical power to detect differences between two hyperbolic func-
tions with intercepts a = {10, 20}, slopes b = {2, 1}, and negative binomial
k = 5, as a function of sample size. Sample size is plotted on a logarithmic
scale.

(≈ 0.2 − −0.4). Power then rises approximately linearly, rising to acceptable
levels (0.8 and up) for sample sizes of 50–100 and greater. The variation in
Figure 6 is due to stochastic variation. We could run more simulations per sam-
ple size to reduce the variation, but it’s probably unnecessary since all power
analysis is approximate anyway.

3.1.3 Bias and variance in estimates of the negative binomial k pa-
rameter

For another simple example, one that demonstrates that there’s more to life
than p-values, consider the problem of estimating the k parameter of a negative
binomial distribution. Are standard estimators biased? How large a sample do
you need for a reasonably accurate estimate of aggregation?

Statisticians have long been aware that maximum likelihood estimates of the
negative binomial k and similar aggregation indices, while better than simpler
method of moments estimates (p. ??), are biased for small sample sizes (Pieters

17

et al., 1977; Piegorsch, 1990; Poulin, 1996; Lloyd-Smith, 2007). While you could
delve into the statistical literature on this topic and even find special-purpose
estimators that reduce the bias (Saha and Paul, 2005), it’s empowering to be
able to explore the problem yourself through simulation.

We can generate negative binomial samples with rnbinom, and the fitdistr
command from the MASS package is a convenient way to estimate the parame-
ters. fitdistr finds maximum likelihood estimates, which generally have good
properties — but are not infallible, as we will see shortly. For a single sample:

> x = rnbinom(100, mu = 1, size = 0.5)

> f = fitdistr(x, "negative binomial")

> f

size mu
0.21908756 1.05996103
(0.05712932) (0.24875054)

(the standard deviations of the parameter estimates are given in parentheses).
You can see that for this example the value of k (size) is underestimated relative
to the true value of 0.5 — but how do the estimates behave in general?

In order to dig the particular values we want (estimated k and standard de-
viation of the estimate) out of the object that fitdistr returns, we have to use
str(f) to examine its internal structure. It turns out that f$estimate["size"]
and f$sd["size"] are the numbers we want.

Set up a vector of sample sizes (lseq is a function from the emdbook package
that generates a logarithmically spaced sequence) and set aside space for the
estimated k and its standard deviation:

> Nvec = round(lseq(20, 500, length = 100))

> estk = numeric(length(Nvec))

> estksd = numeric(length(Nvec))

Now pick samples and estimate the parameters:

> set.seed(1001)

> for (i in 1:length(Nvec)) {

+ N = Nvec[i]

+ x = rnbinom(N, mu = 1, size = 0.5)

+ f = fitdistr(x, "negative binomial")

+ estk[i] = f$estimate["size"]

+ estksd[i] = f$sd["size"]

+ }

Figure 7 shows the results: the estimate is indeed biased, and highly variable,
for small sample sizes. For sample sizes below about 100, the estimate k is
biased upward by about 20% on average. The coefficient of variation (standard
deviation divided by the mean) is similarly greater than 0.2 for sample sizes less
than 100.

18

●
●

●

●●●

●

●

●

●●●
●●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●●●●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●
●

●●
●●

●

●

●●●●
●
●
●●●

●
●
●
●●●

●
●
●
●●●

●
●●
●●
●●
●

Sample size

E
st

im
at

ed
 k

0.5

1.0

1.5

2.0

20 50 100 200 500

●

●

●

●●
●

●●

●

●
●

●
●●

●

●

●

●

●
●

●●
●

●●

●
●

●
●
●

●
●

●

●
●
●
●

●

●

●●●●
●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●●
●●

●

●

●●●
●

●
●
●
●
●
●
●
●
●●
●
●
●
●
●●●

●

●●
●●
●●

●

Sample size
E

st
im

at
ed

 s
d(

k)

0.05

0.10

0.20

0.50

1.00

2.00

5.00

20 50 100 200 500

Figure 7: Estimates of negative binomial k with increasing sample size. In left-
hand figure, solid line is a loess fit. Horizontal dashed line is the true value.
The y axis in the right-hand figure is logarithmic.

3.2 Detecting under- and overcompensation in fish data

Finally, we will explore a more extended and complex example — the difficulty
of estimating the exponent d in the Shepherd function, R = aS/(1 + (a/b)Sd)
((Figure 5c). This parameter controls whether the Shepherd function is un-
dercompensating (d < 1: recruitment increases indefinitely as the number of
settlers grows), saturating (d = 1: recruitment reaches an asymptote), or over-
compensating (d > 1: recruitment decreases at high settlement). Schmitt et al.
(1999) set d = 1 in part because d is very hard to estimate reliably — we are
about to see just how hard.

You can use the simulation approach described above to generate simu-
lated “data sets” of different sizes whose characteristics matched Schmitt et
al.’s data: a zero-inflated negative binomial distribution of numbers of settlers
and a Shepherd-function relationship (with a specified value of d) between the
number of settlers and the number of recruits. For each simulated data set,
use R’s nls function to estimate the values of the parameters by nonlinear least
squares ∗. Then calculate the confidence limits on d (using confint) and record
the estimated value of the parameter and the lower and upper confidence limits.

Figure 8 shows the point estimates (d̂) and 95% confidence limits (dlow,
dhigh) for the first 20 out of 400 simulations with 1000 simulated observations
and a true value of d = 1.2. The figure also illustrates several of the summary
statistics discussed above: bias, variance, power, and coverage (see the caption
for details).

For this particular case (n = 1000, d = 1.2) I can compute the bias (0.0039),
∗Non-linear least-squares fitting assumes constant, normally distributed error, ignoring the

fact that the data are really binomially distributed. Chapter ?? will present more sophisticated
maximum likelihood approaches to this problem.

19

Simulation

d̂

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1 10 20

estimates
lower
bounds

mean: E[d̂]

true: d

null: d0

a

b

c

σσd̂

Figure 8: Simulations and power/coverage. Points and error bars show point
estimates (d̂) and 95% confidence limits (dlow, dhigh) for the first 20 out of
400 simulations with a true value of d = 1.2 and 1000 samples. Horizontal lines
show the mean value of d̂, E[d̂] =1.204; the true value for this set of simulations,
d = 1.2; and the null value, d0 = 1. The left-hand density in the figure represents
the distribution of d̂ for all 400 simulations. The right-hand density represents
the distribution of the lower confidence limit, dlow. The distance between d

(solid horizontal line) and E[d̂] (short-dashed horizontal line) shows the bias.
The error bar showing the standard deviation of d̂, σd̂, shows the square root
of the variance of d̂. The coverage is the proportion of lower confidence limits
that fall below the true value, area b + c in the lower-bound density. The power
is the proportion of lower confidence limits that fall above the null value, area
a+ b in the lower-bound density. For simplicity, I have omitted the distribution
of the upper bounds dhigh.

20

variance (0.003, or σd̂ = 0.059), mean-squared-error (0.003), coverage (0.921),
and power (0.986). With 1000 observations, things look pretty good, but 1000
observations is a lot and d = 1.2 represents a lot of overcompensation. The real
value of power analyses comes when we compare the quality of estimates across
a range of sample sizes and effect sizes.

Figure 9 gives a gloomier picture, showing the bias, precision, coverage, and
power for a range of d values from 0.7 to 1.3 and a range of sample sizes from
50 to 2000. It takes sample sizes of at least 500 to obtain reasonably unbiased
estimates with adequate precision, and even then the coverage may be low if
d < 1.0 and the power low if d is close to 1 (0.9 ≤ d ≤ 1.1). Because of the
upward bias in d at low sample sizes, the calculated power is actually higher
at very low sample sizes, but this is not particularly comforting. The power
of the analysis slightly better for overcompensation than undercompensation.
The relatively low power values are as expected from Fig. 9b, which shows
wide confidence intervals. Low power would also be predictable from the high
variance of the estimates, which I didn’t even bother to show in Fig. 9a because
they obscured the figure too much.

Another use for our simulations is to take a first look at the tradeoffs involved
in adding complexity to models. Figure 10 shows estimates of b, the asymptote
if d = 1, for different sample sizes and values of d. If d = 1, then the Shepherd
model reduces to the Beverton-Holt model. In this case, you might think that it
wouldn’t matter whether you used the Shepherd or the Beverton-Holt model to
estimate the b parameter, but there are serious disadvantages to the Shepherd
function. First, even when d = 1, the Shepherd estimate of d is biased upwards
for low sample sizes, leading to a severe upward bias in the estimate of b. Second,
not shown on the graph because it would have obscured everything else, the
variance of the Shepherd estimate is far higher than the variance of the Beverton-
Holt estimate (e.g. for a sample size of 200, the Beverton-Holt estimate is 9.83
± 0.78 (s.d.), while the Shepherd estimate is 14.16 ± 13.94 (s.d.)).

On the other hand, if d is not equal to 1, the bias in the Beverton-Holt
estimate of b is large and more or less independent of sample size. For reasonable
sample sizes, if d = 0.9 the Beverton-Holt estimate is biased upward by 6; if
d = 1.1 it is biased downward by 3.79. Since the Beverton-Holt model isn’t
flexible enough to account for the changes in shape caused by d, it has to modify
b in order to compensate.

This general phenomenon is called the bias–variance tradeoff (see p. ??):
more complex models in general reduce bias at the price of increased variance.
(The small-sample bias of the Shepherd is a separate, and slightly less general,
phenomenon.)

Because it is fundamentally difficult to estimate parameters or test hypothe-
ses with noisy data, and most ecological data sets are noisy, power analyses are
often depressing. On the other hand, even if things are bad, it’s better to know
how bad they are than just to guess; knowing how much you really know is
important. In addition, there are design decisions you can make (e.g. number
of treatments vs number of replicates per treatment) that optimize power given
the constraints of time and money.

21

7
7

7
777 7 7

Sample size

E
st

im
at

ed
 d

8

88888 8 8

9
99999 9 9

0
00000 0 0

1
11111 1 1

222222 2 2

333333 3 3

0 500 1000 1500 2000

0.7

0.8

0.9

1.0

1.1

1.2

1.3

a
7

7

7
777

7 7

Sample size

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

8

8

8
888

8 8

9

9

9
999

9 9

0

0

0
000

0 0

1

1

1
111

1 1

2

2

2
222

2 2

3

3

3
333

3 3

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1.0

1.2

1.4

b

7
77 7

7

0 500 1000 1500 2000

0.75

0.80

0.85

0.90

0.95

1.00

Sample size

C
ov

er
ag

e

8

888
8 8

9

9
99

9 9
9

0

000

0

0
0

1

1
111 1 1

2

2
222 2 23

3
333 3 3

c

7
7

7
7

7
7

7
7

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Sample size

P
ow

er
 o

r
αα

8

8
8

8
8

8

8

8

9

9
99

9
9

9

90

0
0000 0 0

1

1

1111

1

1
2
2

2
2

2
2

2 2333333 3 3
d

Figure 9: Summaries of statistical accuracy, precision, and power for extimating
the Shepherd exponent d, for a range of d values from undercompensation,
d = 0.7 (line marked “7”) to overcompensation d = 1.3 (line marked “3”). (a)
Estimated d: the estimates are strongly biased upwards for sample sizes less than
500, especially for undercompensation (d < 1). (b) Confidence interval width:
the confidence intervals are large (> 0.4) for sample sizes smaller than about
500, for any value of d. (c) Coverage of the nominal 95% confidence intervals is
adequate for large sample size (> 250) and overcompensation (d > 1), but poor
even for large sample sizes when d < 1. (d) For statistical power (1 − β) of at
least 0.8, sample sizes of 500–1000 are required if d ≤ 0.7 or d ≥ 1.2; sample
sizes of 1000 if d = 0.8; and sample sizes of at least 2000 if d = 0.9 or d = 1.1.
When d = 1.0 (“0” line), the probability of rejecting the null hypothesis is a
little above the nominal value of α = 0.05.

22

99 9 9 9 9 9 9

0 500 1000 1500 2000

5
10

15
20

Number of samples

E
st

im
at

e
of

 b

00 0 0 0 0 0 0

11 1 1 1 1 1 1

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

9

9

9 9

9 9

0

0
0 0

0 0

1

1
1

1
1

1 1

B−H est.: d=1.1

B−H est.: d=1.0

Shepherd est.

B−H est.: d=0.9

Figure 10: Estimates of b, using Beverton-Holt or Shepherd functions, for dif-
ferent values of d and sample sizes.

23

Remember that systematic biases, pseudo-replication, etc. — factors that
are rarely accounted for in your experimental design or in your power analysis
– are often far more important than the fussy details of your statistical design.
While you should quantify the power of your experiment to make sure it has
a reasonable of success, thoughtful experimental design (e.g. measuring and
statistically accounting for covariates such as mass, rainfall, etc.; pairing control
and treatment samples; or expanding the range of covariates tested) will make a
much bigger difference than tweaking the details of your experiment to squeeze
out a little bit more statistical power.

References

Bolker, B. M., S. W. Pacala, and C. Neuhauser. 2003. Spatial dynamics in
model plant communities: what do we really know? American Naturalist
162:135–148.

Doak, D. F., K. Gross, and W. F. Morris. 2005. Understanding and predicting
the effects of sparse data on demographic analyses. Ecology 86:1154–1163.

Lloyd-Smith, J. O. 2007. Maximum likelihood esimation of the negative bino-
mial dispersion parameter for highly overdispersed data, with applications to
infectious diseases. PLoS ONE 2:e180.

Osenberg, C. W., C. M. St. Mary, R. J. Schmitt, S. J. Holbrook, P. Chesson,
and B. Byrne. 2002. Rethinking ecological inference: density dependence in
reef fishes. Ecology Letters 5:715–721.

Pacala, S. and J. Silander, Jr. 1990. Field tests of neighborhood population
dynamic models of two annual weed species. Ecological Monographs 60:113–
134.

Piegorsch, W. W. 1990. Maximum likelihood estimation for the negative bino-
mial dispersion parameter. Biometrics 46:863–867.

Pieters, E. P., C. E. Gates, J. H. Matis, and W. L. Sterling. 1977. Small
sample comparison of different estimators of negative binomial parameters.
Biometrics 33:718–723.

Poulin, R. 1996. Measuring parasite aggregation: defending the index of dis-
crepancy. International Journal for Parasitology 26:227–229.

Ruel, J. J. and M. P. Ayres. 1999. Jensen’s inequality predicts effects of envi-
ronmental variation. Trends in Ecology and Evolution 14:361–366.

Saha, K. and S. Paul. 2005. Bias-corrected maximum likelihood estimator of
the negative binomial dispersion parameter. Biometrics 61:179–185.

24

Schmitt, R. J., S. J. Holbrook, and C. W. Osenberg. 1999. Quantifying the
effects of multiple processes on local abundance: a cohort approach for open
populations. Ecology Letters 2:294–303.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. W. H. Freeman, New York. 3d
edition.

25

