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Summary

This chapter combines all the methods we’ve considered so far to carry out some
more complete analyses of the example data sets, specifically the data of Vonesh
and Bolker (2005) on tadpole predation, Wilson (2004) on goby survival, and
Duncan and Duncan (2000) on seed predation.

1 Tadpole predation experiments

1.1 Introduction

The goal of Vonesh and Bolker’s (2005) tadpole predation study was to quantify
the effects of prey size and density on predation rate, and to use the results
along with data on growth rates to understand the tradeoffs between growth
and survival. The response variable in all of the data we will consider here
is the number of tadpoles killed by a given number or density of predators
in a specified amount of time; the covariates are changing (initial) number of
tadpoles (which gives rise to a functional response curve) and the size of tadpoles
(estimating the presence of a “size refuge”).

The binomial distribution is an obvious choice as a stochastic model for
predation data, because the data are a discrete sample with a fixed upper limit.
The challenge for the frog predation data is to decide on deterministic models
that adequately describe the changes in predation probability with tadpole size
and density.

1.2 Fitting the size-predation curve

Vonesh and Bolker (2005) used the function

γ(S) =
eε(φ−S)

1 + eβε(φ−S)
(1)

to represent the dependence of predation probability, γ(S), on prey size S.
The location parameter φ represents a baseline prey size at which 50% of

tadpoles are eaten; ε is the rate of change of mortality with size, controlling the
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Figure 1: Modified logistic function from Vonesh and Bolker (2005) (eq. 1).
Location parameter φ = 20 for all curves.

steepness of the curve; and β determines the asymmetry of the curve — the
extent to which prey escape predation at both small and large sizes. If β = 1
then (1) describes a logistic predation function that decreases (if β > 0) or
increases (if β < 0) with size.

Some slightly tedious calculus establishes that the most vulnerable size is
Ŝ = φ + log(β − 1)/(εβ), which gives a predation probability

(β − 1)(−1/β)/(1 + 1/β − 1).

The peak predation probability depends only on β. If β < 1, then the function
is monotonically decreasing, with no peak. (To find Ŝ, solve dγ/dS = 0 for S,
using the quotient and chain rules to calculate the derivative, and remembering
that you only need to worry about setting the numerator to zero. Then plug Ŝ
back into γ(S) to find the predation probability.)

A more traditional function to describe a humped dependence of predation
on size is the generalized Ricker function (Persson et al., 1998),

y = b

(
S

a
exp

(
1− S

a

))α

. (2)
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This function is basically a reparameterization of the Ricker function (y =
axe−bx) with an added power parameter α that can broaden or narrow the
peak; if α = 1, the generalized Ricker reduces to the standard Ricker function.

A third possibility is another modification of the Ricker, which I will call
the truncated Ricker: this function shifts the Ricker’s origin away from zero by
a distance t, and sets the function to zero below t (so that it doesn’t become
negative):

y =

{
0 if S < t

b
(

S−t
a e1−(S−t

a )
)

if S ≥ t.
(3)

All of these functions are phenomenological rather than mechanistic: while
ecologists have ideas about the mechanisms leading to low predation at small
size (poor detectability and being of little value to the predator) and large size
(escape speed and predator gape limitation), they don’t know enough about
these mechanisms to guess at an appropriate functional form.

Bring in the data and attach it:

> data(ReedfrogSizepred)

> attach(ReedfrogSizepred)

Define the functions (modlogist for the modified logistic, powricker and
tricker for the generalized (power) and truncated Ricker):

> modlogist = function(x, eps, beta, phi) {

+ exp(eps * (phi - x))/(1 + exp(beta * eps * (phi -

+ x)))

+ }

> powricker = function(x, a, b, alpha) {

+ b * (x/a * exp(1 - x/a))^alpha

+ }

> tricker = function(x, a, b, t, min = 1e-04) {

+ ifelse(x < t, min, b * ((x - t)/a * exp(1 - (x -

+ t)/a)))

+ }

Set up negative log-likelihood functions for each model, including one for the
modified logistic that uses a beta-binomial distribution (p. ??) of numbers killed
(NLL.modlogist.bb, with overdispersion parameter θ) instead of a binomial in
order to account for possible overdispersion∗.

∗A quick and dirty way to check for overdispersion is to compute the residual deviance,
which is -2 × the log-likelihood for the most complex model you fit. For sufficiently large
data sets the scaled residual deviance should be χ2 distributed with degrees of freedom equal
to the residual degrees of freedom. However, Venables and Ripley (2002, p. 208) warn that
this estimate can be misleading for moderate-size data sets (e.g. expected Poisson means less
than 5 or expected number of successes in a binomial trial (Np) less than 10). For this data
set, the quick and dirty approach suggests that there is overdispersion, but the likelihood fit
below shows more accurately that there isn’t.
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> NLL.modlogist = function(eps, beta, phi) {

+ p.pred = modlogist(TBL, eps, beta, phi)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

> NLL.modlogist.bb = function(eps, beta, phi, theta) {

+ p.pred = modlogist(TBL, eps, beta, phi)

+ -sum(dbetabinom(Kill, size = 10, prob = p.pred,

+ theta = theta, log = TRUE))

+ }

> NLL.powricker = function(a, b, alpha) {

+ p.pred = powricker(TBL, a, b, alpha)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

> NLL.tricker = function(a, b, t) {

+ p.pred = tricker(TBL, a, b, t)

+ -sum(dbinom(Kill, size = 10, prob = p.pred, log = TRUE))

+ }

Eyeballing the data (Figure 2) gives approximate starting parameters for the
modified logistic of {φ = 15, β = 1.1, ε = 5} (compare Figure 1, and use φ to shift
the peak to approximately S = 15). I’ll start the beta-binomial version at the
best-fit parameters for the binomial model and add θ = 1000 (representing very
little overdispersion — the beta-binomial becomes binomial as θ →∞), setting
the parscale control option to let R know that we expect this parameter to be
larger than the others. (In an initial exploration with worse starting parameter
guesses, I also played around with options like method="Nelder-Mead" and
setting the maxit control parameter larger in order to get the optimization to
work.)

> FSP.modlogist = mle2(NLL.modlogist, start = list(eps = 5,

+ beta = 1.1, phi = 15))

> FSP.modlogist.bb = mle2(NLL.modlogist.bb, start = as.list(c(coef(FSP.modlogist),

+ list(theta = 1000))), control = list(parscale = c(1,

+ 1, 1, 1000)))

The beta-binomial fit estimates θ = 6865, evidence that the beta-binomial
model is not really necessary; the decrease in negative log-likelihood is only
0.003.

We hardly need to run the likelihood ratio test (anova(FSP.modlogist,FSP.modlogist.bb))
or the AIC calculation (AICtab(FSP.modlogist,FSP.modlogist.bb)). Even
dividing the p value for the Likelihood Ratio Test by 2 to account for the fact
that the null hypothesis is on the boundary (i.e., the beta-binomial model re-
duces to the binomial model when θ → ∞) makes no difference to the conclu-
sions.

If we try to get confidence limits on θ, however, we run into trouble:

> confint(FSP.modlogist.bb, which = "theta")
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Profiling has found a better solution, so original
fit had not converged:
New minimum= 12.13806
Parameter values:

eps beta.beta phi theta
0.3577257 8.9873023 9.7457033 3405.1429647

Error in onestep(step) : try restarting fit from values above

Refitting the parameters from this new starting point (using modlogist in-
stead of modlogist.bb, and extending the maximum number of iterations):

> FSP.modlogist2 = mle2(NLL.modlogist, start = list(eps = 0.357,

+ beta = 8.99, phi = 9.75), control = list(maxit = 1000))

The parameters of this fit are quite different

> rbind(coef(FSP.modlogist), coef(FSP.modlogist2))

eps beta phi
[1,] 0.4042309 2.470003 12.908932
[2,] 0.3045399 67.080841 9.109064

and the negative log-likelihood is slightly lower (11.77 vs. 12.15). You can use
plot(calcslice(FSP.modlogist,FSP.modlogist2)) to calculate and plot the
negative log-likelihoods along a “slice” through parameter space, showing that
the two different fits probably do represent distinct local minima (Figure ??).

However, despite fitting the data a little better the fit seems unrealistic,
spiking up abruptly to a high predation rate and then dropping exponentially
(Figure 2).

Fitting the generalized and truncated Ricker models:

> FSP.powricker = mle2(NLL.powricker, start = list(a = 0.4,

+ b = 0.3, alpha = 1))

> FSP.tricker = mle2(NLL.tricker, start = list(a = 0.4,

+ b = 0.3, t = 8))

The confidence limits on α for the generalized Ricker (confint(FSP.powricker,parm="alpha"))
are {7.18, 31.69} — the standard Ricker (α = 1) is clearly not competitive.

Calculating AIC values with AICtab:

AIC df weight
modified logistic (fit 2) 29.5 3 0.350
truncated Ricker 29.9 3 0.297
modified logistic (fit 1) 30.3 3 0.238
generalized Ricker 31.8 3 0.115

None of the models is nested (all have the same number of parameters), and all
the fits are (almost) within 2 log-likelihood units of each other. Burnham and
Anderson would recommend using the weighted predictions of all the models in
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Figure 2: Size-predation relationship for Hyperolius spinigularis tadpoles: mod-
ified logistic, generalized and truncated Ricker fits

subsequent analyses, but in this case (where we are just trying to gain qualitative
insights into life-history tradeoffs) this extra complication feels unnecessary. In
this case, I would be willing to override the narrow definition of “best fit” and
discard the first two models because I don’t really believe that predation risk
is going to increase sharply as tadpoles grow bigger than 9 mm, as suggested
by the truncated Ricker or by the second fit to the modified logistic. I might
even choose the generalized Ricker, the worst-fitting model, over the first fit of
the modified logistic, because the generalized Ricker is better established in the
literature. The lesson here is that the sparser the data, the more you have to
use your judgment in selecting a model — whether or not you are explicitly
Bayesian.

1.3 Fitting the functional response curve

The other data set we will examine from Vonesh and Bolker (2005) is the func-
tional response experiment, which varied the density of tadpoles (with total
body length ≈ 12.8 mm). As many of 67% (10/15) of the tadpoles in an ex-
periment were eaten, suggesting that we should allow for the effect of depletion
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over the course of the experiment. The standard model for saturating functional
responses is the Holling type II response, N = aPTN0/(1 + ahN0), where N
is the number eaten, N0 is the starting number/density, a and h are baseline
attack rate and handling time, P is the predator number or density and T is
the total exposure time∗. The Rogers random-predator equation, which allows
for depletion, is

N = N0

(
1− ea(Nh−PT )

)
(4)

where P is the number of predators, and T is the total time of exposure. (The
predator-exposure factor PT would just be multiplied by the Holling equation.)

The Rogers random-predator equation (4) contains N on both the left- and
right-hand sides of the equation; traditionally, one has had to use iterative nu-
merical methods to compute the function (Vonesh and Bolker, 2005). However,
the Lambert W function (Corless et al., 1996), which gives the solution to the
equation W (x)eW (x) = x, can be used to compute the Rogers equation effi-
ciently: in terms of the Lambert W the Rogers equation is

N = N0 −
W

(
ahN0e

−a(PT−hN0)
)

ah
. (5)

Implement this equation (using the lambertW function in the emdbook package)
in R, as well as the Holling type II function for comparison:

> rogers.pred = function(N0, a, h, P, T) {

+ N0 - lambertW(a * h * N0 * exp(-a * (P * T -

+ h * N0)))/(a * h)

+ }

> holling2.pred = function(N0, a, h, P, T) {

+ a * N0 * P * T/(1 + a * h * N0)

+ }

Attach the data:

> data(ReedfrogFuncresp)

> attach(ReedfrogFuncresp)

Write the likelihood functions:

> NLL.rogers = function(a, h, T, P) {

+ if (a < 0 || h < 0)

+ return(NA)

+ prop.exp = rogers.pred(Initial, a, h, P, T)/Initial

+ -sum(dbinom(Killed, prob = prop.exp, size = Initial,

+ log = TRUE))

+ }

∗P and T are usually ignored in the Holling equation, giving the function units of “number
eaten per predator per unit time”, but we include them here for consistency with the Rogers
equation.
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> NLL.holling2 = function(a, h, P = 1, T = 1) {

+ -sum(dbinom(Killed, prob = a * T * P/(1 + a *

+ h * Initial), size = Initial, log = TRUE))

+ }

In the Rogers likelihood function I constrained the range of the function by sim-
ply returning NA if a < 0 or h < 0, rather than using constrained optimization;
if you are not using L-BFGS-B, this shortcut sometimes works.

What about initial values? Eyeballing the data (Figure 3), the initial slope
of the functional response curve is about 0.5 (50% of tadpoles are killed at low
densities) and the asymptote looks like it might be at around 50. These values
correspond to aPT = 0.5 or a = 0.5/(PT ) ≈ 0.012 and PT/h = 50 or h ≈ 0.84.
These values will be overestimates, but still usable, as starting points for the
Rogers estimation as well:

> FFR.rogers = mle2(NLL.rogers, start = list(a = 0.012,

+ h = 0.84), data = list(T = 14, P = 3))

> FFR.holling2 = mle2(NLL.holling2, start = list(a = 0.012,

+ h = 0.84), data = list(T = 14, P = 3))

Running AICtab(FFR.rogers,FFR.holling2,weights=TRUE) shows that the
Holling type II is a marginally better fit (0.3 log-likelihood unit difference):

AIC df weight
Holling type II 97.4 2 0.536
Rogers 97.7 2 0.464

The best-fit Holling and Rogers curves are practically indistinguishable in the
plot (Figure 3) as well; however, we strongly prefer the Rogers curve on biological
grounds, because we know that predators are depleting tadpole prey significantly
over the course of the experiment. The“Rogers (no depletion)”curve in Figure 3
shows that depletion decreases the effect of predation by about two tadpoles
across the board — as much as a 40% effect at low numbers. It will be important
to take depletion into account when we compare experiments with different
exposure times and predator densities below.

a h
Rogers 0.0171 0.814
Holling type II 0.0126 0.704

Taking depletion into account leads to a 36% increase in the estimated attack
rate and a 16% increase in the estimated handling time.

1.4 Combined effects of size and density

Vonesh and Bolker (2005) combined the effects of size and density by alge-
braically combining the parameters of the separate size and density fits. Here,

8



●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

5

10

15

20

25

30

35

Initial

K
ill

ed

Rogers
Rogers (no depletion)
Holling

Figure 3: Functional response fit to frog predation data. Both Holling type II
and Rogers random-predator fits are shown, but are barely distinguishable.
“Rogers (no depletion)” curve plots the expected functional response from the
estimated Rogers parameters in the absence of depletion.
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we will instead combine all the data in a single likelihood function, estimat-
ing the functional response parameter (h) and the size-dependent attack rate
parameters (α, β, and ε) at the same time∗. The only thing we need to sort
out is that the experiments were run in different volumes, as well as with dif-
ferent numbers of predators and for different lengths of time. The functional
response experiments were run in 300 L tanks (1.2 × 0.8 × 0.4 m high) filled to
220 L; the size experiments were run in 35 L plastic tubs (0.32 m in diameter)
filled to 25 L. Based on the way that predators foraged, Vonesh and Bolker
(2005) assumed that predation success depended on the area of the foraging
arena (1.2 · 0.8 = 0.96 m2 vs π((0.32)/2)2 = 0.080 m2) rather than its volume.
To make the predation probabilities match, we have to divide the predator
numbers by area† It is convenient to collect the auxiliary parameters for each
experiment (number of predators, area, exposure time, etc.) in a couple of lists:

> xpars.Funcresp = list(T = 14, P = 3, vol = 220, area = 1.2 *

+ 0.8, size = 12.8)

> xpars.Sizepred = list(T = 3, P = 2, vol = 25, area = pi *

+ 0.16^2, initprey = 10)

Put together a combined data set representing the initial numbers, size,
number killed, predator density, and exposure time for both experiments, using
rep to repeat values where necessary:

> n.Funcresp = nrow(ReedfrogFuncresp)

> n.Sizepred = nrow(ReedfrogSizepred)

> combInit = c(ReedfrogFuncresp$Initial, rep(xpars.Sizepred$initprey,

+ n.Sizepred))

> combSize = c(rep(xpars.Funcresp$size, n.Funcresp),

+ ReedfrogSizepred$TBL)

> combKilled = c(ReedfrogFuncresp$Killed, ReedfrogSizepred$Kill)

> combP = rep(c(xpars.Funcresp$P/xpars.Funcresp$area,

+ xpars.Sizepred$P/xpars.Sizepred$area), c(n.Funcresp,

+ n.Sizepred))

> combT = rep(c(xpars.Funcresp$T, xpars.Sizepred$T),

+ c(n.Funcresp, n.Sizepred))

Write a combined function for the expected proportion eaten, computing
the attack rate a from the parameters ε, β, and φ and combining it with the
handling time h:

> prop.eaten = function(N0, S, h, P, T, eps, beta,

+ phi, minprop = .Machine$double.eps) {

+ a = modlogist(S, eps = eps, beta = beta, phi = phi)

+ N.eaten = rogers.pred(N0, a = a, h = h, P = P,

∗It would be realistic to make the handling time vary as a function of size as well (Persson
et al., 1998), but unfortunately we don’t have enough data.

†But not the prey numbers — figuring this out reminded me of the old riddle “if a hen
and a half lays an egg and a half in a day a half, how many eggs can one hen lay in a day?”
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+ T = T)

+ prop = N.eaten/N0

+ prop[prop <= 0] = minprop

+ prop[prop >= 1] = 1 - minprop

+ prop

+ }

The value .Machine$double.eps is a built-in constant corresponding to the
smallest difference between numeric values your computer can keep track of
without rounding (it is 2.22×10−16 on the machine I am using). Using minprop
to adjust values that are≤ 0 or≥ 1 takes care of the cases where the rogers.pred
function returns an expected proportion eaten slightly less than zero, or exactly
equal to 1 (which causes an infinite negative log-likelihood if no tadpoles are
eaten); these minor errors happen because of round-off error.

A negative log-likelihood function incorporating the proportion eaten:

> NLL.rogerscomb = function(a, h, eps, beta, phi, T = combT,

+ P = combP) {

+ if (h < 0)

+ return(NA)

+ prob = prop.eaten(combInit, combSize, h, P, T,

+ eps, beta, phi)

+ dprob = dbinom(combKilled, prob = prob, size = combInit,

+ log = TRUE)

+ -sum(dprob)

+ }

Set the starting values by combining h from the Rogers fit (which has to
be put inside its own list) with the attack rates from the size-dependence fit
(which will be a slight underestimate since they don’t incorporate the effects of
handling time):

> startvals = c(list(h = coef(FFR.rogers)["h"]), as.list(coef(FSP.modlogist)))

Finding the optimum, avoiding the alternate fit (fit #2 above) when profiling,
and avoiding overflow errors is quite finicky in this case. The easiest way to avoid
the alternate fit is to restrict β, but using the L-BFGS-B optimizer leads to lots
of headaches with NAs being produced in the Lambert W function. I used a
two-stage method — first, optimizing with method="Nelder-Mead" and using
confint(FPcomb,method="quad") to get approximate confidence limits:

> FPcomb = mle2(NLL.rogerscomb, start = startvals,

+ method = "Nelder-Mead")

> confint(FPcomb, method = "quad")

Then using slightly larger values for the upper and lower bounds to refit
the model and get more precise confidence limits (confint must use the same
optimization rules that were used in the original fit). Getting this to work took
some frustrating trial and error, including incorporating debugging statements
like
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> cat(h, eps, beta, phi, "\n")

or

> if (any(!is.finite(prob))) cat("NAs:", h, eps, beta,

+ phi, "\n")

or

> if (any(!is.finite(dprob))) {

+ browser()

+ }

into the NLL.rogerscomb function to track down where the problems were oc-
curring in order to set bounds that would prevent NAs. cat prints a list of
variables to the screen in the middle of a function evaluation ("\n”) specifies
a new line, while browser stops the function and lets you examine the values
of different variables. In the course of this exploration I also went back and
incorporated the minimum and maximum bounds in prop.eaten, which I had
initially left out.

> FPcomb = mle2(NLL.rogerscomb, start = startvals,

+ method = "L-BFGS-B", lower = c(0.7, 0.5, 1, 14),

+ upper = c(1.8, 2.25, 2, 20), control = list(parscale = c(1,

+ 1, 1, 10)))

> FPcomb.ci = confint(FPcomb)

Profiling...

Profiling...

What is the combined estimate of the proportion eaten under the conditions
of the size-predation experiment (12.8 mm body length, 2 predators in an area
of 0.08 m2 for 3 days)? How well does it match the estimate based only on
the size-predation experiment? (That is, does combining the data change the
baseline estimate from the size-predation experiment?)

Figure 4 is mildly alarming at first sight, showing that the estimate of the
size refuge changes markedly when we incorporate the data from the functional
response experiment. That suggests a major difference between the two exper-
iments. A closer look, however, shows that the major difference between the
results falls in a region where we don’t have any data, between 12.8 and 21 mm
body length. The slightly higher predation rate in the functional response ex-
periment (even corrected for predator exposure) pulls the curve up.

How would we go about quantifying the uncertainty in the two curves and
convincing ourselves that they’re not (statistically) significantly different?

Calculating the estimates of the proportion eaten at size 12.8 mm from the
size-predation fit alone:
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> c1 = coef(FSP.modlogist)

> FSP.expprop.mean = modlogist(12.8, c1["eps"], c1["beta"],

+ c1["phi"])

and from the combined fit:

> c2 = coef(FPcomb)

> FP.expprop.mean = prop.eaten(N0 = 10, S = 12.8, c2["h"],

+ P = 2/0.08, T = 3, eps = c2["eps"], beta = c2["beta"],

+ phi = c2["phi"])

The estimated predation proportions are 0.49 for the size-predation experiment
alone and 0.7 for the combined data — a difference that certainly might be
biologically significant, if it were statistically significant.

As discussed in Chapter 7, population projection intervals are a simple way
to calculate the confidence intervals of a quantity of interest that is not a pa-
rameter in the model. Using mvrnorm to generate 5000 values from the sampling
distribution of the parameters and calculating the 95% population projection
intervals of the size-predation data:

> set.seed(1001)

> FSP.expprop.pars = mvrnorm(5000, mu = c1, Sigma = vcov(FSP.modlogist))

> FSP.expprop.val = numeric(5000)

> for (i in 1:5000) {

+ FSP.expprop.val[i] = modlogist(12.8, FSP.expprop.pars[i,

+ 1], FSP.expprop.pars[i, 2], FSP.expprop.pars[i,

+ 3])

+ }

> FSP.expprop.ppi = quantile(FSP.expprop.val, c(0.025,

+ 0.975))

Doing the same thing for the combined fit:

> FP.expprop.pars = mvrnorm(5000, mu = c2, Sigma = vcov(FPcomb))

> FP.expprop.val = numeric(5000)

> for (i in 1:5000) {

+ FP.expprop.val[i] = prop.eaten(N0 = 10, S = 12.8,

+ P = 2/0.08, T = 3, h = FP.expprop.pars[i,

+ "h"], eps = FP.expprop.pars[i, "eps"],

+ beta = FP.expprop.pars[i, "beta"], phi = FP.expprop.pars[i,

+ "phi"])

+ }

> FP.expprop.ppi = quantile(FP.expprop.val, c(0.025,

+ 0.975))

mean low high
size-pred 0.494 0.397 0.852
combined 0.702 0.641 0.992
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The results show that the uncertainty in the estimates is large enough that at
least the confidence limits of the size-predation estimates (0.4, 0.85) overlap
with the estimate from the combined data (0.7), if not vice versa.

Vonesh and Bolker (2005) took results like these (although they did not try
fitting the combined data as we have done here) and used them together with
size-dependent growth rate estimates from a growth experiment to simulate the
survival of tadpoles hatching at different sizes. They found that because smaller-
starting tadpoles grew faster through the window of vulnerability between 10
and 20 mm, their overall survival was comparable to tadpoles that hatched at
a larger size.

This analysis has opened up several more questions.

� Because it must compromise between two sets of data with slightly differ-
ent survival rates, the fit of the combined curve to the size-predation data
is slightly worse than the fit of the size-predation curve itself (Figure 4).
We initially rejected the need for a beta-binomial model to account for
overdispersion, but the larger deviations suggest that it might be worth
testing again.

� Following Vonesh and Bolker (2005), we assumed that predator efficiency
scaled with area, not volume; this approach may have understated the
predator threat in the functional response experiment, leading to an in-
flation of the expected proportion eaten per unit of exposure. The total
predator exposure (P × T ) in the functional response experiment was
14 × 3 = 42 predator-days, in contrast to 3 × 2 = 6 predator-days for
the size-predation experiment. If we calculate PT/area for each experi-
ment and take the ratio, we get a relative risk of 43.8/74.6 = 0.6; overall
predator pressure per unit area was lower in the functional response ex-
periment. On the other hand, repeating the same calculation but scaling
by volume gives a risk ratio of 0.19/0.24 = 0.8 — less difference, leading to
less inflation of the per-predator risk in the functional response. We could
adjust the model by adding a scaling factor to account for the differences
between the experiments, and tentatively interpret it in terms of the geom-
etry of the foraging arena (Petersen et al., 1999). While we clearly don’t
have enough data to make a decision just from these two experiments, the
slight discrepancy between the results of the two experiments does open
up some interesting questions . . .

2 Goby survival analysis

Next, we will take a look at the effects of density and“quality” (spatial variation
in habitat quality correlated with natural rates of immigration) on the survival
of the small marine fishes (gobies) Elacatinus evelynae and E. prochilos in field
experiments (Wilson, 2004).

The questions here are straightforward: how fast do fish die (or disappear)
at different levels of density and quality? Do quality, density, or their interaction
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Figure 4: Observed number eaten as a function of size; predicted values from
size-predation experiment only and from all data combined.
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(i.e. an effect of quality on the density-dependent mortality rate) have significant
effects?

As a reminder, the data contain information on the survival of marine gobies
in experiments where ambient density was manipulated on coral heads with
different background settlement rates. Settlement rates were suspected to be
correlated with some unknown aspect of environmental quality, such as flow
patterns or availability of refuges (Wilson and Osenberg, 2002), which revealed
itself through lower mortality rates (Figure 6).

2.1 Preliminaries

Attach the data:

> library(emdbookx)

> data(GobySurvival)

> attach(GobySurvival)

In the data, time starts from day 1 (the day the fish were put on the reef)
and runs until day 12; any fish that survived past the end of the experiment
(i.e. they were still present on day 12) were given a “last day seen” (d2) value
of 70 in the original data set. For the following analysis, time should start from
zero and run to ∞ (the cumulative distribution functions we will be using can
handle infinite values), so we will subtract 1 from d1 and d2 and set the ending
value of d2 to Inf:

> day1 = d1 - 1

> day2 = ifelse(d2 == 70, Inf, d2 - 1)

As discussed in Chapter ??, we will use the Weibull distribution to fit the
data, allowing for the observed decrease in mortality rate over time. We are
interested in whether mortality is density-dependent, and whether quality affects
either the density-independent or the density-dependent mortality rate. We may
need to allow for the possibility that different experiments show different results
(this data set combines the results from 5 experiments run over the course of
three years).

The most complete model of the survival time of an individual fish in exper-
iment x with density (number of neighboring fish) d and quality (background
settlement rate) q would be:

T ∼ Weibull(ax(d, q), sx(d, q))
ax(d, q) = exp(αa,x + βa,x · q + (γa,x + δa,x · q)d)
sx(d, q) = exp(αs,x + βs,x · q + (γs,x + δs,x · q)d)

(6)

In other words, we are fitting the shape and scale parameters on the log scale.
For both the shape and the scale parameter we are allowing for a baseline
value (α), a linear effect (on the log scale) of quality (β), a linear effect of
density (γ), and an interaction between density and quality (δ) — i.e., a linear
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effect of quality on the density-dependent mortality coefficient. As indicated
by the x in the subscripts, we are also allowing each parameter to be different
in each experiment, for a total of 40 (!) parameters. Given that we have only
length(day1) observations, unevenly divided among experiments (with as few
as 11 observations in an experiment), and that each observation tells us fairly
imprecisely when a fish disappeared, this model is certainly more complex than
we can hope to fit.

We might try anyway, fitting all possible submodels and using model-selection
rules to decide which pieces really belong in the model∗, but even so there would
be far too many submodels to consider. There are two possibilities for the inter-
cept parameter α (the same for all experiments or different among experiments),
and three for each of the other parameters β, γ, and δ (zero for all experiments,
meaning no effect of density or quality or their interaction; non-zero but the
same for all experiments; or different for different experiments). There are
34 possible models for shape and 34 for scale† or 342 = 1156 models in total,
even for this moderate-sized problem!

We must make some a priori decisions about which parameters to drop —
decisions made harder by the difficulty of graphically representing the depen-
dence of survival on continuous covariates. Figure 5 shows the effects of the
shape and scale parameter on the Weibull distribution. Comparing these dif-
ference to the survival curves in Figure 6 suggests that the scale, but not the
shape, of the Weibull distribution varies between density and quality categories.
Figure 6 also suggests an interaction between quality and density categories,
because survival in the low quality/high density category is considerably below
that in any other category. Figure 6 does not separate the results of different
experiments. It might be worth drawing this figure to check, but for now we will
assume that the only possible difference among experiments is in the baseline
scale parameter, not in the effects of density and quality. Wilson (2004) used a
standard survival analysis to demonstrate non-significant interactions between
experiment and density/quality, supporting this assumption.

These simplifications reduce our most complex model to

T ∼ Weibull(a, sx(d, q))
sx(d, q) = exp(αs,x + βs · q + (γs + δs · q)d),

(7)

with 9 parameters (5 for treatment effects on scale, 3 for the effects of density,
quality and their interaction on scale, and 1 for the shape parameter). Our
suite of models reduces to 10. If we denote the simplest model (a single shape
and scale parameter) by 0; the presence of treatment effects (αi 6= αj for at
least one pair of experiments) by x; a quality effect (βs 6= 0) by q; a density
effect (γs > 0) by d; and a quality-density interaction (δs > 0) by i, then our

∗The statistical equivalent of the advice of a crusading abbot who when asked how to tell
the innocents and the heretics apart said, “Kill them all, God will recognize his own” . . .

†You might expect 2×3×3×3 = 54 for each parameter of the Weibull, but there are a few
combinations that don’t make sense — specifically, fitting the δ (density-quality interaction
parameter) if either the density or quality effect is set to zero.
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remaining models with their numbers of parameters are:

0 (2) x (6) xq (7) xqd (8) xqdi (9)
q (3) xd (7) qdi (5)
d (3) qd (4)

(These are all combinations of x, q, d, and i, with the restriction that i cannot
be included without both q and d.) If we wanted to allow the shape parameter
to vary with quality and density, but not experiment, we would have a most-
complex model with 12 parameters and a total of 40 (4×10) model possibilities.

Here is the most complex model, which fits scale and shape parameters that
differ with quality, density, and their interaction:

> NLL.GS.xqdi = function(lscale0, lscale.q, lscale.d,

+ lscale.i, lscale.x2, lscale.x3, lscale.x4, lscale.x5,

+ lshape) {

+ lscalediff = c(0, lscale.x2, lscale.x3, lscale.x4,

+ lscale.x5)

+ scale = exp(lscale0 + lscalediff[exper] + lscale.q *

+ qual + (lscale.d + lscale.i * qual) * density)

+ shape = exp(lshape)

+ -sum(log(pweibull(day2, shape, scale) - pweibull(day1,

+ shape, scale)))

+ }

The only unusual thing here is that we’ve parameterized the difference among
experiments so that the baseline parameter (lscale0) represents the log of
the scale parameter (at density=0 and quality=0) in experiment 1, while the
experiment parameters (lscale.x2, etc.) represent the differences between ex-
periment 1 and the other experiments: this parameterization is consistent with
the way that other functions in R define parameters, and makes it possible to
test the hypothesis that all experiments are the same by setting lscale.x2 and
the other experiment parameters to zero. The differences among parameters
are indexed by exper and added to the baseline value along with the effects of
density and quality.

Since we don’t know exactly when (between day1 and day2) a given fish dis-
appeared, we calculate the probability that it disappeared somewhere between
day1 and day2 taking the difference between the probability that it disappeared
before day2 (pweibull(day2,...)) and the probability that it disappeared be-
fore day1 (pweibull(day1,...)); we take the log only after calculating the
difference.

What about starting values for this model? The mean of the Weibull dis-
tribution with shape a and scale s is sΓ(1 + 1/a), which for an exponential
(a = 1) is equal to s. We’ll start log(s) from the log of the overall mean survival
time (calculated from d1 and d2 rather than day1 and day2 because day2 con-
tains infinite values that will mess up the mean calculation), and log(a) from 0,
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which represents an exponential distribution. Since the rest of the parameters
represent differences from the baseline case, we’ll try starting them all from zero.

> totmeansurv = mean((d1 + d2)/2)

> startvals.GS = list(lscale0 = log(totmeansurv), lscale.x2 = 0,

+ lscale.x3 = 0, lscale.x4 = 0, lscale.x5 = 0,

+ lscale.q = 0, lscale.d = 0, lscale.i = 0, lshape = 0)

> GS.xqdi = mle2(NLL.GS.xqdi, startvals.GS)

Looking at the estimates of the parameters and their approximate p-values:

> summary(GS.xqdi)

Maximum likelihood estimation

Call:
mle2(minuslogl = NLL.GS.xqdi, start = startvals.GS)

Coefficients:
Estimate Std. Error z value Pr(z)

lscale0 1.9506010 0.7450665 2.6180 0.008844 **
lscale.q -0.0137277 0.0993038 -0.1382 0.890051
lscale.d -0.2198680 0.0973726 -2.2580 0.023945 *
lscale.i 0.0126382 0.0130451 0.9688 0.332644
lscale.x2 -1.0707399 0.5000217 -2.1414 0.032243 *
lscale.x3 -0.7677602 0.3830876 -2.0041 0.045055 *
lscale.x4 -0.1315136 1.0460335 -0.1257 0.899949
lscale.x5 0.0048526 0.9516556 0.0051 0.995932
lshape -1.0016188 0.0944042 -10.6099 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 886.122

From this summary, it appears that there may be an effect of experiment
(experiments 2 and 3 both show significantly shorter survival times than exper-
iment 1), an effect of density, and a shape parameter that is significantly less
than 1 (log(a) < 0) — that is, per capita mortality declines significantly with
time.

In a stepwise analysis, we would continue by dropping the interaction term
from the model (it doesn’t really make sense to drop the parameters for experi-
ments 4 and 5, since they are part of the overall difference among experiments).
One shortcut for dropping terms from an mle fit, rather than writing another
likelihood function that is missing one term, is to use the fixed= argument to
set a subset of the parameters to zero. For example, to drop the interaction
term from the model:

> GS.xqd = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0))
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We can use the Likelihood Ratio Test on particular series of nested hypothe-
ses to test specific conclusions. For example, we might be most interested in
testing whether quality and density have an effect. We attempt to drop the
interaction term first, then quality, then density. Because the differences be-
tween experiments are potentially important, and an unavoidable part of the
experimental design, we leave them in the model. Therefore we want to test the
sequence of models xqdi → xqd → xd → x.

Fitting the remaining two models in the sequence:

> GS.xd = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0,

+ lscale.q = 0))

> GS.x = mle2(NLL.GS.xqdi, startvals.GS, fixed = list(lscale.i = 0,

+ lscale.q = 0, lscale.d = 0))

Applying anova to run the Likelihood Ratio Test:

> anova(GS.xqdi, GS.xqd, GS.xd, GS.x)

Likelihood Ratio Tests
Model 1: GS.xqdi, [NLL.GS.xqdi]: lscale0+lscale.q+lscale.d+

lscale.i+lscale.x2+lscale.x3+lscale.x4+lscale.x5+
lshape

Model 2: GS.xqd, [NLL.GS.xqdi]: lscale0+lscale.q+lscale.d+
lscale.x2+lscale.x3+lscale.x4+lscale.x5+lshape

Model 3: GS.xd, [NLL.GS.xqdi]: lscale0+lscale.d+lscale.x2+
lscale.x3+lscale.x4+lscale.x5+lshape

Model 4: GS.x, [NLL.GS.xqdi]: lscale0+lscale.x2+lscale.x3+
lscale.x4+lscale.x5+lshape

Tot Df Deviance Chisq Df Pr(>Chisq)
1 9 886.12
2 8 887.04 0.9139 1 0.33907
3 7 890.77 3.7384 1 0.05318 .
4 6 895.30 4.5210 1 0.03348 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This analysis confirms the results of summary on the most complex model
to some extent. It finds that the effect of the interaction (model 1 vs. 2) is
insignificant and the effect of density is significant at p = 0.03 (model 3 vs.
4). The effect of quality (when added to a model that already accounts for
density) is weakly significant. The parameter values (coef(GS.xqd)) show the
positive effect of quality (0.076) to be about half the negative effect of density
(-0.149), on the log scale; adding one competitor to a reef decreases the scale
parameter (and hence survival) by a factor of e−0.149 = 0.86, while an additional
background settler indicates some element of quality that increases survival on
average by a factor of e0.076 = 1.08.

Alternatively, we can simply fit the remaining 6 models (qdi, qd, xq, d, q,
0 — not shown) and use information criteria (AICtab, AIcctab, or BICtab) to
get the following results:
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model params ∆AIC AIC weights ∆AICc ∆BIC
qd 4 0.00 0.23 0.00 2.54
xqd 8 0.25 0.20 0.54 18.44
qdi 5 0.92 0.15 0.98 7.38
xqdi 9 1.34 0.12 1.73 23.44
d 3 1.37 0.12 1.32 0.00
xd 7 1.99 0.09 2.19 16.27
xq 7 4.02 0.03 4.22 18.30
x 6 4.51 0.02 4.63 14.88
q 3 4.85 0.02 4.80 3.48
0 2 5.50 0.02 5.42 0.22

This is perhaps too much information — because of the different weighting used
by the different information criteria, they give qualitatively different answers.
AIC and AICc prefer the model that incorporates the effects of quality and
density, with all the models considered plausible (∆AIC,∆AICc < 6 for all
candidate models) but with the simplest models weighted very little; in con-
trast, BIC prefers the simplest models (0, d), ruling out the most complex ones
(∆BIC > 10 for xqd, xqdi, xd, xq, x).

What should one conclude in this situation, with too many possible answers?
There isn’t really a good answer, except that in reality one should decide in
advance which model selection approach (if any) comes closest to answering the
kind of question you have, rather than trying several and then having to choose
among the answers. Here there is fairly strong evidence that density has an
effect, and based on the coefficients the effect of quality is about half as strong
(per fish present) as that of density. In terms of the range of values used in the
experiment, density and quality have approximately equivalent effects (density
has a range of 9, from 2 to 11, while quality ranges from 1 to 18).

There aren’t too many loose ends in this particular analysis, but there are a
number of possible directions for further exploration:

� We have followed standard survival analysis in making the mortality rate
an exponential function of covariates such as density. Fisheries biologists
commonly model mortality as a linear (additive) function of density in-
stead (i.e., Prob(survival to t) ∝ e−a+b·d rather than Prob(survival to t) ∝
e−ea+b·d

). The exponential analysis is more convenient because it guaran-
tees that the mortality rate will always be positive regardless of the pa-
rameters, thus avoiding the need for constrained optimization. For small
mortality rates the analysis will give approximately the same answers,
since by Taylor expansion the exponential is approximately linear near
zero. It would be interesting to re-do the analysis with a linear model and
see how similar the answers were. More challengingly, one could explore
the dependence of survival on density and quality in more detail — per-
haps graphically — and see if a more flexible function could give a better
answer.

� We ignored differences in shape parameter; it would be interesting to go
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back and explore the possibilities of differences in shape (representing the
differences in change in mortality over time) some more, and with a wider
variety of data; does the shape parameter vary with the mode of mortality?

3 Seed removal

For the Duncan seed predation/seed removal data, some of the ecological ques-
tions are: how does the probability of seed removal vary as a function of distance
from the forest edge (10 or 25 m)? With species, possibly as a function of seed
mass? By time?

Since most of the predictor variables are categorical in this case (species;
distance from forest), the deterministic models are relatively simple — simply
different probabilities for different levels of the factors. On the other hand,
the distribution of the number of seeds taken is unusual, so most of the initial
modeling effort will go into finding an appropriate stochastic model.

3.1 Preliminaries

Pull in the data:

> data(SeedPred)

Drop NAs and records where there are zero seeds available: attach the results.

> SeedPred = na.omit(subset(SeedPred, available > 0))

> attach(SeedPred)

About 90% of the data consist of “zero taken” entries. We don’t want to
ignore these data, but sometimes we can see more if we look only at the non-
zero cases: we’ll use nz for that case.

> nz = subset(SeedPred, taken > 0)

3.2 Stochastic model: which distribution?

I used barchart from the lattice package to look at the data in a variety of
different ways — rearranging the order of the factors in the table to get different
arrangements of panels and bars, plotting data with zero-taken data included
and excluded, and adding dropping factors from the table command to see
coarser views of the data:

> barchart(table(nz$taken, nz$available, nz$dist, nz$species),

+ stack = FALSE)

> barchart(table(nz$taken, nz$species, nz$dist, nz$available),

+ stack = FALSE)

> barchart(table(nz$species, nz$available, nz$dist,

+ nz$taken), stack = FALSE)
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> barchart(table(nz$available, nz$dist, nz$taken),

+ stack = FALSE)

> barchart(table(nz$available, nz$species, nz$taken),

+ stack = FALSE)

I could also have included the argument subset=taken>0 to restrict the plots
to non-zero data.

Plot all data (not just cases where some seeds are taken):

> barchart(table(available, dist, taken), stack = FALSE)

Plot by date:

> tcumfac = cut(nz$tcum, breaks = c(0, 20, 40, 60,

+ 180))

> barchart(table(nz$available, tcumfac, nz$taken),

+ stack = FALSE)

> barchart(table(available, tcumfac, taken), stack = FALSE)

Two additional useful arguments are auto.key=TRUE, to draw a legend for the
bar colors, and scales=list(relation="free"), to allow different scales in
each panel.

As with the reed frog predation experiment, the data are discrete and the
results have an upper limit (i.e., the number of seeds available for removal at the
beginning of the interval). The zero-inflated binomial introduced in Chapter 4
might make sense, if there were more zeros in the data set than expected from the
binomial sampling process (e.g. if the probability distribution had modes both at
zero and away from zero). This distribution would be appropriate if predators
sometimes missed the site entirely. However, Figure 7 shows that the seed
removal data set doesn’t look like a zero-inflated binomial either, because the
distribution is lowest in the middle and increases gradually for higher or lower
values. Compare that with Figure ?? (p. ??), which shows that the probability
distribution function of the zero-inflated binomial distribution usually drops
toward zero, then has a spike at zero (p(0) > p(1), p(1) < p(2)).

Next I tried the beta-binomial distribution, which allows for variability in
the underlying probabilities per trial and can be bimodal at 0 and N for ex-
treme values of the overdispersion parameter, and a zero-inflated beta-binomial
distribution.

One should really test the fits of distributions on a small piece of the data set,
or allowing for different parameters for each combination of factors: variation
among groups can mask the shape of the underlying distribution. However,
it can be tedious to try to fit parameters for an unknown distribution for all
combinations of factors simultaneously, and the exploratory graphical analysis
described above convinced me that the pattern shown in Figure 7 holds up even
when the data are disaggregated by species, distance, date, etc..

Using the dzinbinom function in the emdbook package as a model, I con-
structed probability density functions for the zero-inflated binomial (dzibinom)
and zero-inflated beta-binomial (dzibb):
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number available, when number available > 1 and number taken > 0.
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> dzibinom = function(x, prob, size, zprob, log = FALSE) {

+ logv = log(1 - zprob) + dbinom(x, prob = prob,

+ size = size, log = TRUE)

+ logv = ifelse(x == 0, log(zprob + exp(logv)),

+ logv)

+ if (log)

+ logv

+ else exp(logv)

+ }

> dzibb = function(x, size, prob, theta, zprob, log = FALSE) {

+ logv = ifelse(x > size, NA, log(1 - zprob) +

+ dbetabinom(x, prob = prob, size = size, theta = theta,

+ log = TRUE))

+ logv = ifelse(x == 0, log(zprob + exp(logv)),

+ logv)

+ if (log)

+ logv

+ else exp(logv)

+ }

Next I took shortcut and used the formula interface to mle2 rather than
writing an explicit negative log-likelihood function. I fitted the zero-inflation
probability on a logit scale, using plogis to transform it on the fly, since it
must be between 0 and 1:

> SP.zibb = mle2(taken ~ dzibb(size = available, prob,

+ theta, plogis(logitzprob)), start = list(prob = 0.5,

+ theta = 1, logitzprob = 0))

> print(SP.zibb)

Call:
mle2(minuslogl = taken ~ dzibb(size = available, prob, theta,

plogis(logitzprob)), start = list(prob = 0.5, theta = 1,
logitzprob = 0))

Coefficients:
prob theta logitzprob

0.07166827 0.32707860 -2.32655049

Log-likelihood: -1811.13

There were warnings about NaNs in lbeta, but the final answers look rea-
sonable. I was surprised to see that the zero-inflation probability was so small:
plogis(-2.33)= 0.089. I suspected that the zero-inflation parameter and the
overdispersion parameter (θ) might both be affecting the number of zeros, so I
checked the correlations among the parameters:

> cov2cor(vcov(SP.zibb))
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prob theta logitzprob
prob 1.0000000 0.2885011 0.9867901
theta 0.2885011 1.0000000 0.3436282
logitzprob 0.9867901 0.3436282 1.0000000

Indeed, logitzprob and prob are 99% correlated — suggesting that we could
drop the zero-inflation parameter from the model.

> SP.bb = mle2(taken ~ dbetabinom(prob, theta, size = available),

+ start = list(prob = 0.5, theta = 1))

> logLik(SP.bb) - logLik(SP.zibb)

'log Lik.' 0.07956568 (df=2)

The log-likelihood difference is only about 0.08. Even allowing for the fact that
the null value of the zero-inflation parameter is on the boundary, so that the
appropriate χ̄2

1 p-value is half the usual χ2
1 p-value, this difference is certainly

not significant.
Just for completeness, I fitted the zero-inflated binomial too (although I

didn’t think it would fit well):

> SP.zib = mle2(taken ~ dzibinom(size = available,

+ prob = p, zprob = plogis(logitzprob)), start = list(p = 0.2,

+ logitzprob = 0))

Using AIC to compare all three distributions:

> AICtab(SP.zib, SP.zibb, SP.bb, sort = TRUE, weights = TRUE)

AIC df weight
SP.bb 3626.1 2 0.746
SP.zibb 3628.3 3 0.254
SP.zib 4045.6 2 <0.001

Figure 8 compares the predictions of the different distributions, with stacked
barplots showing the breakdown of different numbers of seeds taken for each
number of seeds available.

The R code to calculate this distribution for the data first computes the table
of number-taken-by-number-available, then uses sweep to divide each column
(margin 2) by its sum:

> comb = table(taken, available)

> pcomb = sweep(comb, 2, colSums(comb), "/")

The equivalent computation for the zero-inflated beta-binomial sets up an
empty matrix with 6 rows (for 0 to 5 seeds taken) and 5 columns (for 1 to 5
seeds available). For each number available N , it then sets the first N + 1 rows
in column N of the matrix to the predicted probability of taking 0 to N seeds.
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data Z−I beta−binomial

beta−binomial Z−I binomial

Figure 8: Observed and predicted distribution of number of seeds taken as a
function of number available. (Zero-taken results are omitted, and columns are
rescaled to add to 1.)

> mtab = matrix(0, nrow = 6, ncol = 5)

> for (N in 1:5) {

+ cvals = coef(SP.zibb)

+ mtab[1:(N + 1), N] = dzibb(0:N, size = N, prob = cvals["prob"],

+ theta = cvals["theta"], zprob = plogis(cvals["logitzprob"]))

+ }

Similar calculations work for the other two distributions.
As we would expect from the statistical results so far, the zero-inflated beta-

binomial and beta-binomial predictions look nearly identical, and much closer
than the zero-inflated binomial results. However, there are still visible discrep-
ancies for the cases of 4 and 5 seeds available — the predicted distributions are
more regular, and have more even distributions, than the observed.

We can calculate standard χ2 p-values for the probability of the observed
numbers taken for each number of seeds available:

> pval = numeric(5)

> for (N in 1:5) {
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+ obs = comb[1:(N + 1), N]

+ prob = mtab[1:(N + 1), N]

+ pval[N] = chisq.test(obs, p = prob)$p.value

+ }

The p-values are:

1 2 3 4 5
0.53 0.29 0.81 0.01 <0.001

There are still statistically significant discrepancies between the expected and
observed distributions when 4 or 5 seeds are available. We could try to find
a way to make the stochastic model more complex and accurate, but we have
reached the limit of what we can do with simple models, and we may also have
reached the limit of what we can do with the data. The mechanism for the
pattern remains obscure. While I can imagine mechanisms that would lead to
all seeds or none being taken, it’s hard to see why it’s least likely that 3 out of
5 available seeds would be taken. I suspect that there is some disaggregation of
the data by species, date, etc., that would divide stations into those where few
or many seeds were taken, with an extreme pattern in each case that combines
to create the observed bimodal pattern, but I haven’t been able to find it.

3.3 Deterministic model: differences among species, etc.

Now we can check for differences among distances from the forest, species, and
possibly differences in space and time: how does the distribution of number of
seeds removed vary? Does p, the overall probability that a seed will be removed,
vary? Does θ (the overdispersion parameter, which in this case is more related
to the probability that any seeds will be removed) vary? Do they both vary?

3.3.1 Differences among transects (distance from edge)

mle2’s formula interface allows us to specify that some parameters vary among
groups, by giving a parameters argument which is a list of the formulas for
each group (p. ??). Here I wanted to parameterize the model so that mle2
would estimate the probability and overdispersion parameter for each species,
rather than estimating the parameters for the first group and the differences
between subsequent groups and the first, so I used the formulas prob~dist-1
and theta~dist-1 to fit the model without an intercept.

> SP.bb.dist = mle2(taken ~ dbetabinom(prob, size = available,

+ theta), parameters = list(prob ~ dist - 1, theta ~

+ dist - 1), start = as.list(coef(SP.bb)))

A Likelihood Ratio Test on the two models suggests a significant difference
between transects:

> anova(SP.bb, SP.bb.dist)
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Likelihood Ratio Tests
Model 1: SP.bb, taken~dbetabinom(prob,theta,size=available)
Model 2: SP.bb.dist,

taken~dbetabinom(prob,size=available,theta):
prob~dist-1, theta~dist-1

Tot Df Deviance Chisq Df Pr(>Chisq)
1 2 3622.1
2 4 3615.6 6.4823 2 0.03912 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Reparameterizing the model in terms of differences between the 10-m and
25-m transect rather than the p and θ values for each transect (i.e., dropping
the -1 in the parameter formulas) allows us to calculate confidence limits on the
differences between transects. At the same time, I decided to switch to fitting
p on a logit scale and θ on a log scale. With the formula interface, I can do the
inverse transformations on the fly with plogis and exp.

Set up starting values, using qlogis (the inverse of plogis) and log to
transform the estimated values of the p and θ parameters from above.

> startvals = list(lprob = qlogis(coef(SP.bb.dist)["prob.dist10"]),

+ ltheta = log(coef(SP.bb.dist)["theta.dist10"]))

> SP.bb.dist2 = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ dist, ltheta ~ dist), start = startvals)

The summary of the model now gives us approximate p-values on the pa-
rameters, showing that the difference between transects is caused by a change
in p and not a change in θ.

> summary(SP.bb.dist2)

Maximum likelihood estimation

Call:
mle2(minuslogl = taken ~ dbetabinom(plogis(lprob), exp(ltheta),

size = available), start = startvals, parameters = list(lprob ~
dist, ltheta ~ dist))

Coefficients:
Estimate Std. Error z value Pr(z)

lprob.(Intercept) -2.7968262 0.0813997 -34.3592 < 2e-16 ***
lprob.dist25 0.2663037 0.1110270 2.3985 0.01646 *
ltheta.(Intercept) -1.1255457 0.1261399 -8.9230 < 2e-16 ***
ltheta.dist25 -0.0035835 0.1719498 -0.0208 0.98337
---

31



Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 3615.627

(The highly significant p-values for lprob.10 and ltheta.10 are not biologically
significant: they merely show that logit(p10) 6= 0 (i.e. p10 6= 0.5) and log θ 6= 0
(θ 6= 1), neither of which is ecologically interesting.)

Now reduce the model, allowing only p to vary between transects:

> SP.bb.probdist = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ dist), start = startvals)

Both the LRT and the AIC approaches suggest that the best model is one in
which p varies between transects but θ does not (although the AIC table suggests
that the more complex model with differing θ should be kept in consideration):

> anova(SP.bb, SP.bb.probdist, SP.bb.dist)

Likelihood Ratio Tests
Model 1: SP.bb, taken~dbetabinom(prob,theta,size=available)
Model 2: SP.bb.probdist,

taken~dbetabinom(plogis(lprob),exp(ltheta),size=available):
lprob~dist

Model 3: SP.bb.dist,
taken~dbetabinom(prob,size=available,theta):
prob~dist-1, theta~dist-1

Tot Df Deviance Chisq Df Pr(>Chisq)
1 2 3622.1
2 3 3615.6 6.4819 1 0.01090 *
3 4 3615.6 0.0004 1 0.98341
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb, SP.bb.probdist, SP.bb.dist, sort = TRUE,

+ weights = TRUE)

AIC df weight
SP.bb.probdist 3621.6 3 0.678
SP.bb.dist 3623.6 4 0.250
SP.bb 3626.1 2 0.072

How big is the difference between transects?

> c1 = coef(SP.bb.probdist)

> plogis(c(c1[1], c1[1] + c1[2]))

lprob.(Intercept) lprob.(Intercept)
0.05751881 0.07372130
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The difference is small — 6% vs 7% probability of removal per observation.
This difference is unlikely to be ecologically significant, and reminds us that
when we have a big data set (4406 observations) even small differences can be
statistically significant. On the other hand, Duncan and Duncan (2000) failed to
find a significant difference between the transects — so the likelihood framework
is more powerful, and has given us answers in terms (average percent difference
in probability of removal) that we can understand.

3.3.2 Differences among species

Now I proceeded to test differences among species. First I tried a model with
both θ and p varying. (Both parameters are again fitted on transformed scales,
logit and log respectively.)

> SP.bb.sp = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ species, ltheta ~ species), start = startvals)

The parameter estimates (shown in full by summary(SP.bb.sp): here I have
dropped one column of the table) suggest that, as in the case of differences
among transects, differences in p and not θ are driving the differences among
species:

Estimate Std. Error Pr(z)
lprob.(Intercept) -1.925509 0.1428 < 2.2e-16 ***
lprob.speciescd 0.329247 0.2186 0.1321056
lprob.speciescor -1.332956 0.2144 5.090e-10 ***
lprob.speciesdio -0.991505 0.2111 2.645e-06 ***
lprob.speciesmmu -0.432409 0.2130 0.0423696 *
lprob.speciespol 0.413143 0.2098 0.0489483 *
lprob.speciespsd -1.274415 0.2207 7.704e-09 ***
lprob.speciesuva -1.302890 0.2146 1.266e-09 ***
ltheta.(Intercept) -0.824310 0.2240 0.0002327 ***
ltheta.speciescd -0.560802 0.3473 0.1063536
ltheta.speciescor 0.016070 0.3292 0.9610611
ltheta.speciesdio -0.377969 0.3276 0.2485773
ltheta.speciesmmu -0.618604 0.3354 0.0651542 .
ltheta.speciespol 0.152877 0.3331 0.6462837
ltheta.speciespsd -0.173435 0.3405 0.6105292
ltheta.speciesuva -0.058962 0.3341 0.8599198
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So I fitted a model with only probability p, and not overdispersion θ, varying
by species:

> SP.bb.probsp = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ species), start = startvals)
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Once again, both Likelihood Ratio tests and AIC suggest that only the p
parameters differ among species:

> anova(SP.bb.sp, SP.bb.probsp, SP.bb)

Likelihood Ratio Tests
Model 1: SP.bb.sp,

taken~dbetabinom(plogis(lprob),exp(ltheta),size=available):
lprob~species, ltheta~species

Model 2: SP.bb.probsp,
taken~dbetabinom(plogis(lprob),exp(ltheta),size=available):
lprob~species

Model 3: SP.bb, taken~dbetabinom(prob,theta,size=available)
Tot Df Deviance Chisq Df Pr(>Chisq)

1 16 3460.4
2 9 3469.8 9.3894 7 0.2259
3 2 3622.1 152.2873 7 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AICtab(SP.bb.sp, SP.bb.probsp, SP.bb, sort = TRUE,

+ weights = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.909
SP.bb.sp 3492.4 16 0.091
SP.bb 3626.1 2 <0.001

Now I want to know whether seed mass and p are related. If they were,
I could fit a likelihood model where p was treated as a function of seed mass,
reducing the number of parameters to estimate and perhaps allowing me to
predict removal probabilities for other species on the basis of their seed masses.

> SP.bb.probsp0 = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ species - 1), start = startvals, method = "L-BFGS-B",

+ lower = rep(-10, 9), upper = rep(10, 9))

Fitting this model was numerically problematic. In my first attempt, using
default methods and parameters, mle2 found a ridiculous answer (all the logit-
probabilities were strongly negative, giving removal probabilities near zero) and
crashed while evaluating the Hessian. I used skip.hessian=TRUE to temporarily
stop mle2 from crashing and trace=TRUE to see where it was going. Switching to
method="Nelder-Mead" helped stabilize the calculation, but it failed to converge
until I increased the number of iterations to 3000 (control=list(maxit=3000)),
and even then it got stuck on a solution that was worse than the previous
model. (In this case, since all I am doing is reparameterizing the previous
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Figure 9: Removal probability parameter (p) as a function of seed mass: error
bars show quadratic confidence intervals.

model, mle2 ought to be able to achieve an equally good fit.) I then went back
to BFGS and tried changing the size of the finite difference interval both down
(control=list(ndeps=rep(1e-4,9))) and up (control=list(ndeps=rep(1e-2,9))),
neither of which helped. I finally got the model to fit as well as the previous pa-
rameterization by switching to L-BFGS-B and setting the parameter boundaries
to disallow ridiculous fits.

> predprob = plogis(coef(SP.bb.probsp0))[1:8]

> SP.bb.ci = plogis(confint(SP.bb.probsp0, method = "quad"))[1:8,

+ ]

Figure 9 shows the results: rather than the possible trend towards higher
seed removal for larger seeds that I might have expected, the figure shows slightly
elevated removal rates for the two smallest-seeded species (explained by Duncan
and Duncan as a possible artifact of small seeds being washed out of the trays by
rainfall), and a hugely elevated rate for species abz; in this case, I would want to
go back and see if there was something special about this species’ characteristics
or the way it was handled in the experiment.
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3.3.3 Is there a species-distance interaction?

The initial scan of the data suggested that some species might be more sensitive
to the distance from the edge; this possibility is certainly biologically sensible
(some species might be taken by specialized seed predators that have more
restricted movement), and it is the kind of information that could easily be
masked by looking at aggregated data.

Using the formula interface, we can simply say lprob~species*dist to
allow for such an interaction: if you need to code such a model by hand,
interaction(f1,f2) will create a factor that represents the interaction of fac-
tors f1 and f2.

> SP.bb.probspdist = mle2(taken ~ dbetabinom(plogis(lprob),

+ exp(ltheta), size = available), parameters = list(lprob ~

+ species * dist), start = startvals, method = "L-BFGS-B",

+ lower = rep(-10, 9), upper = rep(5, 9))

I had to restrict the upper bounds still further, to 5, to make L-BFGS-B happy,
since values of 10 gave NaN results for some parameter combinations.

A likelihood ratio test (anova(SP.bb.probsp,SP.bb.probspdist)) gives a
p-value of 0.054; AIC says that the model without distance × species interaction
is best, but only by a little bit:

> AICtab(SP.bb, SP.bb.probsp, SP.bb.probspdist, SP.bb.sp,

+ SP.bb.probdist, SP.bb.dist, weights = TRUE, sort = TRUE)

AIC df weight
SP.bb.probsp 3487.8 9 0.559
SP.bb.probspdist 3488.6 17 0.386
SP.bb.sp 3492.4 16 0.056
SP.bb.probdist 3621.6 3 <0.001
SP.bb.dist 3623.6 4 <0.001
SP.bb 3626.1 2 <0.001

3.3.4 Other issues: time

A minor issue that I have largely neglected so far is that the intervals between
observations varied between 3 and 14 days. To account for these differences in
exposure time, I could use a model like p = 1−e−r(∆t), which assumes that seeds
are taken at a constant rate r. Do the predictions improve, or the conclusions
change, if I account for the time interval allowed for removal?

Before going to the trouble of building a model, let’s look at the data again.
Calculate the mean and standard error of the proportion taken, using tapply
to calculate means and standard deviations of proportions divided up by the
time interval (tint); then use table to calculate the number of observations for
each time interval and divide by

√
n to convert standard deviations to standard

errors.
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Figure 10: Relationships between proportion removed and
time interval (∆t), and between ∆t and date. R command:
plotCI(3:10,mean.prop.taken,se.prop.taken).

> mean.prop.taken = tapply(taken/available, tint, mean,

+ na.rm = TRUE)

> sd.prop.taken = tapply(taken/available, tint, sd,

+ na.rm = TRUE)

> n.tint = table(tint)

> se.prop.taken = sd.prop.taken/sqrt(n.tint)

Figure 10a is a surprise: the model p = 1− e−r(∆t) suggests the proportion
taken should increase rather than decrease with ∆t. What’s going on?

Figure 10b, which plots the time interval between observations against date,
gives the answer: the short-interval (3–4 day) observations were mostly made
before May, when the removal rate was high, while the longest intervals between
observations (10 days) are in September.

Which brings us to the issue of temporal variation: we already know from
Figure ?? in Chapter 2 that the removal rate decreases over time. Figure 11
shows the relationship between proportion removed and date, calculated in the
same way as the removal–∆t relationship. Removal appears to decrease expo-
nentially with time. Replotting the data with a logarithmic y scale suggests that
the removal rate might level off above zero, but it’s hard to tell. Similarly, it’s
hard to know what causes the anomalously low proportions for some sampling
dates throughout the study and the anomalously high proportions at the very
end of the study. Nevertheless, we can add a parameter to the model allowing
for exponential decrease in removal rate over time:
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Figure 11: Proportion taken as a function of date. The line shows fitted expo-
nential dependence (p = 0.26× e−0.023t), based on a fitted model that lumps all
the species together.

> SP.bb.probspdate = mle2(taken ~ dbetabinom(plogis(lprob) *

+ exp(-tcum * date), exp(ltheta), size = available),

+ parameters = list(lprob ~ species), start = c(startvals,

+ date = 0), method = "L-BFGS-B", lower = c(rep(-10,

+ 9), 0), upper = c(rep(5, 9), 2))

The model incorporating date is 237.6 log-likelihood units better — the model
should definitely include the effect of date.

We have gotten a lot of mileage from these data, but as always there are
more questions we could ask: do the removal rates of different species drop off
at different rates? Can we figure out what causes the anomalous samples in
Figure 11? Once we have split the data according to these criteria, does the
original distribution simplify to something simpler?
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