
Standard statistics revisited

©2006 Ben Bolker

August 3, 2007

Summary

This chapter rapidly reviews much of classical statistics, discussing the under-
lying likelihood models for procedures such as ANOVA, linear regression, and
generalized linear models. It also gives brief pointers to the built-in procedures
in R that implement these standard techniques. This summary connects max-
imum likelihood approaches with more familiar classical techniques. If you’re
already familiar with classical techniques, it may help you understood maximum
likelihood better. It also provides a starting point for using efficient, “canned”
approaches when they are appropriate for your data. It does not, and cannot,
provide full coverage of all these topics. For more details, see Dalgaard (2003),
Crawley (2005), or Venables and Ripley (2002).

1 Introduction

So far this book has covered maximum likelihood and Bayesian estimation in
some detail. In the course of the discussion I have sometimes mentioned that
maximum likelihood analyses give answers equivalent to those provided by fa-
miliar, “old-fashioned” statistical procedures. For example, the statistical model
Y ∼ Normal(a + bx, σ2) — specifying that Y is a normally distributed random
variable whose mean depends linearly on x — underlies ordinary least-squares
linear regression. This chapter will briefly review special cases where our general
recipe for finding MLEs for statistical models reduces to standard procedures
that are built into R and other statistics packages.

In the best case, your data will match a classical technique like linear re-
gression exactly, and the answers provided by classical statistical models will
agree with the results from your likelihood model. Other models you build may
be formally equivalent to a classical model that is parameterized in a different
way. Most often, the customized model you build will not be exactly equiva-
lent to any existing classical model, but a similar classical model may be close
enough that you wouldn’t mind changing your model slightly in order to gain
the convenience of using a standard procedure.

For example, in Chapter 6 we used the model

Y ∼ NegBinom(µ = a ·DBHb, k) (1)

1

●

●●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

DBH

co
ne

s+
1

1

2

5

10

20

50

100

200

5 10 15

power/LN
power/NB
lin/normal

cones+1
D

en
si

ty

0.00

0.01

0.02

0.03

0.04

0 25 50 75 100

6 < DBH < 8

● ●●●● ●●● ●● ●●● ● ●●● ●●● ●● ●●● ●● ●●●● ●● ● ●● ●● ● ● ●● ●●●● ●●●● ● ●● ●●●●● ●● ●● ● ●●● ●●● ● ●● ●● ●●●●●

density
NB
LN
normal

Figure 1: Comparing different functional forms for fir fecundity data: power-law
with a lognormal (LN) distribution, power-law with a negative binomial (NB)
distribution, and linear with a normal distribution. (The linear model appears
as a curved line because the data are plotted on a log-log scale.)

to represent cone production by fir trees as a function of diameter at breast
height. If we approximated the discrete distribution of cones by a continuous
log-normal distribution instead,

Y ∼ LogNormal(µ = a ·DBHb, σ2), (2)

we could log-transform both sides and fit the linear regression model

log Y ∼ Normal(log a + b · log(DBH), σ2). (3)

Figure 1a shows all three models for the DBH–fecundity relationship —
power-law with a negative binomial distribution (power/NB), power-law with
a lognormal distribution (power/LN), and linear with a normal distribution —
fitted to the fir data; all are plausible. Figure 1b shows various models for the
distribution of cone production, fitted to the individuals with DBH between
6 and 8 cm: a nonparametric density estimate, the negative binomial, log-
normal, and normal. The negative binomial is closest to the nonparametric
density estimate of the distribution, while the lognormal is more peaked and
the normal distribution has a significant (and unrealistic) negative tail.

Although the power-law/negative binomial is the most realistic and has a
plausible mechanistic interpretation (the data are discrete, positive, and overdis-
persed; we can imagine individual trees producing cones at an approximately
constant rate with variation in fecundity among trees), the difference between
the fit of negative binomial and lognormal distributions is small enough that the
convenience of linear regression may be worthwhile. When the results of dif-
ferent models are similar on both biological and statistical grounds, you choose
among them by balancing convenience, mechanistic arguments, and convention.

2

Why might you want to use standard, special-case procedures rather than
the general MLE approach?

� Computational speed and stability : the special-case procedures use special-
case optimization algorithms that are faster (sometimes much faster) and
less likely to encounter numerical problems. Many of these procedures
relieve you of the responsibility of choosing starting parameters.

� Stable definitions: the definitions of standard models have often been cho-
sen to simplify parameter estimation. For example, to model a relatively
sudden change between two states you could choose between a logistic
equation or a threshold model. Both might be equally sensible in terms
of the biology, but the logistic equation is easier to fit because it involves
smoother changes as parameters change. Similarly, generalized linear mod-
els such as logistic or Poisson regression fit parameters on scales (logit- or
log-transformed, respectively) that allow unconstrained optimization.

� Convention: if you use a standard method, you can just say (for example)
“we used linear regression” in your Methods section and no-one will think
twice. If you use a non-standard method, you need to explain the method
carefully and overcome readers’ distrust of “fancy” statistics — even if
your model is actually simpler and more appropriate than any standard
model. Similarly, it may minimize confusion to use the same models, and
the same parameterizations, as previous studies of your system.

� Varying models and comparing hypotheses: the machinery built into R
and other packages makes it easy to compare a variety of models. For
example, when analyzing a factorial growth experiment that manipulates
nitrogen (N) and phosphorus (P), you can easily switch between models
incorporating the effects of nitrogen only (growth~N), phosphorus only
(growth~P), additive effects of N and P (growth~N+P), or the main effects
plus interactions between nitrogen and phosphorus (growth~N*P). You
can carry out all of these comparisons by hand with your own models,
and mle2’s formula interface is helpful, but R’s built-in functions make
the process easy for classical models.

This chapter discusses how a variety of different kinds of models fit together,
and how they all represent special cases of a general likelihood framework. Fig-
ure 2 shows how many of these areas are connected. The chapter also gives
brief descriptions of how to use them in R: if you want more details on any of
these approaches, you’ll need to check an introductory (Dalgaard, 2003; Craw-
ley, 2005; Verzani, 2005), intermediate (Crawley, 2002), or advanced (Chambers
and Hastie, 1992; Venables and Ripley, 2002) reference.

2 General linear models

General linear models include linear regression, one- and multi-way analysis of
variance (ANOVA), and analysis of covariance (ANCOVA): R uses the function

3

(non−normal errors)
(nonlinearity)

smooth scaled

random

random
effects

effects

variancenonlinearity

(nonlinearity)
random

over−
dispersion

thresholds;

mixtures;

effects

(non−normal errors)

correlation

mixed models

nonlinearity

etc. etc.

nonlinearity

correlation

compound distributions;

general

linear models

generalized linear
mixed models

models
time series
nonlinear

logistic regression

binomial regression

log−linear models

generalized

linear models

nonlinear

least−squares

linear regression

ANOVA

analysis of covariance

multiple linear regression models; time−series (ARIMA)

repeated−measures

binomial models
negativequasilikelihood

models
generalized
additive
models

Figure 2: All (or most) of statistics. The labels in parentheses (non-normal
errors and nonlinearity) imply restricted cases: (non-normal errors) means ex-
ponential family (e.g. binomial or Poisson) distributions, while (nonlinearity)
means nonlinearities with an invertible linearizing transformation. Models to
the right of the gray dashed line involve multiple levels or types of variability;
see Chapter 10.

4

lm for all of these procedures. SAS implements this with PROC GLM∗. While
regression, ANOVA, and ANCOVA are often handled differently, and they are
usually taught differently in introductory statistics classes, they are all variants
of the same basic model. The assumptions of the general linear model are that
all observed values are independent and normally distributed with a constant
variance (homoscedastic), and that any continuous predictor variables (covari-
ates) are measured without error. (Remember that the assumption of normality
applies to the variation around the expected value — the residuals — not to the
whole data set.)

The “linear” part of “general linear model” means that the models are linear
functions of the parameters, not necessarily of the independent variables. For
example, quadratic regression

Y ∼ Normal(a + bx + cx2, σ2) (4)

is still linear in the parameters (a, b, c), and thus is a form of multiple linear
regression. Another way to think about this is to say that x2 is just another
explanatory variables — if you called it w instead, it would be clear that this
model is an example of multivariate linear regression. On the other hand, Y ∼
Normal(axb, σ2) is nonlinear: it is linear with respect to a (the second derivative
of axb with respect to a is zero), but nonlinear with respect to b (d2(axb)/db2 =
b · (b− 1) · axb−2 6= 0).

2.1 Simple linear regression

Simple, or ordinary, linear regression predicts y as a function of a single contin-
uous covariate x. The model is

Y ∼ Normal(a + bx, σ2), (5)

denoting the response variable as Y rather than y since it’s a random variable.
The equivalent R code is

> lm.reg = lm(y ~ x)

The intercept term a is implicit in the R model. If you want to force the intercept
to be equal to zero, fitting the model Y ∼ Normal(bx, σ2), use lm(Y~X-1).

Typing lm.reg by itself prints only the formula and the estimates of the
coefficients; summary(lm.reg) also gives summary statistics (range and quar-
tiles) of the residuals, standard errors and p-values for the coefficients, and R2

and F statistics for the full model; coef(lm.reg) gives the coefficients alone,
and coef(summary(lm.reg)) pulls out the table of estimates, standard errors, t
statistics, and p values. confint(lm.reg) calculates confidence intervals. The
function plot(lm.reg) displays various graphical diagnostics that show how
well the assumptions of the model fit and whether particular points have a

∗This terminology is unfortunate since the rest of the world uses “GLM” to mean gen-
eralized linear models, which correspond to SAS’s PROC GENMOD.

5

strong effect on the results: see ?plot.lm for details. anova(lm.reg) prints
an ANOVA table for the model∗. If you need to extract numeric values of,
e.g., R2 values or F statistics for further analysis, wade through the output of
str(summary(lm.reg)) to find the pieces you need (e.g. summary(lm.reg)$r.squared).

To do linear regression by brute force with mle2, you could write this negative
log-likelihood function

> linregfun = function(a, b, sigma) {

+ Y.pred = a + b * x

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

or use the formula interface:

> mle2(Y ~ dnorm(mean = a + b * x, sd = sigma), start = ...)

When using mle2 you must explicitly fit a standard deviation term σ which is
implicit in the lm approach.

2.2 Multiple linear regression

It’s easy to extend the simple linear regression model to multiple continuous
predictor variables (covariates). If the extra covariates are powers of the original
variable (x2, x3, . . .), the model is called polynomial regression (quadratic with
just the x2 term added):

Y ∼ Normal(a + b1x + b2x
2, σ2). (6)

Or you can use completely separate variables (x1, x2, . . .):

Y ∼ Normal(a + b1x1 + b2x2 + b3x3, σ
2) (7)

As with simple regression, the intercept a and the coefficients of the different
covariates (b1, b2) are implicit in the R formula:

> lm.poly = lm(y ~ x + I(x^2))

(surround x^2 and other powers of x with I(), “as is”) or

> lm.mreg = lm(y ~ x1 + x2 + x3)

You can add interactions among covariates, testing whether the slope with re-
spect to one covariate changes linearly as a function of another covariate — e.g.
Y ∼ Normal(a + b1x1 + b2x2 + b12x1x2, σ

2): in R, lm.intreg = lm(y~x1*x2).
Use the anova function with test="Chisq" to perform likelihood ratio tests

on a nested series of multivariate linear regression models (e.g. anova(lm1,lm2,lm3,test="Chisq")).
∗anova gives so-called sequential sums of squares, which SAS calls “type I” sums of squares.

If you need SAS-style “type III” sums of squares, you can use the Anova function in the car

package. However, be aware that type III sums of squares are actually problematic, and indeed
controversial (Venables, 1998).

6

If you wonder why anova is a test for regression models, remember that regres-
sion and analyses of variance are just different subsets of the general linear
model.

While multivariate regression is conceptually simple, models with many
terms (e.g. models with many covariates or with multi-way interactions) can be
difficult to interpret. Blind fitting of models with many covariates can get you
in trouble (Whittingham et al., 2006). If you absolutely must go on this kind
of fishing expedition, you can use step, or stepAIC in the MASS package to do
stepwise modeling, or regsubsets in the leaps package to search for the best
model.

2.3 One-way analysis of variance (ANOVA)

If the predictor variables are discrete (factors) rather than continuous (covari-
ate), the general linear model becomes an analysis of variance. The basic model
is

Yi ∼ Normal(αi, σ
2); (8)

in R it is

> lm.1way = lm(y ~ f)

where f is a factor. If your original data set has names for the factor levels (e.g.
{N,S,E,W} or {high,low}) then R will automatically transform the treatment
variable into a factor when it reads in the data. However, if the factor levels
look like numbers to R (e.g. you have site designations 101, 227, and 359, or
experiments numbered 1 to 5), R will interpret them as continuous rather than
discrete predictors, and will fit a linear regression rather than doing an ANOVA
— not what you want. Use v = factor(v) to turn a numeric variable v into a
factor, and then fit the linear model.

Executing anova(lm.1way) produces a basic ANOVA table; summary(lm.1way)
gives a different view of the model, testing the significance of each parameter
against the null hypothesis that it equals 0; for a factor with only two levels,
these tests are statistically identical.

When fitting regression models, the parameters of the model are easy to
interpret — they’re just the intercept and the slopes with respect to the covari-
ates. When you have factors in the model, however — as in ANOVA — the
parameterization becomes trickier. By default, R parameterizes the model in
terms of the differences between the first group and subsequent groups (treat-
ment contrasts) rather than in terms of the mean of each group, although you
can tell it to fit the means of each group by putting a -1 in the formula (e.g.
lm.1way = lm(y~f-1): see pp. ??, ??, and ??).

2.4 Multi-way ANOVA

Multi-way ANOVA models Y as a function of two or more different categori-
cal variables (factors). For example, the full model for two-way ANOVA with

7

interactions is
Yij ∼ Normal(αi + βj + γij , σ

2) (9)

where i is the level of the first treatment/group, and j is the level of the second.
The R code using lm is:

> lm.2way = lm(Y ~ f1 * f2)

(f1 and f2 are factors). As before, summary(lm.2way) gives more information,
testing whether the parameters differ significantly from zero; confint(lm.2way)
computes confidence intervals; anova(lm.2way) generates a standard ANOVA
table; plot(lm.2way) shows diagnostic plots. If you want to fit just the main
effects without the interactions, use lm(Y~f1+f2); use f1:f2 to specify an in-
teraction between f1 and f2.

A negative log-likelihood function for mle could look like this:

> aov2fun = function(m11, m12, m21, m22, sigma) {

+ intval = interaction(f1, f2)

+ Y.pred = c(m11, m12, m21, m22)[intval]

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

(interaction(f1,f2) defines a factor representing the interaction of f1 and
f2 with levels in the order (1.1, 2.1, 1.2, 2.2)). Using the formula interface:

> mle2(Y ~ dnorm(mean = m, sd = sigma), parameters = list(m ~

+ f1 * f2))

For a multiway model, R’s parameters are again defined in terms of con-
trasts. If you construct a two-way ANOVA with factors f1 (with levels A and
B) and f2 (with levels I and II), the first (“intercept”) parameter will be the
mean of individuals in level A of the first factor and I of the second (m11); the
second parameter is the difference between A,II and A,I (m12-m11); the third
is the difference between B,I and A,I (m21-m11); and the fourth, the interac-
tion term, is the difference between the mean of B,II and its expectation if the
effects of the two factors were additive (m22-(m11+(m12-m11)+(m21-m11)) =
m22-m12-m21+m11).

In its anova tables, R One difference between R and other statistical packages
to watch

2.5 Analysis of covariance (ANCOVA)

Analysis of covariance defines a statistical model that allows for different inter-
cepts and slopes with respect to a covariate x in different groups:

Yi ∼ Normal(αi + βix, σ2) (10)

In R:

> lm(Y ~ f * x)

8

where f is a factor and x is a covariate (the formula Y~f+x would specify parallel
slopes, Y~f would specify zero slopes but different intercepts, Y~x would specify
a single slope). Figure 3 shows the fit of the model lm(log(TOTCONES+1) ~
log(DBH)+WAVE_NON) to the fir data. As suggested by the figure, there is a
strong effect of DBH but no significant effect of population (wave vs. non-wave).

As with other general linear models, use summary, confint, plot, and anova
to analyze the model. The parameters are now the intercept of the first factor
level; the slope with respect to x for the first factor level; the differences in the
intercepts for each factor level other than the first; and the differences in the
slopes for each factor level other than the first.

A negative log-likelihood function for ANCOVA:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {

+ int = c(i1, i2)[f]

+ slope = c(slope1, slope2)[f]

+ Y.pred = int + slope * x

+ -sum(dnorm(Y, mean = Y.pred, sd = sigma, log = TRUE))

+ }

2.6 More complex general linear models

You can add factors (grouping variables) and interactions between factors in
different ways to make multi-way ANOVA, covariates (continuous independent
variables) to make multiple linear regression, and combinations to make different
kinds of analysis of covariance. R will automatically interpret formulas based
on whether variables are factors or numeric variables.

3 Nonlinearity: nonlinear least squares

Nonlinear least squares models relax the requirement of linearity, but keep the
requirements of independence and normal errors. Two common examples are
the power-law model with normal errors

Y ∼ Normal(axb, σ2) (11)

and the Ricker model with normal errors

Y ∼ Normal(axe−rx, σ2). (12)

Before computers were ubiquitous, the only practical way to solve these
problems was to linearize them by finding a transformation of the parameters
(e.g. log-transforming x and y to do power-law regression). A lot of ingenuity
went into developing transformation methods to linearize common functions.
However, transforming variables changes the distribution of the error as well as
the shape of the dependence of y on x. Ideally we’d like to find a transformation
that simultaneously produces a linear relationship and makes the errors normally
distributed with constant variance, but these goals are often incompatible. If

9

●

●●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

1.5 2.0 2.5

0

1

2

3

4

5

log(DBH)

lo
g(

co
ne

s+
1)

● nonwave
wave

Figure 3: General linear model fit to fir fecundity data (analysis of covariance):
lm(log(TOTCONES+1)~log(DBH)+WAVE_NON,data=firdata). (Lines are practi-
cally indistinguishable between groups.)

10

the errors are normal with constant variance, they won’t be any longer after you
transform the data to linearize f(x).

The modern way to solve these problems without distorting the error struc-
ture, or to solve other models that cannot be linearized by transforming them,
is to minimize the sums of squares (equivalent to minimizing the negative log-
likelihood) computationally, using quasi-Newton methods similar to those built
into optim. Restricting the variance model to Normally distributed errors with
constant variance allows the use of specific numeric methods that are more
powerful and stable than the generalized algorithms that optim uses.

In R, use the nls command, specifying a nonlinear formula and the starting
values (as a list): e.g., for the power model

> n1 = nls(y ~ a * x^b, start = list(a = 1, b = 1))

summary(n1) shows values of parameters and standard errors; anova(n1,...)
does likelihood ratio tests for nested sequences of nonlinear fits; and confint(n1)
computes profile confidence limits which are more accurate than the confidence
limits suggested by summary(n1). (Unfortunately, plot(n1) does nothing.) Fig-
ure 4 shows the fit of a nonlinear least-squares model (nls(TOTCONES~a*DBH^b))
to the fir fecundity data set, along with the log-log fit (equivalent to a power-
law fit with lognormal errors) calculated above. The power-lognormal model is
probably better from a biological point of view, since the normal distribution
can have negative values, but both models are reasonable.

Fitting models with both nonlinear covariates and categorical variables (the
nonlinear analogue of ANCOVA — e.g., fitting different a and b parameters
for wave and non-wave populations) is more difficult, but two functions from
the nlme package, nlsList and gnls (generalized nonlinear least squares), can
handle such models. nlsList does completely separate fits for separate groups
— for example,

> nlsList(TOTCONES ~ a * DBH^b | WAVE_NON, data = firdata,

+ start = list(a = 0.1, b = 2.7))

would fit separate a and b parameters for wave and non-wave populations —
but all parameters will vary among groups. The gnls command can fit models
with only a subset of the parameters differing among groups: e.g.

> gnls(TOTCONES ~ a * DBH^b, data = firdata, start = c(0.1,

+ 2.7, 2.7), params = list(a ~ 1, b ~ WAVE_NON))

will fit different b parameters but the same a parameter for wave and non-wave
populations.

While nls is more automated than mle2 (for which you must specify the
full negative log-likelihood function), the numerical methods it uses are similar
to mle2’s in that (1) you must specify starting values and (2) if the starting
values are unrealistic, or if the problem is otherwise difficult, the numerical
optimization may get stuck. Errors such as

step factor [] reduced below 'minFactor' of ...

11

number of iterations exceeded maximum of ...

or

Missing value or an infinity produced when evaluating the model

indicate numerical problems. To solve these problems try to find better starting
conditions, reparameterize your model, or play with the control options of nls
(see ?nls.control).

As with ML models, you can often use simpler, more robust approaches like
linear models to get a first estimate for the parameters (e.g. estimate the initial
slope of a Michaelis-Menten function from the first 10% of the data and the
asymptote from the last 10%, or estimate the parameters by linear regression
based on a linearizing transform). R includes some “self-starting” functions
that do these steps automatically. The functions SSlogis and SSmicmen, for
example, provide self-starting logistic and Michaelis-Menten functions. To fit a
self-starting Michaelis-Menten model to the tadpole data with asymptote a and
half-maximum b:

> data(ReedfrogFuncresp)

> nls(Killed ~ SSmicmen(Initial, a, b), data = ReedfrogFuncresp)

Use apropos("SS",ignore.case=FALSE) to see a more complete list of self-
starting models: the names are cryptic, so check the help system to see what
each model is.

Further reading: Bates and Watts (1988).

4 Non-normal errors: generalized linear models

Generalized linear models (not to be confused with general linear models) allow
you to analyze models that have a particular kind of nonlinearity and particular
kinds of non-normally distributed (but still independent) errors.

Generalized linear models allow any nonlinear relationship that has a lin-
earizing transformation. That is, if y = f(x), there must be some function
F such that F (f(x)) is a linear function of x. The procedure for fitting gen-
eralized linear models uses the function F fit the data on the linearized scale
(F (y) = F (f(x))) while calculating the expected variance on the untransformed
scale in order to correct for the distortions that linearization would otherwise
induce. In generalized-linear-model jargon F is called the link function. For
example, when f is the logistic curve (y = f(x) = ex/(1+ex)), the link function
F is a the logit function (F (y) = log(y/(1 − y)) = x: see p. ?? for the proof
that the logit is really the inverse of the logistic). R knows about a variety of
link functions including the log (x = log(y), which linearizes y = ex); square-
root (x =

√
y, which linearizes y = x2); and inverse (x = 1/y, which linearizes

y = 1/x): see ?family for more possibilities.
The class of non-normal errors that generalized linear models can handle is

called the exponential family. It includes Poisson, binomial, gamma and normal

12

●

●●

●

● ●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●●
●

●
●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●
●●●●

●
●

●

●

●
●

●

●
● ●

●

●

●

● ●

●

●

●
● ●●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

● ●

●

●●●●
●●

●

●

●

●

●

●

●
●

●

●

●● ●
●

4 6 8 10 12 14 16

0

50

100

150

200

250

300

DBH

C
on

es

power/normal
power/LN

Figure 4: A nonlinear least-squares fit to the fir fecundity data
(nls(TOTCONES~a*DBH^b,start=list(a=0.1,b=2.7,data=firdata))); the
linear model fit to the log-log data (equivalent to a power-law fit with lognormal
errors) is also shown.

13

distributions, but not negative binomial or beta-binomial distributions. Each
distribution has a standard link function: for example, the log link is standard
for a Poisson and a logit link is standard for a binomial distribution. The
standard link functions make sense for typical applications: for example, the
logit transformation turns unconstrained values into values between 0 and 1,
which are appropriate as probabilities in a binomial model. However, R allows
you some flexibility to change these associations for specific problems.

GLMs are fit by a process called iteratively reweighted least squares, which
overcomes the basic problem that transforming the data to make them linear
also changes the variance. The key is that given an estimate of the regression
parameters, and knowing the relationship between the variance and the mean
for a particular distribution, one can calculate the variance associated with each
point. With this variance estimate, one re-estimates the regression parameters
weighting each data point by the inverse of its variance; the new estimate gives
new estimates of the variance; and so on. This procedure quickly and reliably
fits the models, without the user needing to specify starting points.

Generalized linear models combine a range of non-normal error distributions
with the ability to work with some reasonable nonlinear functions. They also
use the same simple model specification framework as lm, allowing us to explore
combinations of factors, covariates, and interactions among variables. GLMs
include logistic and binomial regression and log-linear models. They use ter-
minology that should now be familiar to you; they estimate log-likelihoods and
test the differences between models using the likelihood ratio test.

The glm function implements generalized linear models in R. By far the
two most common GLMs are Poisson regression, for count data, and logistic
regression, for survival/failure data.

� Poisson regression: log link, Poisson error (Y ∼ Poisson(aebx));

> glm1 = glm(y ~ x, family = "poisson")

The equivalent likelihood function is:

> poisregfun = function(a, b) {

+ Y.pred = exp(a + b * x)

+ -sum(dpois(y, lambda = Y.pred, log = TRUE))

+ }

� Logistic regression: logit link, binomial error (Y ∼ Binom(p = exp(a +
bx)/(1 + exp(a + bx)), N)):

> glm2 = glm(cbind(y, N - y) ~ x, family = "binomial")

or

> logistregfun = function(a, b) {

+ p.pred = exp(a + b * x)/(1 + exp(a + b * x))

+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))

+ }

14

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

Initial density

F
ra

ct
io

n
ki

lle
d

logistic regression
log−binomial model

Figure 5: Logistic (binomial) regression and log-binomial regression of fraction
of tadpoles killed as a function of tadpole density. Logistic regression:
glm(cbind(Killed,Initial-Killed)~Initial,
data=ReedfrogFuncresp,family="binomial")
Log-binomial regression:
glm(...,family=binomial(link="log"),...)

15

(you could also say p.pred=plogis(a+b*x) in the first line of logistregfun).

Another useful application of GLMs is fitting models of exponentially de-
creasing survival, Y ∼ Binom(p = exp(a+bx), N). Strong et al. (1999) modeled
the survival probability of ghost moth caterpillars as a decreasing function of
density (and as a function of the presence or absence of entomopathogenic ne-
matodes); Tiwari et al. (2006) modeled the probability that nesting sea turtles
would not dig up an existing nest as a decreasing function of nest density. You
can fit such a model this way:

> glm3 = glm(cbind(y, N - y) ~ x, family = binomial(link = "log"))

Use family=binomial(link="log") instead of family="binomial" to specify
the log instead of the logit link function. The equivalent negative log-likelihood
function is:

> logregfun = function(a, b) {

+ p.pred = exp(a + b * x)

+ -sum(dbinom(y, size = N, prob = p.pred, log = TRUE))

+ }

You can fit Vonesh’s tadpole mortality data with either a logistic or a
log-binomial model (Figure 5), but the fact that expected survival decreases
exponentially at high densities in both models causes problems of interpre-
tation. If the probability of survival declines exponentially with density —
which is generally true for the log-binomial model and approximately true
at high densities for the logistic — then the expected number. surviving is
p(x) · x = e−(a+bx)x = cxe−bx. This is a Ricker function, which decreases to
zero at high density rather than reaching an asymptote. The standard type II
functional response model uses p(x) = A/(1 + Ahx), which has a weaker de-
pendence on x (exponentials are always stronger than powers of x), and so the
limit of p(x)x as x becomes large is 1/h. Thus, the GLM while convenient is
not really appropriate in this case.

After you fit a GLM, you can use the same generic set of modeling functions
— summary, coef, confint, anova, and plot — to examine the parameters,
test hypotheses, and plot residuals. anova(glm1,glm2,...) does an analysis
of deviance (likelihood ratio tests) on a nested sequence of models. As with
lm, the default parameters represent (1) the intercept (the baseline value of the
first treatment), (2) differences in the intercept between the first and subsequent
treatments, (3) the slope(s) with respect to the covariate(s) for the first group,
or (4) differences in the slope between the first and subsequent treatments.
However, all of the parameters are given on the scale of the link function (e.g.
log scale for Poisson models, logit scale for binomial models); you interpret
them, you need to transform them with the inverse link function (exponential
for Poisson, logistic (=plogis) for binomial). For example, the coefficients of the
logistic regression shown in Figure 5 are intercept=-0.095 slope=-0.0084. To find
the probability of mortality at a tadpole density of 60, calculate exp(−0.095 +
−0.0084 · 60)/(1 + exp(−0.095 +−0.0084 · 60) = 0.355.

16

Further reading: McCullagh and Nelder (1989); Dobson (1990); Hastie
and Pregibon (1992); Lindsey (1997). R-specific: Crawley (2002); Faraway
(2006).

4.1 Models for overdispersion

To go beyond the exponential family of distributions (normal, binomial, Poisson,
gamma) you may well need to roll your own ML estimator. R has two built-in
possibilities for the very common case of discrete data with overdispersion, i.e.
more variance than would be expected from the standard (Poisson and binomial)
models for discrete data.

4.1.1 Quasilikelihood

Quasilikelihood models “inflate” the expected variance of models to account for
overdispersion (McCullagh and Nelder, 1989). For example, the expected vari-
ance of a binomial distribution with N samples and probability p is Np(1− p).
The quasibinomial model adds another parameter, φ, which inflates the vari-
ance to φNp(1− p). The overdispersion parameter φ (Burnham and Anderson
(2004) call it ĉ) is usually greater than 1 – we usually find more variance than
expected, rather than less. Quasi-Poisson models are defined similarly, with
variance equal to φλ. This approach is called quasi likelihood because we don’t
specify a real likelihood model with a probability distribution for the data. We
just specify the relationship between the mean and the variance. Nevertheless,
the quasilikelihood approach works well in practice. R uses the family function
to specify quasilikelihood models.

Because the quasilikelihood is not a true likelihood, we cannot use likelihood
ratio tests or other likelihood-based methods for inference, but the parameter
estimates and t-statistics generated by summary should still work. However,
various researchers have suggested that using an F test based on the ratio
of deviances should still be appropriate: use anova(...,test="F") (Crawley,
2002; Venables and Ripley, 2002). Burnham and Anderson (2004) suggest using
differences in “quasi-AIC” (qAIC) in this case, where the ∆qAIC is the ∆AIC
value divided by the estimate of φ.

Since the log is the default link function for the quasipoisson family, you
can fit a quasi-Poisson log-log model for fecundity as follows:

> glm(TOTCONES ~ log(DBH), data = firdata, family = "quasipoisson")

4.1.2 Negative binomial models

Although the exponential family does not strictly include the negative binomial
distribution, negative binomial models can be fit by a small extension of the
GLM approach, iteratively fitting the k (overdispersion) parameter and then
fitting the rest of the model with a fixed k parameter. The glm.nb function
in the MASS package fits linear negative binomial models, although they restrict

17

the model to a single k parameter for all groups. (Use $theta to extract the
estimate of the negative binomial k parameter from a negative binomial model.)

Because we can use a log link, it turns out that we can exactly replicate
our preferred log-likelihood model (cones ∼ NegBinom(a · DBHb, k)) with the
following command:

> glm.nb(TOTCONES ~ log(DBH), data = firdata)

The only difference from our earlier model is that the estimated intercept pa-
rameter is log(a) rather than a.

18

R supplement

Here’s how to fit various linear models to the log-transformed fir data. Since the
data (TOTCONES) contain some zero values, taking logarithms would give us neg-
ative infinite values. We either need to drop these values (subset=TOTCONES>0)
or add an offset of 1, in order to avoid infinities. However, since there are few
zeros in the data (sum(firdata$TOTCONES==0) is 10 out of a total of 242 data
points) and the mean number of cones is large, this adjustment shouldn’t affect
the results much. If zeros are frequent so that such an adjustment would be
likely to affect your results significantly, or if the results vary depending on how
big an offset you add, consider a different model (Section 4).

> logcones = log(firdata$TOTCONES + 1)

> lm.0 = lm(logcones ~ 1, data = firdata)

> lm.d = lm(logcones ~ log(DBH), data = firdata)

> lm.w = lm(logcones ~ WAVE_NON, data = firdata)

> lm.dw = lm(logcones ~ log(DBH) + WAVE_NON, data = firdata)

> lm.dwi = lm(logcones ~ log(DBH) * WAVE_NON, data = firdata)

Since log(DBH) is a covariate and WAVE_NON is a factor, lm.d is a regression;
lm.w is a one-way ANOVA; and lm.dw and lm.dwi are ANCOVA models with
parallel and non-parallel slopes, respectively.

A few different ways to analyze the data:

> anova(lm.0, lm.d, lm.dw, lm.dwi)

Analysis of Variance Table

Model 1: logcones ~ 1
Model 2: logcones ~ log(DBH)
Model 3: logcones ~ log(DBH) + WAVE_NON
Model 4: logcones ~ log(DBH) * WAVE_NON
Res.Df RSS Df Sum of Sq F Pr(>F)

1 241 384.53
2 240 250.33 1 134.20 127.7512 <2e-16 ***
3 239 250.29 1 0.04 0.0393 0.8431
4 238 250.02 1 0.27 0.2535 0.6151

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> AIC(lm.0, lm.d, lm.w, lm.dw, lm.dwi)

df AIC
lm.0 2 802.8349
lm.d 3 700.9556
lm.w 3 786.5281
lm.dw 4 702.9157
lm.dwi 5 704.6580

19

(I left lm.w out of the anova statement because it and lm.d cannot be nested.)
anova compares the models sequentially, while AIC compares them simultane-
ously. AICtab in the emdbook offers a few more options such as sorting the table
in order of increasing AIC or computing AIC weights. Try coef, summary, and
confint on these models as well.

The full ANCOVA model fit via mle2:

> ancovafun = function(i1, i2, slope1, slope2, sigma) {

+ int = c(i1, i2)[WAVE_NON]

+ slope = c(slope1, slope2)[WAVE_NON]

+ Y.pred = int + slope * log(DBH)

+ -sum(dnorm(logcones, mean = Y.pred, sd = sigma,

+ log = TRUE))

+ }

> m1 = mle2(ancovafun, start = list(i1 = -2, i2 = -2,

+ slope1 = 2.5, slope2 = 2.5, sigma = 1), data = firdata)

> AIC(m1)

[1] 704.658

The maximum likelihood fit gives the same AIC as the lm fit. You can’t
always take this equality for granted, since different models that are formally
equivalent may include different constants in the likelihood, and different func-
tions may count the number of parameters differently.

As pointed out in the text, the models are parameterized differently:

> coef(lm.dwi)

(Intercept) log(DBH) WAVE_NONw
-2.3871702 2.7303449 0.5162954

log(DBH):WAVE_NONw
-0.2630837

> coef(m1)

i1 i2 slope1 slope2 sigma
-2.387134 -1.870762 2.730329 2.467205 1.016441

You can check that the answers are equivalent: for example, the slope of the
wave population is slope2=2.467= logDBH+logDBH:WAVE_NONw.

In order to do the full model comparison with mle2, you have to construct
a series of nested models (analogous to lm.dw, lm.d, lm.w, lm.0). This is
a bit tedious — one reason for using built-in functions where possible. You
may want to read about the model.matrix function, which can simplify model
construction. model.matrix uses a user-specified formula to construct a design
matrix that, when multiplied by a vector of parameters, gives the expected value
of each data point. By default the design matrix uses parameters that represent
baseline levels and differences among groups, as in lm and glm. mle2’s formula
interface uses model.matrix internally, so that (for example) you can easily fit
the full ANCOVA model by specifying

20

> mle2(log(TOTCONES + 1) ~ dnorm(logDBH * WAVE_NON),

+ data = firdata, start = ...)

References

Bates, D. M. and D. G. Watts. 1988. Nonlinear regression analysis and its
applications. Wiley, New York.

Burnham, K. P. and D. R. Anderson. 2004. Multimodel inference: understand-
ing AIC and BIC in model selection. Sociological Methods & Research 33:261–
304.

Chambers, J. M. and T. Hastie, editors. 1992. Statistical Models in S.
Wadsworth & Brooks/Cole.

Crawley, M. J. 2002. Statistical Computing: An Introduction to Data Analysis
using S-PLUS. John Wiley & Sons.

—. 2005. Statistics: An Introduction Using R. Wiley.

Dalgaard, P. 2003. Introductory statistics in R. Springer, New York.

Dobson, A. J. 1990. An Introduction to Generalized Linear Models. Chapman
and Hall, London.

Faraway, J. J. 2006. Extending Linear Models with R: Generalized Linear, Mixed
Effects and Nonparametric Regression Models. Chapman & Hall/CRC.

Hastie, T. J. and D. Pregibon. 1992. Generalized linear models. chapter 6. in
J. M. Chambers and T. J. Hastie, editors. Statistical Models in S. Wadsworth
& Brooks/Cole.

Lindsey, J. K. 1997. Applying generalized linear models. Springer, New York.

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. Chapman
and Hall, London.

Strong, D. R., A. V. Whipple, A. L. Child, and B. Dennis. 1999. Model selec-
tion for a subterranean trophic cascade: root-feeding caterpillars and ento-
mopathogenic nematodes. Ecology 80:2750–2761.

Tiwari, M., K. A. Bjorndal, A. B. Bolten, and B. M. Bolker. 2006. Evaluation
of density-dependent processes and green turtle Chelonia mydas production
at Tortuguero, Costa Rica. Marine Ecological Progress Series 326:283–293.

Venables and Ripley. 2002. Modern Applied Statistics with S. Springer, New
York. 4th edition.

Venables, W. N. 1998. Exegeses on linear models. 1998 International S-PLUS
User Conference. Washington, DC. URL http://www.stats.ox.ac.uk/pub/
MASS3/Exegeses.pdf.

21

Verzani, J. 2005. Using R for Introductory Statistics. Chapman & Hall/CRC,
Boca Raton, FL.

Whittingham, M. J., P. A. Stephens, R. B. Bradbury, and R. P. Freckleton. 2006.
Why do we still use stepwise modelling in ecology and behaviour? Journal of
Animal Ecology 75:1182–1189.

22

