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Summary

This chapter explores the technical methods required to find the quantities dis-
cussed in the previous chapter (maximum likelihood estimates, posterior means,
and profile confidence limits). The first section covers methods of numerical op-
timization for finding MLEs and Bayesian posterior modes, the second section
introduces Markov chain Monte Carlo, a general algorithm for finding posterior
means and credible intervals, and the third section discusses methods for finding
confidence intervals for quantities that are not parameters of a given model.

1 Introduction

Now we can think about the nitty-gritty details of fitting models to data. Re-
member that we’re trying to find the parameters that give the maximum likeli-
hood for the comparison between the fitted model(s) and the data. (From now
on I will discuss the problem in terms of finding the minimum negative log-
likelihood, although all the methods apply to finding maxima as well.) The first
section focuses on methods for finding minima of curves and surfaces. These
methods apply whether we are looking for maximum likelihood estimates, profile
confidence limits, or Bayesian posterior modes (which are an important starting
point in Bayesian analyses (Gelman et al., 1996)). Although there are many
numerical minimization algorithms, I will only discuss the basic properties of
few common ones (most of which are built into R), and their strengths and
weaknesses. Many of these methods are discussed in more detail by Press et al.
(1994). The second section introduces Markov chain Monte Carlo methods,
which are the foundation of modern Bayesian analysis. MCMC methods feel
a little bit like magic, but they follow simple rules that are not too hard to
understand. The last section tackles a more specific but very common problem,
that of finding confidence limits on a quantity that is not a parameter of the
model being fitted. There are many different ways to tackle this problem, vary-
ing in accuracy and difficulty. It’s useful to have several in your toolbox, and
learning about them also helps you gain a deeper understanding of the shapes
of likelihood and posterior probability surfaces.
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Figure 1: Direct search grids for a hypothetical negative log-likelihood function.
Grids 1 and 4 will eventually find the correct minimum (open point). Grids 2
and 3 will miss it, finding the false minimum (closed point) instead. Grid 2
misses becauses its range is too small; grid 3 misses because its resolution is too
small.

2 Fitting methods

2.1 Brute force/direct search

The simplest way to find a maximum (minimum) is to evaluate the function for
a wide range of parameter values and see which one gives the best answer. In
R, you would make up a vector of parameter values to try (perhaps a vector for
each of several parameters); use sapply (for a single parameter) or for loops
to calculate and save the negative log-likelihood (or posterior [log-|likelihood)
for each value; then use which(x==min(x)) (or which.min(x)) to see which
value of the parameters gave the minimum. (You may be able to use outer to
evaluate a matrix of all combinations of two parameters, but you have to be
careful to use a vectorized likelihood function.)

The big problem with direct search is speed, or lack of it: the resolution of
your answer is limited by the resolution (grid size) and range of your search, and



the time it takes is the product of the resolution and the range. Suppose you try
all values between poywer and pupper with a resolution Ap (e.g. from 0 to 10 by
steps of 0.1). Figure 1 shows a made-up example—somewhat pathological, but
not much worse than some real likelihood surfaces I've tried to fit. Obviously,
the point you're looking for must fall in the range you’re sampling: sampling
grid #2 in the figure misses the real minimum by looking at too small a range.

You can also miss a sharp, narrow minimum, even if you sample the right
range, by using too large a Ap — sampling grid #3 in Figure 1. There are
no simple rules for determining the range and Ap to use. You must know the
ecological meaning of your parameters well enough that you can guess at an
appropriate order of magnitude to start with. For small numbers of parameters
you can draw curves or contours of your results to double-check that nothing
looks funny, but for larger models it’s difficult to draw the appropriate surfaces.

Furthermore, even if you use an appropriate sampling grid, you will only
know the answer to within Ap. If you use a smaller Ap, you multiply the number
of values you have to evaluate. A good general strategy for direct search is to
start with a fairly coarse grid (although not as coarse as sampling grid #3 in
Figure 1), find the sub-region that contains the minimum, and then “zoom in”
on that region by making both the range and Ap smaller, as in sampling grid
#4. You can often achieve fairly good results this way, but almost always less
efficiently than with one of the more sophisticated approaches covered in the
rest of the chapter.

The advantages of direct search are (1) it’s simple and (2) it’s so dumb that
it’s hard to fool: provided you use a reasonable range and Ap, it won’t be
led astray by features like multiple minima or discontinuities that will confuse
other, more sophisticated approaches. The real problem with direct search is
that it’s slow because it takes no advantage of the geometry of the surface. If
it takes more than a few seconds to evaluate the likelihood for a particular set
of parameters, or if you have many parameters (which leads to many many
combinations of parameters to evaluate), direct search won’t be feasible.

For example, to do direct search on the parameters of the Gamma-distributed
myxomatosis data (ignoring the temporal variation), we would set the range and
grid size for shape and scale:

> data(MyxoTiter_sum)
> myxdat = subset(MyxoTiter_sum, grade == 1)

> gm = mean(myxdat$titer)

> cv = var(myxdat$titer)/mean(myxdat$titer)
> shape0 = gm/cv

> scale0 = cv

In Chapter 7?7, we used the method of moments to determine starting values of

shape (53.9) and scale (0.13). We’ll try shape parameters from 10 to 100 with
A shape=1, and scale parameters from 0.01 to 0.3 with A scale=0.01.

> shapevec = 10:100
> scalevec = seq(0.01, 0.3, by = 0.01)



Using the gammaNLL1 negative log-likelihood function from p. 77:

> surf = matrix(nrow = length(shapevec), ncol = length(scalevec))
> for (i in 1:length(shapevec)) {
+ for (j in 1:length(scalevec)) {
surf[i, j] = gammaNLL1(shapevec[i], scalevec[j])
}

+ + +

}
Draw the contour plot:
> contour (shapevec, scalevec, logl0(surf))

Or you can do this more automatically with the curve3d function from the
emdbook package:

> curve3d(logl0(gammaNLL1(x, y)), from = c(10, 0.01),
+ to = ¢(100, 0.3), n = c(91, 30), sys3d = "image")

The gridsearch2d function (also in emdbook) will let you zoom in on a
negative log-likelihood surface:

> gridsearch2d(gammaNLL1, vimin = 10, v2min = 0.01,
+ vimax = 100, v2max = 0.3, logz = TRUE)

2.2 Derivative-based methods

The opposite extreme from direct search is to make strong assumptions about
the geometry of the likelihood surface: typically, that it is smooth (continuous
with continuous first and second derivatives) and has only one minimum. Then
at the minimum point the derivative is zero: the gradient, the vector of the
derivatives of the surface with respect to all the parameters, is a vector of
all zeros. Most numerical optimization methods other than direct search use
some variant of the criterion that the derivative must be close to zero at the
minimum in order to decide when to stop. So-called derivative-based methods
also use information about the first and second derivatives to move quickly to
the minimum.

The simplest derivative-based method is Newton’s method, also called the
Newton-Raphson method, Newton’s method is a general algorithm for discov-
ering the places where a function crosses zero, called its roots. In general, if we
have a function f(x) and a starting guess zp, we calculate the value f(zq) and
the value of the derivative at xg, f/(20). Then we extrapolate linearly to try to
find the root: 1 = 29 — f(x0)/f (xo) (Figure 2). We iterate this process until
we reach a point where the absolute value of the function is “small enough” —
typically 1076 or smaller.

While calculating the derivatives of the objective function analytically is
the most efficient procedure, it is often convenient and sometimes necessary to
approximate the derivatives numerically using finite differences:

df(x) . Af(z)  flz+Az)— f(z)

= AI;,EO Az ~ Az , for small Az (1)
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Figure 2: Newton’s method: schematic
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Figure 3: Newton’s method: Top: numbered circles represent sequential guesses
for the parameter p (starting from guess #1 at 0.6); a dotted gray line joins the
current guess with the value of the derivative for that value of the parameter;
and solid lines “shoot” over to the horizontal axis to find the next guess for p.
Bottom: Likelihood curve.



R’s optim function uses finite differences by default, but it sometimes runs
into trouble with both speed (calculating finite differences for an n-parameter
model requires an additional n function evaluations for each step) and stability.
Calculating finite differences requires you to pick a Az: optim uses Az = 0.001
by default, but you can change this with control=1ist(ndeps=c(...)) within
an optim or mle2 call, where the dots stand for a vector of Az values, one for
each parameter. You can also change the effective value of Az by changing the
parameter scale, control=1list(parscale=c(...)); Ax; is defined relative to
the parameter scale, as parscalel[il#*ndeps[i]. If Az is too large, the finite
difference approximation will be poor; if it is too small, you may run into trouble
with round-off error.

In minimization problems, we actually want to find the root of the derivative
of the (negative) log-likelihood function, which means we need to find the second
derivative of the objective function. That is, instead of taking f(z) and calcu-
lating f'(x) by differentiation or finite differencing to figure out the slope and
project our next guess, Newton’s method for minima takes f’(x) and calculates
1" (z) (the curvature) to approximate where f’(x) = 0.

Using the binomial seed predation data from the last chapter and starting
with a guess of p = 0.6, Figure 3 and the following table show how Newton’s
method converges quickly to p = 0.75 (for clarity, the figure shows only the first
three steps of the process):

Guess (z)  f'(x)  f"(x)
0.600000 —25.000 145.833
0.771429  4.861 241.818
0.751326  0.284 214.856
0.750005  0.001 213.339
0.750000  0.000 213.333

T W N

Newton’s method is simple and converges quickly. The precision of the answer
rapidly increases with additional iterations. It also generalizes easily to multiple
parameters: just calculate the first and second partial derivatives with respect to
all the parameters and use linear extrapolation to look for the root. However, if
the initial guess is poor or if the likelihood surface has a funny shape, Newton’s
method can misbehave — overshooting the right answer or oscillating around
it. Various modifications of Newton’s method mitigate some of these problems
(Press et al., 1994), and other methods called “quasi-Newton” methods use the
general idea of calculating derivatives to iteratively approximate the root of the
derivatives. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm built
into R’s optim code is probably the most widespread quasi-Newton method.

Use BFGS whenever you have a relatively well-behaved (i.e., smooth) like-
lihood surface, reasonable starting conditions, and efficiency is important. If
you can calculate an analytical formula for the derivatives, write an R function
to compute it for a particular parameter vector, and supply it to optim via
the gr argument (see the examples in ?gr), you will avoid the finite difference
calculations and get a faster and more stable solution.



As with all optimization methods, you must be able to estimate reasonable
starting parameter values. Sometimes a likelihood surface will become flat for
really bad fits — once the parameters are sufficiently far off the correct an-
swer, changing them may make little difference in the goodness of fit. Since
the log-likelihood will be nearly constant, its derivative will be nearly zero.
Derivative-based methods that start from implausible values (or any optimiza-
tion procedure that uses a “flatness” criterion to decide when to stop, including
most of those built into optim) may find this worst-case scenario instead of the
minimum you sought.

More often, specifying ridiculous starting values will give infinite or NA val-
ues, which R’s optimization routines will choke on. Although most of the opti-
mization routines can handle occasional NAs, the negative log-likelihood must be
finite for the starting values. You should always test your negative log-likelihood
functions at the proposed starting conditions to make sure they give finite an-
swers; also try tweaking the parameters in the direction you think might be
toward a better fit, and see if the negative log-likelihood decreases. If you get
non-finite values (Inf, NA, or NaN), check that your parameters are really sensi-
ble. If you think they should be OK, check for NAs in your data, or see if you
have made any numerical mistakes like dividing by zero, taking logarithms of
zero or negative numbers, or exponentiating large numbers (R thinks exp(x) is
infinite for any x > 710). Exponentiating negative numbers of large magnitude
is not necessarily a problem, but if they “underflow” and become zero (R thinks
exp(x) is 0 for any x < —746) you may get errors if you divide by them or cal-
culate a likelihood of a data value that has zero probability. Some log-likelihood
functions contain terms like xlog(x), which we can recognize should be zero
but R treats as NaN. You can use if or ifelse in your likelihood functions to
work around special cases, for example ifelse (x==0,0,x*1log(x)). If you have
to, break down the sum in your negative log-likelihood function and see which
particular data points are causing the problem (e.g. if L is a vector of negative
log-likelihoods, try which(!is.finite(L))).

If your surface is not smooth — if it has discontinuities or if round-off error
or noise makes it “bumpy” — then derivative-based methods will work badly,
particularly with finite differencing. When derivative-based methods hit a bump
in the likelihood surface, they often project the next guess to be very far away,
sometimes so far away that the negative log-likelihood calculation makes no
sense (e.g. negative parameter values). In this case, you will need to try an
optimization method that avoids derivatives.

2.3 Derivative-free methods

In between the brute force of direct search and the sometimes delicate derivative-
based methods are derivative-free methods, which use some information about
the surface but do not rely on smoothness.



2.3.1 One-dimensional algorithms

One-dimensional minimization is easy because once you have bracketed a min-
imum (i.e., you can find two parameter values, one of which is above and one
of which is below the parameter value that gives the minimum negative log-
likelihood) you can always find the minimum by interpolation. R’s optimize
function is a one-dimensional search algorithm that uses Brent’s method, which
is a combination of golden section search and parabolic interpolation (Press et al.,
1994). Golden-section search attempts to “sandwich” the minimum, based on
the heights (negative log-likelihoods) of a few points; parabolic interpolation
fits a quadratic function (a parabola) to three points at a time and extrapolates
to the minimum of the parabola. If you have a one-dimensional problem (i.e.
a one-parameter model), optimize can usually solve it quickly and precisely.
The only potential drawback is that optimize, like optim, can’t easily calculate
confidence intervals. If you need confidence intervals, use mle2 instead™.

2.3.2 Nelder-Mead simplex

The simplest and probably most widely used derivative-free minimization algo-
rithm that works in multiple dimensions (it’s optim’s default) is the Nelder-Mead
simplex, devised by Nelder and Mead in 1965 *.

Rather than starting with a single parameter combination (which you can
think of as a point in n-dimensional parameter space) Nelder-Mead picks n + 1
parameter combinations that form the vertices of an initial simplex—the sim-
plest shape possible in n-dimensionst. In two dimensions, a simplex is three
points (each of which represents a pair of parameter values) forming a triangle;
in three dimensions, a simplex is 4 points (each of which is a triplet of parameter
values) forming a pyramid or tetrahedron; in higher dimensions, it’s n+ 1 points
which we just call an n-dimensional simplex. The Nelder-Mead algorithm then
evaluates the likelihood at each vertex, which is the “height” of the surface at
that point, and move the worst point in the simplex according to a simple set
of rules:

e start by going in what seems to the best direction by reflecting the high
(worst) point in the simplex through the face opposite it;

o if the goodness-of-fit at the new point is better than the best (lowest) other
point in the simplex, double the length of the jump in that direction;

¢ if this jump was bad—the height at the new point is worse than the second-
worst point in the simplex—then try a point that’s only half as far out as

*mle and mle2 use method="BFGS" by default. Nelder-Mead optimization (see below) is
unreliable in one dimension and R will warn you if you try to use it to optimize a single
parameter.

*The Nelder-Mead simplex is completely unrelated to the simplex method in linear pro-
gramming, which is a method for solving high-dimensional linear optimization problems with
constraints.

THowever, you only need to specify a single starting point; R automatically creates a
simplex around your starting value.
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Figure 4: Graphical illustration (after Press et al. (1994)) of the Nelder-Mead
simplex rules applied to a tetrahedron (a 3-dimensional simplex, used for a
3-parameter model).

the initial try;

e if this second try, closer to the original, is also bad, then contract the
simplex around the current best (lowest) point [not shown in Figure 4].

The Nelder-Mead algorithm works well in a wide variety of situations, although
it’s not foolproof (nothing is) and it’s not particularly efficient.

We give the Nelder-Mead algorithm a set of starting parameter values and
it displaces these coordinates slightly to get its starting simplex. Thereafter,
it takes steps alternating between simple reflection and expanded reflection,
moving rapidly downhill across the contour lines and increasing both shape
and scale parameters. Eventually it finds that it has gone too far, alternating
reflections and contractions to “turn the corner”. Once it has turned, it proceeds
very rapidly down the contour line, alternating reflections again; after a total
of 50 cycles the surface is flat enough for the algorithm to conclude that it has
reached a minimum.

Nelder-Mead can be considerably slower than derivative-based methods, but
it is less sensitive to discontinuities or noise in the likelihood surface, since
it doesn’t try to use fine-scale derivative information to navigate across the
likelihood surface.

10
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Figure 5: Track of Nelder-Mead simplex for the Gamma model of the myxo-
matosis titer data. Triangles indicating some moves are obscured by subsequent
moves.
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2.4 Stochastic global optimization: simulated annealing

Stochastic global optimizers are a final class of optimization techniques, even
more robust than the Nelder-Mead simplex and even slower. They are global
because unlike most other optimization methods they may be able to find the
right answer even when the likelihood surface has more than one local minimum
(Figure 1). They are stochastic because they rely on adding random noise to
the surface as a way of avoiding being trapped at one particular minimum.

The classic stochastic optimization algorithm is the Metropolis algorithm, or
simulated annealing (Kirkpatrick et al., 1983; Press et al., 1994). The physical
analogy behind simulated annealing is that gradually cooling a molten metal or
glass allows it to form a solid with few defects. Starting with a crude (“hot”)
solution to a problem and gradually refining the solution allows us to find the
global minimum of a surface even when it has multiple minima.

The rules of simulated annealing are:

e pick a starting point (set of parameters) and calculate the negative log-
likelihood for those parameters;

e until your answer is good enough or you run out of time:

— A. pick a new point (set of parameters) at random (somewhere near
your old point);

calculate the value of the negative log-likelihood there

if the new value is better than the old negative log-likelihood, accept
it and return to A

— if it’s worse than the old value, calculate the difference in negative
log-likelihood A(—L) = —Lnew — (—Lg)q)- Pick a random number
between 0 and 1 and accept the new value if the random number is
less than e~2(=L)/% where k is a constant called the temperature.
Otherwise, keep the previous value. The higher the temperature and
the smaller A(—L) (i.e., the less bad the new fit), the more likely you
are to accept the new value.

In mathematical terms, the acceptance rule is

A(=L)

e~ F if A(-L) >0
1 if A(—L) < 0.

Prob(accept) = {

— Return to A and repeat.

e Periodically (e.g., every 100 steps) lower the value of k to make it harder
and harder to accept bad moves.

One variant of simulated annealing is available in R as the SANN method for
optim or mle2.

Another variant of the Metropolis algorithm (Metropolis-Szymura-Barton,
MSB, metropSB in emdbook: Szymura and Barton, 1986)) varies the size of

12
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Figure 6: Track of Metropolis-Szymura-Barton evaluations. The MSB algorithm
starts at (20,0.05) (step 1), and moves quickly up to the central valley, but then
wanders aimlessly back and forth along the valley.
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the change in parameters (the scale of the candidate distribution or jump size)
rather than the temperature, and changes the jump size adaptively rather than
according to a fixed schedule. Every successful jump increases the jump size,
while every unsuccessful jump decreases the jump size. This makes the algorithm
good at exploring lots of local minima (every time it gets into a valley, it starts
trying to get out) but really bad at refining estimates (it has a hard time actually
getting all the way to the bottom of a valley).
To run MSB on the myxomatosis data:

> MSBfit = metropSB(fn = gammaNLL2, start = c(20, 0.05),
+ nmax = 2500)

Figure 6 shows a snapshot of where the MSB algorithm goes on our now-
familiar likelihood surface for the myxomatosis data, with unsuccessful jumps
marked in gray and successful jumps marked in black. The MSB algorithm
quickly moves “downhill” from its starting point to the central valley, but then
drifts aimlessly back and forth along the central valley. It does find a point close
to the minimum. After 376 steps, it finds a minimum of 37.66717, equal for all
practical purposes to the Nelder-Mead simplex value of 37.66714 — but Nelder-
Mead took only 70 function evaluations to get there. Since MSB increases its
jump scale when it is successful, and since it is willing to take small uphill steps,
it doesn’t stay near the minimum. While it always remembers the best point it
has found so far, it will wander indefinitely looking for a better solution. In this
case it didn’t find anything better by the time I stopped it at 2,500 iterations.

Figure 7 shows some statistics on MSB algorithm performance as the number
of iterations increases. The top two panels show the values of the two parameters
(shape and scale), and the best-fit parameters so far. Both of the parameters
adjust quickly in the first 500 iterations, but from there they wander around
without improving the fit. The third panel shows a scaled version of the jump-
width parameter, which increases initially and then varies around 1.0, and the
running average of the fraction of jumps accepted, which rapidly converges to
a value around 0.5. The fourth and final panel shows the achieved value of the
negative log-likelihood: almost all of the gains occur early. The MSB algorithm
is inefficient for this problem, but it can be a lifesaver when your likelihood
surface is complex and you have the patience to use brute force.

There are many other stochastic global optimization algorithms. For exam-
ple, Press et al. (1994) suggest a hybrid of simulated annealing and the Nelder-
Mead simplex where the vertices of the simplex are perturbed randomly but with
decreasing amplitudes of noise over time. Other researchers have suggested us-
ing a stochastic algorithm to find the the right peak and finishing with a local
algorithm (Nelder-Mead or derivative-based) to get a more precise answer. Var-
ious adaptive stochastic algorithms (e.g. Ingber, 1996) attempt to “tune” either
the temperature or the jump size and distribution for better results. Methods
like genetic algorithms or differential evolution use many points moving around
the likelihood surface in parallel, rather than a single point as in simulated an-
nealing. If you need stochastic global optimization, you will probably need a lot
of computer time (many function evaluations are required) and you will almost

14



70 —
— 0.25
60 —
— 0.20
50
— 0.15
40 —
30 ~ 0.10
20 — 0.05
relative negative
jump size log likglihood
1.0 4
05 - ™
fraction
0.0 - accepted
T T T T T T
0 1000 2000 0 1000 2000
Iterations Iterations

Figure 7: History of MSB evaluations: parameters (shape and scale), relative
jump size and fraction of jumps accepted, and current and minimum negative
log-likelihood. The minimum negative log-likelihood is achieved after 376 steps;
thereafter the algorithm remembers its best previous achievement (horizontal
dotted line), but fails to improve on it.
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certainly need to tune the parameters of whatever algorithm you choose rather
than using the default values.

3 Markov chain Monte Carlo

Bayesians are normally interested in finding the means of the posterior distri-
bution rather than the maximum likelihood value (or analogously the mode
of the posterior distribution). Previous chapters suggested that you can use
WinBUGS to compute posterior distributions, but gave few details. Markov
chain Monte Carlo (MCMC) is an extremely clever, general approach that uses
stochastic jumps in parameter space to find the distribution. MCMC is similar
to simulated annealing in the way it picks new parameter values sequentially
but randomly. The main difference is that MCMC’s goal is not to find the best
parameter combination (mode/MLE) but to sample from the posterior distri-
bution.

Like simulated annealing, MCMC has many variants that use different rules
for picking new parameter values (i.e., different kinds of candidate distributions)
and for deciding whether accept the new choice or not. However, all variants
of MCMC must satisfy the fundamental rule that the ratio of successful jump
probabilities (Pjump X Paccept) is proportional to the ratio of the posterior
probabilities:

Post(A)  P(jump B — A)P(accept A|B)

Post(B) B P(jump A — B)P(accept B|A) ®)

If we follow this rule (and if several other technical criteria are satisfied*), in the
long run the chain will spend a lot of time occupying areas with high probability
and will visit (but not spend much time in) in areas with low probability, so
that the long-term distribution of the sampled points will match the posterior
probability distribution.

3.1 Metropolis-Hastings

The Metropolis-Hastings MCMC updating rule is very similar to the simulated
annealing rules discussed above, except that the temperature does not decrease
over time to make the algorithm increasingly picky about accepting uphill moves.
The Metropolis updating rule defined above for simulated annealing (p. 12) can
use any symmetric candidate distribution (P(jump B — A) = P(jump A — B).
For example, the MSB algorithm (p. 12) picks values in a uniform distribution
around the current set of parameters. The critical part of the Metropolis algo-
rithm is the acceptance rule, which is the simulated annealing rule (eq. 2) with
the temperature parameter k set to 1 and the posterior probability substituted

*The chain must be irreducible (it must be possible eventually to move from any point in
parameter space to any other) and aperiodic (it should be impossible for it to get stuck in a
loop).
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for the likelihood!. The Metropolis-Hastings rule generalizes the Metropolis by
multiplying the acceptance probability by the ratio of the jump probabilities in
each direction, P(jump B — A)/P(jump A — B):

Post(B) P(jump B — A)> (@)

— .
ecept BIA) =i (1 ERE - B =

This equation reduces to the Metropolis rule for symmetric distributions but
allows for asymmetric candidate distributions, which is particularly useful if
you need to adjust candidate distributions so that a parameter does not become
negative.

As in simulated annealing, if a new set of parameters has a higher posterior
probability than the previous parameters (weighted by the asymmetry in the
probability of moving between the parameter sets), then the ratio in (4) is
greater than 1 and we accept the new parameters with probability 1. If the new
set has a lower posterior probability (weighted by jump probabilities), we accept
them with a probability equal to the weighted ratio. If you work this out for
P(accept A|B) in a similar way, you'll see that the rule fits the basic MCMC
criterion (3). In fact, in the MSB example above the acceptance probability was
set equal to the ratio of the likelihoods of the new and old parameter values
(the scale parameter in optimMSB was left at its default value of 1), so that
analysis also satisfied the Metropolis-Hasting rule (4). Since it used negative
log-likelihoods rather than incorporating an explicit prior to compute posterior
probabilities, it assumed a completely flat prior (which can be dangerous, leading
to unstable estimates or slow convergence, but seems to have been OK in this
case).

The MCMCpack package provides another way to run a Metropolis-Hastings
chain in R. Given a function that computes the log posterior density (if the
prior is completely flat, this is just the (positive) log-likelihood function), the
MCMCmetroplR function first uses optim to find the posterior mode, then uses
the approximate variance-covariance matrix at the mode to scale a multivariate
normal candidate distribution, then runs a Metropolis-Hastings chain based on
this candidate distribution.

For example:

> gammaNLL2B = function(p) {

+ sum (dgamma (myxdat$titer, shape = p[1], scale = p[2],

+ log = TRUE))

+}

> m3 <- MCMCmetroplR(gammaNLL2B, theta.init = c(shape = 20,

+ scale = 0.05), thin = 30, mcmc = 30000, optim.lower = rep(0.004,
+ 2), optim.method = "L-BFGS-B", tune = 3)

fIn the simulated annealing rule we exponentiated —k times the log-likelihood difference,
which gave us the likelihood ratio raised to the power —k; if we set £ = 1 then we have
Lo1d/Lnew, which corresponds to Post(A)/Post(B).
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The Metropolis acceptance rate was 0.10816
eldddedddd e ddedededdeddedddedeeddeddededddededdeddeddedddededdeddeddde

> colnames(m3) = c("shape", "scale")

When I initially ran this analysis with the default value of tune=1 and used
plot(m3) to view the results, I saw that the chain took long excursions to ex-
treme values. Inspecting the contour plot of the surface, and slices (7calcslice
from the emdbook package) didn’t suggest that there was another minimum that
the chain was visiting during these excursions. The authors of the package sug-
gested that MCMCmetroplR was having trouble because of the banana-shape of
the posterior density (Figure 6), and that increasing the tune parameter, which
increases the scale of the candidate distribution, would help*. Setting tune=3
seems to be enough to make the chains behave better. (Increasing tune still
more would make the Metropolis sampling less efficient.) Another option, which
might take more thinking, would be to transform the parameters to make the
likelihood surface closer to quadratic, which would make a multivariate Normal
candidate distribution a better fit. Since the likelihood contours approximately
follow lines of constant mean (shape - scale: Figure 5), changing the parameteri-
zation from {shape, scale} to {mean, variance} makes the surface approximately
quadratic and should make MCMCmetroplR behave better.

The colnames command sets the parameter names, which are helpful when
looking at summary (m3) or plot(m3) since MCMCmetroplR doesn’t set the names
itself.

3.2 Burn-in and convergence

Metropolis-Hastings updating, and any other MCMC rule that satisfies (3), is
guaranteed to reach the posterior distribution eventually, but usually we have
to discard the iterations from a burn-in period before the distribution converges
to the posterior distribution. For example, during the first 300 steps in the MSB
optimization above (Figures 6 and 7) the algorithm approaches the minimum
from its starting points, and bounces around the minimum thereafter. Treating
this analysis as an MCMC, we would drop the first 300 steps (or 500 to be safe)
and focus on the rest of the data set.

*They specifically suggested:

1. set the tuning parameter much larger than normal so that the acceptance rate is actually
below the usual 20-25% rule of thumb. This will fatten and lengthen the proposal
distribution so that one can jump from one tail to the other.

2. forego the proposal distribution based on the large sample var-cov matrix. Set the V
parameter in MCMCmetrop1R to something that will work reasonably well over the entire
parameter space.

3. use an MCMC algorithm other than the random walk metropolis algorithm. You’ll
need to use something other than MCMCmetropiR to do this but this option will be the
most computationally efficient.
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Assessing convergence is simple for such a simple model but can be difficult
in general. Bayesian analysts have developed many convergence diagnostics, but
you probably only need to know about a few.

The Raftery-Lewis (RL) diagnostic (Raftery and Lewis, 1996, raftery.diag
in the coda package) takes a pilot run of an MCMC and estimates, based on
the variability in the parameters, how long the burn-in period should be and
how many samples you need to estimate the parameters to within a certain
accuracy. The parameters for the Raftery-Lewis diagnostic are the quantile
that you want to estimate (2.5% by default, i.e. the standard two-sided tails of
the posterior distribution), the accuracy with which you want to estimate the
quantile (£0.005 by default), and the desired probability that the quantile is
in the desired range (default 0.95). For the MSB/myxomatosis example above,
running the Raftery-Lewis diagnostic with the default accuracy of r = 0.005
said the pilot run of 2500 was not even long enough to estimate how long the
chain should be, so I relaxed the accuracy to r = 0.01:

Quantile (q) = 0.025
Accuracy (r) = +/- 0.01
Probability (s) = 0.95

Burn-in Total Lower bound Dependence

M ()] (Nmin) factor (I)
pl 44 10100 937 10.8
p2 211 29839 937 31.8

The first column gives the estimated burn-in time for each parameter — take
the maximum of these values as your burn-in time. The next two columns give
the required total sample size and the sample size that would be required if the
chain were uncorrelated; the final column gives the dependence factor, which
essentially says how many steps the chain takes until it has “forgotten” about
its previous value. In this case, RL says that we would need to run the chain
for about 30,000 samples to get a sufficiently good estimate of the quantiles for
the scale parameter, but that (because the dependency factor is close to 30) we
could take every 30th step in the chain and not lose any important information.

Another way of assessing convergence is to run multiple chains that start
from widely separated (overdispersed) points and see whether they have run long
enough to overlap (which is a good indication that they have converged). The
starting points should be far enough apart to give a good sample of the surface,
but should be sufficiently reasonable to give finite posterior probabilities. The
Gelman-Rubin (G-R, gelman.diag in the coda package: Gelman et al., 1996)
diagnostic takes this approach. G-R provides a potential scale reduction factor
(PRSF), estimating how much the between-chain variance could be reduced if
the chains were run for longer. The closer to 1 the PRSFs are, the better. The
rule of thumb is that they should be less than 1.2.

Running a second chain (m2) for the myxomatosis data starting from (shape=70,
scale=0.2) instead of (shape=20, scale=0.05) and running G-R diagnostics on
both chains gives:
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> gelman.diag(mcmc.list(m1, m2))

Potential scale reduction factors:

Point est. 97.5% quantile
p1 1.15 1.48
p2 1.31 2.36

Multivariate psrf

1.28

The upper confidence limit for the PRSF for parameter 1 (shape), and the
estimated value for parameter 2 (scale), are both greater than 1.2. Apparently
we need to run the chains longer.

3.3 Gibbs sampling

The major alternative to Metropolis-Hastings sampling is Gibbs sampling (or the
Gibbs sampler), which works for models where we can figure out the posterior
probability distribution (and pick a random sample from it), conditional on
the values of all the other parameters in the model. For example, to estimate
the mean and variance of normally distributed data we can cycle back and
forth between picking a random value from the posterior distribution for the
mean, assuming a particular value of the variance, and picking a random value
from the posterior distribution for the variance, assuming a particular value
of the mean. The Gibbs sampler obeys the MCMC criterion (3) because the
candidate distribution ¢s the posterior distribution, so the jump probability
(P(jump B — A)) is equal to the posterior distribution of A. Therefore, the
Gibbs sampler can always accept the jump Paccept = 1 and still satisfy

Post(A) _ P(jump B — A) (5)
Post(B)  P(jump A — B)’

Gibbs sampling works particularly well for hierarchical models (Chapter ?7).
Whether we can do Gibbs sampling or not, we can do block sampling by breaking
the posterior probability up into a series of conditional probabilities. A compli-
cated posterior distribution Post(p1, pa, - . ., pnly) = L(y|p1, pa, - - -, pn)Prior(p1, p2, - - ., Pn),
which is hard to compute in general, can be broken down in terms of the marginal
posterior distribution of a single parameter (p; in this case), assuming all the
other parameters are known:

Post(pi1|y, pa, - .., pn) = L(Ylp1, 2, - .., pn) P(P1|p2, - - ., ) -Prior(p1, p2, . .., pn)

(6)
This decomposition allows us to sample parameters one at a time, either by
Gibbs sampling or by Metropolis-Hastings. The advantage is that the posterior
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distribution of a single parameter, conditional on the rest, may be simple enough
so that we can sample directly from the posterior.

BUGS (Bayesian inference Using Gibbs Sampling) is an amazing piece of
software that takes a description of a statistical model and automatically gen-
erates a Gibbs sampling algorithm*. WinBUGS is the Windows version, and
R2WinBUGS is the R interface for WinBUGS.

Some BUGS models have already appeared in Chapter 6. BUGS’s syntax
closely resembles R’s, with the following important differences:

¢ BUGS is not vectorized. Definitions of vectors of probabilities must be
specified using a for loop.

¢ R uses the = symbol to assign values. BUGS uses <- (a stylized left-arrow:
e.g. a <- b+l instead of a=b+1).

e BUGS uses a tilde (7) to mean “is distributed as”. For example, to say that
x comes from a standard normal distribution (with mean 0 and variance
1: ¢ ~ N(0,1), tell BUGS x~dnorm(0,1)).

e While many statistical distributions have the same names as in R(e.g. nor-
mal=dnorm, gamma=dgamma), watch out! BUGS often uses a different
parameterization. For example, where R uses dnorm(x,mean,sd), BUGS
uses x~dnorm(mean,prec) where prec is the precision — the reciprocal
of the variance. Also note that x is included in the dnorm in R, whereas
in BUGS it is on the left side of the ~ operator. Read the BUGS docu-
mentation (included in WinBUGS) to make sure you understand BUGS’s
definitions.

The model definition for BUGS should include the priors as well as the like-
lihoods. Here’s a very simple input file, which defines a model for the posterior
of the myxomatosis titer data:

model {
for (i in 1:n) {
titer[i] ~ dgamma(shape,rate)
}
shape ~ dunif (0,150)
rate ~ dunif (0,20)

*1 will focus on a text file description, and on the R interface to WinBUGS implemented in
the R2WinBUGS package, but many different variants of automatic Gibbs samplers are spring-
ing up. These vary in interface, degree of polish and supported platforms. (1) WinBUGS
runs on Windows, under WINE on Linux, and maybe soon on Intel Macs; models can be
defined either graphically or as text files; R2ZWinBUGS is the R interface. (2) OpenBUGS
(http://mathstat.helsinki.fi/openbugs/) is an new, open version of WinBUGS that runs
on Windows and Linux (LinBUGS). OpenBUGS has an R interface, BRugs, but so far it only
runs on Windows. (3) JAGS is an alternative version that runs on Linux and MacOS (but
may be challenging to set up) and has an R interface.
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After making sure that this file is present in your working directory (use
Wordpad or Notepad to edit it; if you use Word, be sure to save the file as text),
you can run this model in BUGS by way of R2WinBUGS as follows:

v

library (R2WinBUGS)

titer <- myxdat$titer

n <- length(titer)

inits <- list(list(shape = 100, rate = 3), list(shape = 20,
rate = 10))

testmyxo.bugs <- bugs(data = list("titer", "n"),
inits, parameters.to.save = c("shape", "rate"),
model.file = "myxogamma.bug", n.chains = length(inits),
n.iter = 5000)

+ + + VvV + Vv Vv Vv

Printing out the value of testmyxo.bugs gives a summary including the
mean, standard deviation, quantiles, and the Gelman-Rubin statistic (Rhat)
for each variable. It also gives a DIC estimate for the model. By default this
summary only uses a precision of 0.1, but you can use the digits argument to
get more precision, e.g. print (testmyxo.bugs,digits=2).

> testmyxo.bugs

Inference for Bugs model at "myxogamma.bug", fit using winbugs,
2 chains, each with 5000 iterations (first 2500 discarded), n.thin =5
n.sims = 1000 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
shape 54.6 16.9 28.5 43.0 51.7 63.9 92.8 1.1 41
rate 7.9 2.5 4.1 6.2 7.5 9.3 13.5 1.1 42
deviance 77.7 2.3 75.4 76.0 76.9 78.7 83.8 1.1 18

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

pD = 2.3 and DIC = 80.0 (using the rule, pD = Dbar-Dhat)
DIC is an estimate of expected predictive error (lower deviance is better).

The standard diagnostic plot for a WinBUGS run (plot.bugs (testmyxo.bugs))
shows the mean and credible intervals for each variable in each chain, as well as
the Gelman-Rubin statistics for each variable.

You can get slightly different information by turning the result into a coda
object:

> testmyxo.coda <- as.mcmc(testmyxo.bugs)

summary (testmyxo.coda) gives similar information as printing testmyxo . bugs.
HPDinterval gives the credible (highest posterior density) interval for each
variable computed from MCMC output.
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Figure 8: WinBUGS output plot: default coda plot, showing trace plots (left)
and density plots (right).

Plotting testmyxo.coda gives trace plots (similar to Figure 7) and density
plots of the posterior density (Figure 8). Other diagnostic plots are available:
see especially ?densityplot.mcmc.

This information should be enough to get you started using WinBUGS. A
growing number of papers — some in ecology, but largely focused in conservation
and management (especially in fisheries) provide example models for specific
systems * (Millar and Meyer, 2000; Jonsen et al., 2003; Morales et al., 2004;
McCarthy and Parris, 2004; Clarke et al., 2006).

In summary, the basic procedure for fitting a model via MCMC (using MCM-
Cpack, WinBUGS, or rolling your own) is: (1) design and code your model; (2)
enter the data; (3) pick priors for parameters; (4) initialize the parameter val-
ues for several chains (overdispersed, or by a random draw from priors); (5) run
the chains for “a long time” (R2WinBUGS’s default is 2000 steps); (6) check
convergence; (7) run for longer if necessary; (8) discard burn-in and thin the
chains; (8) compute means, 95% intervals, correlations among parameters, and
other values of interest.

*In a few years this list of citations will probably be too long to include!

23



4 Fitting challenges

Now that we’ve reviewed the basic techniques for maximum-likelihood and
Bayesian estimation, I'll go over some of the special characteristics of problems
that make fitting harder.

4.1 High dimensional/many-parameter models

Finding the MLE for a 1-parameter model means finding the minimum of the
likelihood curve; finding the MLE for a 2-parameter model means finding the
minimum of a 2D surface; finding the MLE for models with more parameters
means finding the minimum on a multidimensional “surface”. Models with more
than a few parameters suffer from the curse of dimensionality: the number of
parameter combinations, or derivatives, or directions you have to consider in-
creases as a power law of the sampling resolution. For example, if you want
find the MLE for a five-parameter model (a pretty simple model) by direct
search and you want to subdivide the range of each parameter into 10 intervals
(which is quite coarse), you're already talking about 105 parameter combina-
tions. Combine this with function evaluations that take more than a fraction
of a second and you’re into the better part of a day to do a single optimization
run. Direct search is usually just not practical for models with more than two
or three parameters.

If you need to visualize a high-dimensional likelihood surface (e.g. examining
the region around a putative MLE to see if the algorithm has found a reasonable
answer), you’ll probably need to look at 2D slices (varying two parameters at
a time over reasonable ranges, calculating the objective function for each com-
bination of values while holding all the other parameters constant) or profiles
(varying two parameters at a time over reasonable ranges and optimizing over
all the other parameters for each combination of values). You are more likely
to have to fall back on the information matrix-based approach described in the
previous chapter for finding approximate variances and covariances (or correla-
tions) of the parameter estimates; this approach is more approximate and gives
you less information than fitting profiles, but extends very simply to any number
of parameters.

MCMC fitting adapts well to large models. You can easily get univariate
(using HPDinterval from coda for credible intervals or summary for quantiles)
and bivariate confidence intervals (using HPDregionplot from emdbook).

4.2 Slow function evaluations

Since they require many function evaluations, high-dimensional problems also
increase the importance of speed in the likelihood calculations. Many of the
models you’ll deal with take only microseconds to calculate a likelihood, so
running tens of thousands of function evaluations can still be relatively quick.
However, fitting a high-dimensional model using simulated annealing or other
stochastic optimization approaches, or finding confidence limits for such models,
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can sometimes require millions of evaluations and hours or days to fit. In other
cases, you might have to run a complicated population dynamics model for each
set of parameters and so each likelihood function evaluation could take minutes
or longer (Moorcroft et al., 2006).

Some possible solutions or partial solutions to this problem:

o Use more efficient optimization algorithms, such as derivative-based algo-
rithms instead of Nelder-Mead, if you can.

e Derive an analytical expression for the derivatives and write a function to
compute it. optim and mle2 can use this function (via the gr argument)
instead of computing finite differences.

e Rewrite the code that computes the objective function more efficiently
in R. Vectorized operations are almost always faster than for loops. For
example, filling a 1000 x 2000 matrix with Normally distributed values
one at a time takes 30 seconds, while picking a million values and then
reformatting them into a matrix takes only 0.78 seconds. Calculating the
column sums of the matrix by looping over rows and columns takes 20.8
seconds; using apply (m,1,sum) takes 0.14 seconds; and using colSums (m)
takes 0.006 seconds.

e If you can program in C or FORTRAN, or have a friend who can, write
your objective function in one of these faster, lower-level languages and
link it to R (see the R Extensions Manual for details).

e For really big problems, you may need to use tools beyond R. One such
tool is AD Model Builder, which uses automatic differentiation — a very
sophisticated algorithm for computing derivatives efficiently — which can
speed up computation a lot (R has a very simple form of automatic differ-
entiation built into its deriv function).

e Compromise by allowing a lower precision for your fits, increasing the
reltol parameter in optim. Do you really need to know the parameters
within a factor of 1078, or would 1073 do, especially if you know your
confidence limits are likely to be much larger? (Be careful: increasing the
tolerance in this way may also allow algorithms to stop prematurely at a
flat spot on the way to the true minimum.)

¢ Find a faster computer, or wait longer for the answers.

4.3 Discontinuities and thresholds

Models with sudden changes in the log-likelihood (discontinuities) or derivatives
of the log-likelihood, or perfectly flat regions, can cause real trouble for general-
purpose optimization algorithms*. Discontinuities in the log-likelihood or its

*Specialized algorithms, such as those included in the segmented package on CRAN, can
handle certain classes of piecewise models (Muggeo, 2003).
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derivative can make derivative-based extrapolations wildly wrong. Almost-flat
regions can make most methods (including Nelder-Mead) falsely conclude that
they’ve reached a minimum.

Flat regions are often the result of threshold models, which in turn can be
motivated on simple phenomenological grounds or as the result (e.g.) of some
optimal-foraging theories (Chapter 3). Figure 9 shows simulated “data” and a
likelihood curve/slice for a very simple threshold model. The likelihood profile
for the threshold model has discontinuities at the z-value of each data point.
These breaks occur because the likelihood only changes when the threshold
parameter is changed from just below an observed value of z to just above it;
adjusting the threshold parameter anywhere in the range between two observed
x values has no effect on the likelihood.

The logistic profile, in addition to being smooth rather than choppy, is lower
(representing a better fit to the data) for extreme values because the logistic
function can become essentially linear for intermediate values, while the thresh-
old function is flat. For optimum values of the threshold parameter, the logistic
and threshold models give essentially the same answer. Since the logistic is
slightly more flexible (having an additional parameter governing steepness), it
gives marginally better fits — but these would not be significantly better ac-
cording to the likelihood ratio test or any other model selection criterion. Both
profiles become flat for extreme values (the fit doesn’t get any worse for ridicu-
lous values of the threshold parameter), which could cause trouble with an
optimization method that is looking for flat regions of the profile.

Some ways to deal with thresholds:

e If you know a priori where the threshold is, you can fit different models
on either side of the threshold.

o If the threshold occurs for a single parameter, you can compute a log-
likelihood profile for that parameter. For example, in Figure 9 only the
parameter for the location of the threshold causes a problem, while the
parameters for the values before and after the threshold are well-behaved.
This procedure reduces to direct search for the difficult parameter while
still searching automatically for all the other parameters (Barrowman and
Myers, 2000). This kind of profiling is also useful when a parameter needs
to be restricted to integer values or is otherwise difficult to fit by a con-
tinuous optimization routine.

¢ You can adjust the model, replacing the sharp threshold by some smoother
behavior. Figure 9 shows the likelihood profile of a logistic model fitted
to the same data. Many fitting procedures for threshold models replace
the sharp threshold with a smooth transition that preserves most of the
behavior of the model but alleviates fitting difficulties (Bacon and Watts,
1974; Barrowman and Myers, 2000).
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Figure 9: Threshold and logistic models. Top: data, showing the data (gen-
erated from a threshold model) and the best threshold and logistic fits to the
data. Bottom: likelihood profiles.
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4.4 Multiple minima

Even if a function is smooth, it may have multiple minima (e.g. Figure 1):
alternative sets of parameters that each represent better fits to the data than
any nearby parameters. Multiple minima may occur in either smooth or jagged
likelihood surfaces.

Multiple minima are a challenging problem, and are particularly scary be-
cause they’re not always obvious — especially in high-dimensional problems.
Figure 10 shows a slice through parameter space connecting two minima that
occur in the negative log-likelihood surface of the modified logistic function that
Vonesh and Bolker (2005) used to fit data on tadpole predation as a function
of size (the function calcslice in the emdbook package will compute such a
slice). Such a pattern strongly suggests, although it does not guarantee, that
the two points really are local minima. When we wrote the paper, we were
aware only of the left-hand minimum, which seemed to fit the data reasonably
well. In preparing this chapter, I re-analyzed the data using BFGS instead of
Nelder-Mead optimization and discovered the right-hand fit, which is actually
slightly better (—L = 11.77 compared to 12.15 for the original fit). Since they
use different rules, the Nelder-Mead and BFGS algorithms found their way to
different minima despite starting at the same point. This is alarming. While
the log-likelihood difference (0.38) is not large enough to reject the first set of
parameters, and while the fit corresponding to those parameters still seems more
biologically plausible (a gradual increase in predation risk followed by a slightly
slower decrease, rather than a very sharp increase and gradual decrease), we
had no idea that the second minimum existed. Etienne et al. (2006) pointed out
a similar issue affecting a paper by Latimer et al. (2005) about diversification
patterns in the South African fynbos: some estimates of extremely high speci-
ation rates turned out to be spurious minima in the model’s likelihood surface
(although the basic conclusions of the original paper still held).

No algorithm can promise to deal with the pathological case of a very narrow,
isolated minimum as in Figure 1. To guard against multiple-minimum problems,
try to fit your model with several different reasonable starting points, and check
to make sure that your answers are reasonable.

If your results suggest that you have multiple minima — that is, you get
different answers from different starting points — check the following:

e Did both fits really converge properly? The fits returned by mle2 from
the bbmle package will warn you if the optimization did not converge; for
optim results you need to check the $convergence term of results (it will
be zero if there were no problems). Try restarting the optimizations from
both of the points where the optimizations ended up, possibly resetting
parscale to the absolute value of the fitted parameters. (If 01 is your first
optim fit, run the second fit with control=1ist (parscale=abs(01$par)).
If 01 is an mle2 fit, use control=list (parscale=abs(coef(01))).) Try
different optimization methods (BFGS if you used Nelder-Mead, and wice
versa). Calculate slices or profiles around the optima to make sure they
really look like local minima.
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Figure 10: Likelihood slice connecting two negative log-likelihood minima for
the modified logistic model of Vonesh and Bolker (2005). The z axis is on
an arbitrary scale where x = 0 and z = 1 represent the locations of the two
minima. Subplots show the fits of the curves to the frog predation data for
the parameters at each minimum; the right-hand minimum is a slightly better
fit (=L = 11.77 (right) vs. 12.15 (left)). The horizontal solid and dashed
lines show the minimum negative log-likelihood and the 95% confidence cutoff
(=L + x3(0.95)/2). The 95% confidence region includes small regions around
both x =0 and z = 1.
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e Use calcslice to compute a likelihood slice between the two putative fits
to make sure that the surface is really higher between them.

If your surface contains several minima, the simplest solution may be to use
a simple, fast method (like BFGS) but to start it from many different places.
This will work if the surface is essentially smooth, but with two (or many)
valleys of approximately the same depth*. You will need to decide how to assign
starting values (randomly or on a grid? along some transect?), and how many
starting values you can afford to try. You may need to tune the optimization
parameters so that each individual optimization runs as fast and smoothly as
possible. Researchers have also developed hybrid approaches based on multiple
starts (Tucci, 2002).

When multiple minima occur it is possible, although unusual, for the 95%
confidence limits to be discontinuous — that is, for there to be separate regions
around each minimum that are supported by the data. This does happen in
the case shown in Figure 10, although on the scale of that figure the confidence
intervals in the regions around x = 0 and = 1 would be almost too small to
see. More commonly, either one minimum will be a lot deeper than the other so
that only the region around one minimum is included in the confidence region,
or the minima will be about the same height but the two valleys will join at the
height of the 95% cutoff so that the 95% confidence interval is continuous.

If the surface is jagged instead of smooth, or if you have a sort of fractal
surface — valleys within valleys, of many different depths — a stochastic global
method such as simulated annealing is probably your best bet. Markov chain
Monte Carlo can in principle deal with multiple modes, but convergence can be
slow — you need to start chains at different modes and allow enough time for
each chain to wander to all of the different modes (see Mossel and Vigoda, 2006;
Ronquist et al., 2006, for a related example in phylogenetics).

4.5 Constraints

The last technical detail covered here is the problem of constraining parameter
values within a particular range. Constraints occur for many reasons, but the
most common constraints in ecological models are that some parameters make
sense only when they have positive values (e.g. predation or growth rates) or
values between 0 and 1 (e.g. probabilities). The three important characteristics
of constraints are:

1. Equality vs. inequality constraints: must a parameter or set of parameters
be exactly equal to some value, or just within boundaries? Constraints on
individual parameters are always inequality constraints (e.g. 0 < p < 1).
The most common equality constraint is that probabilities must sum to 1

(CN pi=1).

*The many-valley case, or rather its inverse the many-peaks case (if we are maximizing
rather than minimizing), is sometimes known as a “fakir’s bed” problem after the practice of
sitting on a board full of nails (Swartz, 2003).

30



2. Constraints on individual parameters vs. constraints on combinations. In-
equality constraints on individual parameters (a; < p; < by, a2 < p2 < ba)
are called box constraints. Constraints on linear combinations of parame-
ters (a1p1 + asps < ¢) are called linear constraints.

3. Whether the constraint equations can be solved analytically in terms of one
of the parameters. For example, you can restate the constraint pyps = C

as p1 = C/pa.

For example, in Chapter 8 of the FEcological Detective, Hilborn and Mangel
constrain the equilibrium of a fairly complex wildebeest population model to
have a particular value. This is the most difficult kind of constraint; it’s an
equality constraint, a nonlinear function of the parameters, and there’s no way
to solve the constraint equation analytically.

The simplest approach to a constrained problem is to ignore the constraint
completely and hope that your optimizing routine will find a minimum that sat-
isfies the constraint without running into trouble. You can often get away with
this if your minimum is far away from the boundary, although you may get warn-
ing messages that look something like Warning message: NaNs produced in:
dnbinom(x, size, prob, log). If your answers make sense you can often ig-
nore the warnings, but you should definitely test the results by re-starting the
optimizer from near its ending point to verify that it still finds the same solu-
tion. You may also want to try some of the other constrained approaches listed
below to double-check.

The next simplest approach to optimization constraints is to find a canned
optimization algorithm that can incorporate constraints in its problem defini-
tion. The optim function (and its mle2 wrapper) can accommodate box con-
straints if you use the L-BFGS-B method. So can nlminb, which was introduced
to R more recently and uses a different algorithm. R also provides a constrOptim
function that can handle linear constraints. Algorithms that can fit models with
general nonlinear equality and inequality constraints do exist, but they have not
been implemented in R: they are typically large FORTRAN programs that cost
hundreds or thousands of dollars to license (see below for the cheapskate ecolo-
gist’s approach to nonlinear constraints).

Constrained optimization is finicky, so it’s often useful to have additional
options when one method fails. In my experience, constrained algorithms are
less robust than their unconstrained counterparts. For example L-BFGS-B,
the constrained version of BFGS, is (1) more likely to crash than BFGS; (2)
worse at handling NAs or infinite values than BFGS; and (3) will sometimes try
parameter values that violate the constraints by a little bit when it’s calculating
finite differences. You can work around the last problem by setting boundaries
that are a little bit tighter than the theoretical limits, for example a lower bound
of 0.002 instead of 0.

The third approach to constraint problems is to add a penalty to the neg-
ative log-likelihood that increases as parameter values stray farther outside of
the allowed region. Instead of minimizing the negative log-likelihood —L, try
minimizing —L + P x (|C — C(p)|)™ where P is a penalty multiplier, n is a
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penalty exponent, C is the desired value of the constraint, and C(p) is the value
of the constraint at the current parameter values (Hilborn and Mangel, 1997).
For example, if you were using P = 1000 and n = 2 (a quadratic penalty,
the most common type) and the sum of probabilities for a set of parameters
was 1.2 instead of the desired value of 1.0, you would add a penalty term of
1000(1 — 1.2)? = 40 to the negative log-likelihood. The penalty term will tend
to push minimizers back into the allowed region. However, you need to im-
plement such penalties carefully. For example, if your likelihood calculation is
nonsensical outside the allowed region (e.g. if some parameters lead to negative
probabilities) you may need to use the value of the negative log-likelihood at
the closest boundary rather than trying to compute —L for parameters outside
the boundary. If your penalties make the surface non-smooth at the boundary,
derivative-based minimizers are likely to fail. You will often need to tune the
penalty multiplier and exponent, especially for equality constraints.

The fourth, often most robust, approach is to transform your parameters
to avoid the constraints entirely. For example, if you have a rate or density
parameter \ that must be positive, rewrite your function and minimize with
respect to x = log A instead. Every value of x between —oo and oo translates to
a positive value of \; negative values of x correspond to values of A < 1. As =
approaches —oo, A approaches zero; as x approaches co, A also approaches oco.

Similarly, if you have a parameter p that must be between 0 and 1 (such
as a parameter representing a probability), the logit transformation of p, ¢ =
log p/(1—p), will be unconstrained (its value can be anywhere between —oo and
00). You can use qlogis in R to calculate the logit. The inverse transformation
is the logistic transformation, exp(q)/(1 + exp(q)) (plogis).

The log and logit transformations are by far the handiest, and most common,
transformations. Many classical statistical methods use them to ensure that pa-
rameters are well defined: for example, logistic regression fits probabilities on a
logit scale. Another less common but still useful transformation is the additive
log ratio transformation (Aitchison, 1986; Billheimer et al., 1998; Okuyama and
Bolker, 2005). When you’re modeling proportions, you often have a set of pa-
rameters pi, ..., p, representing the probabilities or proportions of a variety of
outcomes (e.g. predation by different predator types). Each p; must be between
O0and 1, and > p; = 1. The sum-to-one constraint means that the constraints are
not box constraints (which would apply to each parameter separately), and even
though it is linear, it is an equality constraint rather than a inequality constraint
— so constrOptim can’t handle it. The additive log ratio transformation takes
care of the problem: the vector y = (log(p1/pn),log(p2/pn), - -, 10g(Dr-1/pn))
is a set of n — 1 unconstrained values from which the original values of p;
can be computed. There is one fewer additive log-ratio-transformed param-
eter because if we know n — 1 of the values, then the n'" is determined by
the summation constraint. The inverse transformation (the additive logistic) is

. -1
pi = exp(yi)/(1+ X exp(y;)) for i <n, pp =1-31"" ps.
The major problem with transforming constraints this way is that some-

times the best estimates of the parameters, or the null values you want to test
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against, actually lie on the boundary — in mixture or composition problems, for
example, the best fit may set the contribution from some components equal to
zero. For example, the best estimate of the contribution of some turtle nesting
beaches (rookeries) to a mixed foraging-ground population may be exactly zero
(Okuyama and Bolker, 2005). If you logit-transform the proportional contribu-
tions from different nesting beaches you will move the boundary from 0 or 1
to £0o. Any optimizer that tries to reach the boundary will have a hard time,
resulting in warnings about convergence and/or large negative estimates that
differ depending on starting conditions. One option is simply to set the relevant
parameters to zero (i.e., construct a reduced model that eliminates all nest-
ing beaches that seem to have minimal contributions), estimate the minimum
negative log-likelihood, and compare it to the best fit that the optimizer could
achieve. If the negative log-likelihood is smaller with the contributions set to
zero (e.g. the negative log-likelihood for contribution=0 is 12.5, compared to a
best-achieved value of 12.7 when the log-transformed contribution is —20), then
you can conclude that zero is really the best fit. You can also compute a pro-
file (negative log-)likelihood on one particular contribution with values ranging
upward from zero and see that the minimum really is at zero. However, it may
be too tedious to go to all this trouble every time you have a parameter or set
of parameters that appear to have their best fit on the boundary.

One final issue with parameters on the boundary is that the standard model
selection machinery discussed in Chapter 6 (Likelihood Ratio Test, AIC, etc.)
always assumes that there are parameter values in the range on either side of
the null value. This issue is well-known but still problematic in a wide range
of statistical applications, for example in deciding whether to set a variance pa-
rameter to zero. For the specific case of linear mixed-effect models (i.e. models
with linear responses and normally distributed random variables), the prob-
lem is relatively well studied. Pinheiro and Bates (2000) suggest the following
approaches (listed in order of increasing sophistication):

e Simply ignore the problem, and treat the parameter as though it were
not on the boundary — i.e. use a likelihood ratio test with 1 degree of
freedom. Analyses of linear mixed-effect models (Self and Liang, 1987;
Stram and Lee, 1994) suggest that this procedure is conservative; it will
reject the null hypothesis less often (sometimes much less often) than the
nominal type I error rate a*.

e Some analyses of mixed-effect models suggest that the distribution of the
log-likelihood-ratio under the null hypothesis when n parameters are on
the boundary is a mixture of x2 and a x2_; distributions rather than a
X2 distribution. If you are testing a single parameter, as is most often
the case, then n = 1 and x2_; is x2 — defined as a spike at zero with
area 1. For most models, the distribution is a 50/50 mixture of x2 and

*Whether this is a good idea or not, it is the standard approach—as far as I can tell it
is always what is done in ecological analyses, although some evolutionary analyses are more
sophisticated.
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x2_, which Goldman and Whelan (2000) call the x? distribution. For
n=1,%3(1—a)=x3(1 —2a). In this case the 95% critical value for the
likelihood ratio test would thus be qchisq(0.9,1)/2=1.35 instead of the
usual value of 1.92. The qchibarsq function in the emdbook package will
compute critical values for y2.

e The distribution of deviances may not be an equal mixture of x2 and
x2_; (Pinheiro and Bates, 2000). If you want to be very careful, the “gold
standard” is to simulate the null hypothesis and determine the distribution
of the log-likelihood ratio under the null hypothesis: see p. 43 for a worked
example.

5 Estimating confidence limits of functions of
parameters

Quite often, you estimate a set of parameters from data, but you actually want
to say something about a value that is not a parameter (for example, about the
predicted population size some time in the future). It’s easy to get the point
estimate — you just feed the parameter estimates into the population model
and see what comes out. But how do you estimate the confidence limits on that
prediction?

There are many possibilities, ranging in accuracy, sophistication, and diffi-
culty. The data for an extended example come from J. Wilson’s observations of
“death” (actually disappearance, which may also represent emigration) times of
juvenile reef gobies in a variety of experimental treatments. The gobies’ times
of death are (assumed to be) distributed according to a Weibull distribution,

=2 (5) eenr )

The Weibull distribution, common in survival analysis, has essentially the same
range of shape possibilities as the gamma distribution, from L-shaped like the
exponential to humped like the normal, and it allows for a per capita mortality
rate that either increases or decreases with time. The Weibull (dweibull in
R) has two parameters, shape (a above) and scale (b above): when shape=1
it reduces to an exponential. It’s easy enough to calculate the univariate or
bivariate confidence limits of the shape and scale parameters, but what if we
want to calculate the confidence interval of the mean survival time, which is
likely to be more meaningful to the average ecologist or manager?

First, pull in the data, take a useful subset, and define the death time as the
midpoint between the last time the fish was observed (d1) and the first time it
was not observed (d2)*

*Survival analyses usually assume that the time of death is known exactly. With these
data, as is common in ecological studies, we have a range of days during which the fish
disappeared. To handle this so-called interval censoring properly in the likelihood function,
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> library(emdbookx)

> data(GobySurvival)

> dat = subset(GobySurvival, exper == 1 & density ==
+ 9 & qual > median(qual))

> time = (dat$dl + dat$d2)/2

Set up a simple likelihood function:

> weiblikfun = function(shape, scale) {

+ -sum(dweibull (time, shape = shape, scale = scale,
+ log = TRUE))

+

Fit the model starting from an exponential distribution (if scale=a = 1, the
distribution is an exponential with rate 1/b and mean b):

> w1l <- mle2(weiblikfun, start = list(shape = 1, scale = mean(time)))

The parameter estimates (coef(wl)) are shape=0.921 and scale=14.378,
the estimate of the mean survival time (using meanfun and plugging in the
parameter estimates) is 14.945.

5.1 Profile likelihood

Now we’d like confidence intervals for the mean that take variability in both
shape and scale into account. The most rigorous way to estimate confidence
limits on a non-parameter is to calculate the profile likelihood for the value and
find the 95% confidence limits, using almost the same procedure as if you were
finding the univariate confidence limits of one of the parameters.

Figure 11 illustrates the basic geometry of this problem: the underlying
contours of the height of the surface (contours at 80%, 95%, and 99% univariate
confidence levels) are shown in gray. The black contours show the lines on the
plot that correspond to different constant values of the mean survival time.
The dotted line is the likelihood profile for the mean, which passes through the
minimum negative log-likelihood point on each mean contour, the point where
the mean contour is tangent to a likelihood contour line. We want to find the
intersections of the likelihood ratio test contour lines with the likelihood profile
for the mean: looking at the 95% line, we can see that the confidence intervals
of the mean are approximately 9 to 27.

we would have to find the probability of dying after day d1 but before day d2. In R the
negative log-likelihood function would be:

> weiblikfun <- function(shape, scale) {

+ -sum(log(pweibull (dat$d2, shape, scale) - pweibull(dat$dil,
+ shape, scale)))
+}

For this example, I’ve used the cruder, simpler approach of averaging d1 and d2.
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Figure 11: Geometry of confidence intervals on mean survival time. Gray con-
tours: univariate (80%, 90%, 95%, 99%) confidence intervals for shape and scale.
Black contours: mean survival time. Dotted line: likelihood profile for mean
survival time.
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5.1.1 The value can be expressed in terms of other parameters

When the value for which you want to estimate confidence limits has a formula
that you can solve in terms of one of the parameters, calculating its confidence
limits is easy.

For the Weibull distribution the mean u is given by

u = scale - I'(1 4+ 1 /shape), (8)
Or, translating to R:

> meanfun = function(shape, scale) {
+ scale * gamma(1l + 1/shape)

+ }

How do we actually calculate the profile for the mean? We can solve equation
8 for one of the parameters:
I
scale = ['(1 + 1/shape) ©)
Therefore we can find the likelihood profile for the mean in almost the same
way we would for one of the parameters. Fix the value of u: then, for each
value of the shape that R tries on its way to estimating the parameter, it will
calculate the value of the scale that must apply if the mean is to be fixed at pu.
The constraint means that, even though the model has two parameters (shape
and scale), we are really doing a one-dimensional search: it just happens to be
a search along a specified constant-mean contour.
In order to calculate the confidence interval on the mean, we have to rewrite
the likelihood function in terms of the mean:

> weiblikfun2 <- function(shape, mu) {

+ scale <- mu/gamma(l + 1/shape)

+ -sum(dweibull (time, shape = shape, scale = scale,
+ log = TRUE))

+ }

Find the maximum again, and calculate the confidence intervals — this time
for the shape and the mean.

> w2 <- mle2(weiblikfun2, start = list(shape = 1, mu = mean(time)))
> confint (w2, quietly = TRUE)

2.5 % 97.5 %
shape 0.6248955 1.281101
mu 9.1826049 27.038785

We could also draw the univariate likelihood profile, the minimum negative
log-likelihood achievable for each value of the mean, and find the 95% confidence
limits in the same way as before by creating a likelihood profile for p. We would
use 1 degree of freedom to establish the critical value for the LRT because we
are only varying one value, even though it represents a combination of two
parameters.
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5.1.2 Constrained/penalized likelihood

What if we can’t solve for one of the parameters (e.g. scale) in terms of the value
we are interested in (e.g. mean), but still want to calculate a likelihood profile
and profile confidence limits for the mean? We can use a penalized likelihood
function to constrain the mean to a particular value, as described above in the
section on constraints.

While this approach is conceptually the same as the one we took in the
previous section — we are calculating the profile by sliding along each mean
contour to find the minimum negative log-likelihood on that contour, then find-
ing the values of the mean for which the minimum negative log-likelihood equals
the LRT cutoff — the problem is much fussier numerically. (The complicated
code is presented on p. 44). To use penalties effectively we usually have to play
around with the strength of the penalty. Too strong, and our optimizations
will get stuck somewhere far away from the real minimum. Too weak, and our
optimizations will wander off the line we are trying to constrain them to. I
tried a variety of penalty coefficients in this case (penalty = C'x (deviation of
mean survival from target value)?) from 0.1 to 10°. The results were essentially
identical for penalties ranging from 1 to 10%, but varied for weaker or stronger
penalties. One might be able to tweak the optimization settings some more to
make the answers better, but there’s no really simple recipe — you just have to
keep returning to the pictures to see if your answers make sense.

5.2 The delta method

The delta method provides an easy approximation for the confidence limits on
values that are not parameters of the model. To use it you must have a formula
for u = f(a,b) that you can differentiate with respect to a and b. Unlike the
first likelihood profile method, you don’t have to be able to solve the equation
for one of the parameters.

The formula for the delta method comes from a Taylor expansion of the
formula for 41, combined with the definitions of the variance (V (a) = E[(a—a)?])

and covariance (C(a,b) = E[(a —a)(b —b)]):

V(f(a,b)) = V(a) <g£> + V(b) <g£> + 2C(a,b)%%. (10)

See the Appendix, or Lyons (1991) for a derivation and details.

We can obtain approximate variances and covariances of the parameters by
taking the inverse of the information matrix: vcov does this automatically for
mle2 fits.

We also need the derivatives of the function with respect to the parameters.
In this example these are the derivatives of u = bI'(1 + 1/a) with respect to
shape=a and scale=b. The derivative with respect to b is easy — Ou/0b =
I'(1 4+ 1/a)) — but Ou/da is harder. By the chain rule

O(1+1/a)) O(I(1+1/a)) O(1+1/a) OT(1+1/a)) 1

da ~ o0tija)  ba o0tija) e W
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but in order to finish this calculation you need to know that dI'(z)/dx = T'(x) -
digamma(z), where digamma is a special function (defined as the derivative of
the log-gamma function). The good news is that R knows how to compute this
function, so a command like

> shape.deriv <- -shape”2 * gamma(l + 1/shape) * digamma(l +
+ 1/shape)

will give you the right numeric answer. The emdbook package has a built-in
deltavar function that uses the delta method to compute the variance of a
function:

> dvar <- deltavar(fun = scale * gamma(l + 1/shape),
+ meanval = coef(wl), Sigma = vcov(wl))

Once you find the variance of the mean survival time, you can take the square
root to get the standard deviation ¢ and calculate the approximate confidence
limits p + 1.960.

> sdapprox <- sqrt(dvar)
> mlmean <- meanfun(coef(wl) ["shape"], coef(wl)["scale"])
> ci.delta <- mlmean + c(-1.96, 1.96) * sdapprox

If you can’t compute the derivatives manually, R’s numericDeriv function will
compute them numerically (p. 46).

5.3 Population prediction intervals (PPI)

Another simple procedure for calculating confidence limits is to draw random
samples from the estimated sampling distribution (approximated by the in-
formation matrix) of the parameters. In the approximate limit where the in-
formation matrix approach is valid, it turns out that the distribution of the
parameters will be multivariate normal with a variance-covariance matrix given
by the inverse of the information matrix. The MASS package in R has a function,
mvrnorm*, for selecting multivariate normal random deviates. With the mle2 fit
wl from above, then

> vmat = mvrnorm(1000, mu = coef(wl), Sigma = vcov(wl))

will select 1000 sets of parameters drawn from the appropriate distribution (if
there are n parameters, the answer is a 1000 x n matrix). (If you have used
optim instead of mle2 — suppose optl is your result — then use opti$par
for the mean and solve(opti$hessian) for the variance.) You can then use
this matrix to calculate the estimated value of the mean for each of the sets of
parameters, treat this distribution as a distribution of means, and find its lower
and upper 95% quantiles (Figure 12). In the context of population viability

*mvrnorm should really be called rmvnorm for consistency with R’s other distribution func-
tions, but S-PLUS already has a built-in function called rmvnorm, so the MASS package had to
use a different name.
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analysis, Lande et al. (2003) refer to confidence intervals computed this way as
“population prediction intervals”.
This procedure is easy to implement in R, as follows:

dist = numeric(1000)
for (i in 1:1000) {
dist[i] = meanfun(vmat([i, 1], vmat[i, 2])
}
quantile(dist, c(0.025, 0.975))

vV + + Vv VvV

2.5% 97.5%
7.583425 24.471527

Calculating population prediction intervals in this way has two disadvan-
tages:

e It blurs the line between frequentist and Bayesian approaches. Several
papers (including some of mine, e.g. Vonesh and Bolker (2005)) have used
this approach, but I have yet to see a solidly grounded justification for
propagating the sampling distributions of the parameters in this way.

e Since it uses the asymptotic estimate of the parameter variance-covariance
matrix, it inherits whatever inaccuracies that approximation introduces.
It makes one fewer assumption than the delta method (it doesn’t assume
the variance is so small that the functions are close to linear), but it may
not be all that much more accurate.

5.4 Bayesian analysis

Finally, you can use a real Bayesian method: construct either an exact Bayesian
model, or, more likely, a Markov chain Monte Carlo analysis for the parame-
ters. Then you can calculate the posterior distribution of any function of the
parameters (such as the mean survival time) from the posterior samples of the
parameters, and get the 95% credible interval.

The hardest part of this analysis turns out to be converting between R
and WinBUGS versions of the Weibull distribution: where R uses f(t) =
(a/b)(t/b)* L exp(—(t/b)%), WinBUGS uses f(t) = vAt* " Lexp(—At¥). Match-
ing up terms and doing some algebra shows that v = a and A = b~ %or b = A1/,

The BUGS model is:

model {
for (i in 1:n) {
time[i] ~ dweib(shape,lambda)
}
scale <- pow(lambda,-1/shape)
mean <- scalex*exp(loggam(1+1/shape))
## priors
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Figure 12: Population prediction distribution and Bayesian posterior distribu-
tion of mean survival time, with confidence and credible intervals.
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shape ~ dunif(0,5)
lambda ~ dunif(0,1)
}

Other differences between R and WinBUGS are that BUGS uses pow(x,y) in-
stead of x”y and has only a log-gamma function loggam instead of R’s gamma
and lgamma functions. The model includes code to convert from WinBUGS to
R parameters (i.e., calculating scale as a function of lambda) and to calculate
the mean survival time, but you could also calculate these values in R.

Set up three chains that start from different, overdispersed values of shape
and \:

> lval <- coef(wl) ["scale"] " (-coef(wl) ["shape"])

> n <- length(time)

> inits <- list(list(shape = 0.8, lambda = lval), list(shape = 0.4,
+ lambda = 1lval * 2), list(shape = 1.2, lambda = lval/2))

Run the chains:

reefgoby.bugs <- bugs(data = list("time", "n"), inits,
parameters.to.save = c("shape", "scale", "lambda",
"mean"), model.file = "reefgobysurv.bug",
n.chains = length(inits), n.iter = 5000)

+ + + Vv

Finally, use HPDinterval or summary to extract credible intervals or quan-
tiles from the MCMC output. Figure 12 compares the marginal posterior density
of the mean and the credible intervals computed from it with the distribution
of the mean derived from the sampling distribution of the parameters and the
population prediction intervals (Section 5.3).

5.5 Confidence interval comparison

Here’s a head-to-head comparison of all the methods we’ve applied so far:

method lower upper
exact profile 9.183 27.039
profile:penalty  9.180 27.025
delta method  7.446 22.445
PPI 7.583 24.472
Bayes credible 9.086 25.750

All methods give approximately the same answers. Despite answering a
different question, the Bayes credible interval is in the same range as the other
confidence intervals. The point to take away from this comparison is that all
methods for estimating confidence limits use approximations, some cruder than
others. Use the most accurate feasible approach, but don’t expect estimates
of confidence limits to be very precise. To paraphrase a comment of Press
et al. (1994), if the difference between confidence-interval approximations ever
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matters to you, “then you are probably up to no good anyway — e.g., trying to

9%

substantiate a questionable hypothesis with marginal data”.

Appendix: trouble-shooting optimization

¢ make sure you understand the model you’re fitting
e check starting conditions

e check convergence conditions

e adjust parscale/restart from previous best fit

e switch from constraints to transformed parameters

e adjust finite-difference tolerances (ndeps)

¢ switch to more robust methods (Nelder-Mead, SANN), or even just alter-
nate methods

e stop with NAs: debug objective function, constrain parameters, put if
clauses in objective function

e results depend on starting conditions: check slice between answers/around
answers: multiple minima or just convergence problems?

e convergence problems: try restarting from previous stopping point, reset-
ting parscale

¢ examine profile likelihoods

R supplement

5.6 Testing hypotheses on boundaries by simulating the
null hypothesis

Suppose you want to test the hypothesis that the data set

>x =c¢(0, 0, 0, 000, 0,0, 1, 1, 1, 1, 1, 2, 2, 2,
+ 2, 2, 3, 4, 5)

comes from a negative binomial distribution against the null hypothesis that it
is Poisson distributed with A =z = 1.35.
A negative binomial fit (fit.nb=fitdistr(x,"negative binomial")) gives
a negative log-likelihood (-logLik (fit.nb)) of 31.38, while a Poisson fit (fit.pois=fitdistr(x,"Poisson"))
gives a negative log-likelihood of 32.12. The Likelihood Ratio Test

*Their original statement referred to whether to divide by n or n — 1 when estimating a
variance
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> devdiff = 2 * (logLik(fit.nb) - logLik(fit.pois))
> pchisq(devdiff, df = 1, lower.tail = FALSE)

says that the p-value is 0.22, but the corrected (y3) test (pchibarsq(devdiff,df=1,lower.tail=FALSE))
says that p is only 0.22 — still not significant but stronger evidence.
To evaluate the hypothesis more thoroughly by simulation, we will set up
a function that (1) simulates Poisson-distributed values with the appropriate
mean; (2) fits a negative binomial and Poisson distributions (returning NA if
the negative binomial fit should happen to crash) and (3) returns the deviance
(twice the log-likelihood ratio):

> simulated.dev = function() {
+ simx = rpois(length(x), lambda = mean(x))
simfitnb = try(fitdistr(simx, "negative binomial"))
if (inherits(simfitnb, "try-error"))
return(NA)
simfitpois = fitdistr(simx, "Poisson")
dev = ¢(2 * (logLik(simfitnb) - logLik(simfitpois)))

+ + + + + +

}

Now simulate 3000 such values, throw out the NAs, and count the number of
replicates remaining:

> set.seed(1001)

> devdist = replicate(3000, simulated.dev())
> devdist = na.omit(devdist)

> nreps = length(devdist)

Calculate the proportion of simulated values that exceed the observed de-
viance: this is the best estimate of the “true” p value we can get.

> obs.dev = 2 * (logLik(fit.nb) - logLik(fit.pois))
> sum(devdist >= obs.dev)/nreps

[1] 0.06247912

So, in this case where we have two reasons — small sample size and a boundary
condition — to doubt the assumptions of Likelihood Ratio Test, the classical
LRT turns out to be nearly four times too conservative, while the boundary-
corrected version (¥?) is only twice as conservative as it should be.

5.7 Nonlinear constraints by penalization

Using penalties to implement an equality constraint or a nonlinear constraint
(neither of which can be done with built-in functions in R) is reasonably straight-
forward: just add a penalty term to the negative log-likelihood. For best results,
the penalty should start small and increase with increasing violation of the con-
straint (to avoid a discontinuity in the negative log-likelihood surface).
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For example, to find the best shape and scale parameters for the fish survival
data while constraining the mean to equal a particular value target.mu (use
the fixed= argument in mle2 to specify the target value):

> weiblikfun3 <- function(shape, scale, target.mu,

+ penalty = 1000) {

+ mu <- meanfun(shape, scale)

+ NLL = -sum(dweibull (time, shape = shape, scale = scale,
+ log = TRUE))

+ pen = penalty * (mu - target.mu) 2

+ NLL + pen

+ }

> w3 <- mle2(weiblikfun3, start = list(shape = 0.9,

+ scale = 13), fixed = list(target.mu = 13))

If you have a problem where the function behaves badly (generates infinite or
NaN values) when the constraint is violated, then you don’t want to calculate the
likelihood for values outside the constraints. For example, if we had to restrict
shape to be greater than zero we could use the following code snippet:

> if (shape > 0) {

+ NLL = -sum(dweibull (time, shape = shape, scale = scale,
+ log = TRUE))

+ pen = 0

+ } else {

+ NLL = -sum(dweibull (time, shape = le-04, scale = scale,
+ log = TRUE))

+ pen = penalty * shape~2

+ }

> NLL + pen

In other words, if the shape parameter is beyond the constraints, then use the
likelihood value at the boundary of the feasible region and then add the penalty.

To use this constrained likelihood function to calculate confidence limits on
the mean, first, calculate the critical value of the negative log-likelihood:

> critval <- -logLik(wl) + qchisq(0.95, 1)/2

Second, define a function that finds the best fit for a specified value of the
mean and returns the distance above the critical value (use the data= argument
in mle2 so that you can try out different values of the penalty):

> pcritfun <- function(target.mu, penalty = 1000) {

+ mfit <- mle2(weiblikfun3, start = list(shape = 0.85,

+ scale = 12.4), fixed = list(target.mu = target.mu),
+ data = list(penalty = penalty))

+ lval <- -logLik(mfit)

+ lval - critval

+}
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Third, define the range of mean values in which you think the lower confi-
dence limit lies and use uniroot to search within this range for the point where
the negative log-likelihood is exactly equal to the critical value:

> lowx <- c(5, 13)
> penlower <- uniroot(pcritfun, lowx)$root

Do the same for the upper confidence limit:

> upx <- c(14, 30)
> penupper <- uniroot(pcritfun, upx)$root

Try with a different value of the penalty:

> uniroot(pcritfun, lowx, penalty = le+06)$root

5.8 Numeric derivatives

Analytical derivatives are always faster and numerically stabler, but R can com-
pute numeric derivatives for you. For example, to compute the derivatives of
the mean survival time at the maximum likelihood estimate:

> shape <- coef(wl) ["shape"]

> scale <- coef(wl)["scale"]

> numericDeriv(quote(scale * gamma(l + 1/shape)), c("scale",
+ "shape"))

scale
14.94548
attr(,"gradient")
[,1] [,2]
[1,] 1.039502 -8.40662

(the quote inside the numericDeriv command prevents R from evaluating the
expression prematurely). Of course, you can always do the same thing yourself
by hand:

> dshape = le-04

> x2 = scale * gamma(l + 1/(shape + dshape))
> x1 = scale * gamma(1l + 1/shape)

> (x2 - x1)/dshape

scale
-8.404834

which agrees to two decimal places with the numericDeriv calculation.
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5.9 Extracting information from BUGS and CODA out-
put

R2WinBUGS returns its results as a bugs object, which can be plotted or
printed. The as.mcmc function in the emdbook package will turn this object into
an mcmc.1list object for a multi-chain run, or an mcmc object for a single-chain
run. read.bugs in the R2WinBUGS package also works, but requires an extra
step. The mcmc and mcme.1list objects are more flexible — they can be plotted
and summarized in a variety of ways (summary, HPDinterval, densityplot,
...see the help for the coda package). Once you ensure that the chains in a
multi-chain R2ZWinBUGS run have converged, you can use lump.mcmc.list in
the emdbook package to collapse the mcmc.list object so you can inferences
from the combined chains.

Using the reefgoby.bugs object derived from the WinBUGS run on p. 42,
calculate the Bayesian credible interval:

> reefgoby.coda <- as.mcmc(reefgoby.bugs)
> reefgoby.coda <- lump.mcmc.list(reefgoby.coda)
> ci.bayes <- HPDinterval (reefgoby.coda) ["mean", ]
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