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This lab will cover many if not all of the details you actually need to know
about R to read in data and produce the figures shown in Chapter 2, and more.
The exercises, which will be considerably more difficult than those in Lab 1,
will typically involve variations on the figures shown in the text. You will work
through reading in the different data sets and constructing the figures shown,
or variants of them. It would be even better to work through reading in and
making exploratory plots of your own data.

1 Reading data

Find the file called seedpred.dat: it’s in the right format (plain text, long
format), so you can just read it in with

> data = read.table("seedpred.dat", header = TRUE)

(remember not to copy the > if you are cutting and pasting from this document).
Add the variable available to the data frame by combining taken and

remaining (using the $ symbol):

> data$available = data$taken + data$remaining

Pitfall #1: finding your file If R responds to your read.table() or read.csv()
command with an error like

Error in file(file, "r") : unable to open connection
In addition: Warning message: cannot open file ’myfile.csv’

it means it can’t find your file, probably because it isn’t looking in the right place.
By default, R’s working directory is the directory in which the R program starts
up, which is (again by default) something like C:/Program Files/R/rw2010/bin.
(R uses / as the [operating-system-independent] separator between directories
in a file path.) The simplest way to change this for the duration of your R ses-
sion is to go to File/Change dir ..., click on the Browse button, and move to
your Desktop (or wherever your file is located). You can also use the setwd()
command to set the working directory (getwd() tells you what the current
working directory is). While you could just throw everything on your desktop,
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it’s good to get in the habit of setting up a separate working directory for differ-
ent projects, so that your data files, metadata files, R script files, and so forth,
are all in the same place.

Depending on how you have gotten your data files onto your system (e.g. by
downloading them from the web), Windows will sometimes hide or otherwise
screw up the extension of your file (e.g. adding .txt to a file called mydata.dat).
R needs to know the full name of the file, including the extension.

Pitfall #2: checking number of fields The next potential problem is that
R needs every line of your data file to have the same number of fields (variables).
You may get an error like:

Error in read.table(file = file, header = header, sep = sep, quote = quote, :
more columns than column names

or

Error in scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
line 1 did not have 5 elements

If you need to check on the number of fields that R thinks you have on each
line, use

> count.fields("myfile.dat", sep = ",")

(you can omit the sep="," argument if you have whitespace- rather than comma-
delimited data). If you are checking a long data file you can try

> cf = count.fields("myfile.dat", sep = ",")

> which(cf != cf[1])

to get the line numbers with numbers of fields different from the first line.
By default R will try to fill in what it sees as missing fields with NA (“not

available”) values; this can be useful but can also hide errors. You can try

> mydata <- read.csv("myfile.dat", fill = FALSE)

to turn off this behavior; if you don’t have any missing fields at the end of lines
in your data this should work.

1.1 Checking data

Here’s the quickest way to check that all your variables have been classified
correctly:

> sapply(data, class)

Species tcum tint remaining taken available
"factor" "integer" "integer" "integer" "integer" "integer"
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(this applies the class() command, which identifies the type of a variable, to
each column in your data).

Non-numeric missing-variable strings (such as a star, *) will also make R
misclassify. Use na.strings in your read.table() command:

> mydata <- read.table("mydata.dat", na.strings = "*")

(you can specify more than one value with (e.g.) na.strings=c("*","***","bad","-9999")).
Exercise 1.1 : Try out head(), summary() and str() on data; make sure

you understand the results.

1.2 Reshaping data

It’s hard to give an example of reshaping the seed predation data set because we
have different numbers of observations for each species — thus, the data won’t
fit nicely into a rectangular format with (say) all observations from each species
on the same line. However, as in the chapter text I can just make up a data
frame and reshape it.

Here are the commands to generate the data frame I used as an example
in the text (I use LETTERS, a built-in vector of the capitalized letters of the
alphabet, and runif(), which picks a specified number of random numbers from
a uniform distribution between 0 and 1. The command round(x,3) rounds x
to 3 digits after the decimal place.):

> loc = factor(rep(LETTERS[1:3], 2))

> day = factor(rep(1:2, each = 3))

> val = round(runif(6), 3)

> d = data.frame(loc, day, val)

This data set is in long format. To go to wide format:

> d2 = reshape(d, direction = "wide", idvar = "loc", timevar = "day")

> d2

loc val.1 val.2
1 A 0.362 0.598
2 B 0.522 0.692
3 C 0.722 0.697

idvar="loc" specifies that loc is the identifier that should be used to assign
multiple values to the same row, and timevar="day" specifies which variable
can be lumped together on the same row.

To go back to long format:

> reshape(d2, direction = "long", varying = c("val.1", "val.2"),

+ timevar = "day", idvar = "loc")
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loc day val
A.1 A 1 0.362
B.1 B 1 0.522
C.1 C 1 0.722
A.2 A 2 0.598
B.2 B 2 0.692
C.2 C 2 0.697

varying specifies which variables are changing and need to be reshaped, and
timevar specifies the name of the variable to be (re)created to distinguish dif-
ferent samples in the same location.

Exercise 1.2 : unstack() works with a formula. Try unstack(d,val~day)
and unstack(d,val~loc) and figure out what’s going on.

1.3 Advanced data types

While you can usually get by coding data in not quite the right way — for
example, coding dates as numeric values or categorical variables as strings — R
tries to “do the right thing” with your data, and it is more likely to do the right
thing the more it knows about how your data are structured.

Strings instead of factors Sometimes R’s default of assigning factors is not
what you want: if your strings are unique identifiers (e.g. if you have a code for
observations that combines the date and location of sampling, and each location
combination is only sampled once on a given date) then R’s strategy of coding
unique levels as integers and then associating a label with integers will waste
space and add confusion. If all of your non-numeric variables should be treated
as character strings rather than factors, you can just specify as.is=TRUE; if
you want specific columns to be left “as is” you can specify them by number or
column name. For example, these two commands have the same result:

> data2 = read.table("seedpred.dat", header = TRUE, as.is = "Species")

> data2 = read.table("seedpred.dat", header = TRUE, as.is = 1)

> sapply(data2, class)

Species tcum tint remaining taken
"character" "integer" "integer" "integer" "integer"

(use c() — e.g. c("name1","name2") or c(1,3) — to specify more than
one column). You can also use the colClasses="character" argument to
read.table() to specify that a particular column should be converted to type
character —

> data2 = read.table("seedpred.dat", header = TRUE, colClasses = c("character",

+ rep("numeric", 4)))
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again has the same results as the commands above.
To convert factors back to strings after you have read them into R, use

as.character().

> data2 = read.table("seedpred.dat", header = TRUE)

> sapply(data2, class)

Species tcum tint remaining taken
"factor" "integer" "integer" "integer" "integer"

> data2$Species = as.character(data2$Species)

> sapply(data2, class)

Species tcum tint remaining taken
"character" "integer" "integer" "integer" "integer"

Factors instead of numeric values In contrast, sometimes you have nu-
meric labels for data that are really categorical values — for example if your
sites or species have integer codes (often data sets will have redundant informa-
tion in them, e.g. both a species name and a species code number). It’s best
to specify appropriate data types, so use colClasses to force R to treat the
data as a factor. For example, if we wanted to make tcum a factor instead of a
numeric variable:

> data2 = read.table("seedpred.dat", header = TRUE, colClasses = c(rep("factor",

+ 2), rep("numeric", 3)))

> sapply(data2, class)

Species tcum tint remaining taken
"factor" "factor" "numeric" "numeric" "numeric"

n.b.: by default, R sets the order of the factor levels alphabetically. You
can find out the levels and their order in a factor f with levels(f). If you
want your levels ordered in some other way (e.g. site names in order along
some transect), you need to specify this explicitly. Most confusingly, R will sort
strings in alphabetic order too, even if they represent numbers. This is OK:

> f = factor(1:10)

> levels(f)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

but this is not, since we explicitly tell R to treat the numbers as characters (this
can happen by accident in some contexts):
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> f = factor(as.character(1:10))

> levels(f)

[1] "1" "10" "2" "3" "4" "5" "6" "7" "8" "9"

In a list of numbers from 1 to 10, “10” comes after “1” but before “2” . . .
You can fix the levels by using the levels argument in factor() to tell R

explicitly what you want it to do, e.g.:

> f = factor(as.character(1:10), levels = 1:10)

> x = c("north", "middle", "south")

> f = factor(x, levels = c("far_north", "north", "middle", "south"))

so that the levels come out ordered geographically rather than alphabetically.
Sometimes your data contain a subset of integer values in a range, but you

want to make sure the levels of the factor you construct include all of the values
in the range, not just the ones in your data. Use levels again:

> f = factor(c(3, 3, 5, 6, 7, 8, 10), levels = 3:10)

Finally, you may want to get rid of levels that were included in a previous
factor but are no longer relevant:

> f = factor(c("a", "b", "c", "d"))

> f2 = f[1:2]

> levels(f2)

[1] "a" "b" "c" "d"

> f2 = factor(as.character(f2))

> levels(f2)

[1] "a" "b"

For more complicated operations with factor(), use the recode() function
in the car package.

Exercise 1.3 : Illustrate the effects of the levels command by plotting the
factor f=factor(c(3,3,5,6,7,8,10)) as created with and without intermedi-
ate levels. For an extra challenge, draw them as two side-by-side subplots. (Use
par(mfrow=c(1,1)) to restore a full plot window.)

Dates Dates and times can be tricky in R, but you can (and should) handle
your dates as type Date within R rather than messing around with Julian days
(i.e., days since the beginning of the year) or maintaining separate variables for
day/month/year.
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You can use colClasses="Date" within read.table() to read in dates di-
rectly from a file, but only if your dates are in four-digit-year/month/day (e.g.
2005/08/16 or 2005-08-16) format; otherwise R will either butcher your dates
or complain

Error in fromchar(x) : character string is not in a standard unambiguous format

If your dates are in another format in a single column, read them in as charac-
ter strings (colClasses="character" or using as.is) and then use as.Date(),
which uses a very flexible format argument to convert character formats to
dates:

> as.Date(c("1jan1960", "2jan1960", "31mar1960", "30jul1960"),

+ format = "%d%b%Y")

[1] "1960-01-01" "1960-01-02" "1960-03-31" "1960-07-30"

> as.Date(c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92"),

+ format = "%m/%d/%y")

[1] "1992-02-27" "1992-02-27" "1992-01-14" "1992-02-28" "1992-02-01"

The most useful format codes are %m for month number, %d for day of month,
%j% for Julian date (day of year), %y% for two-digit year (dangerous for dates
before 1970!) and %Y% for four-digit year; see ?strftime for many more details.

If you have your dates as separate (numeric) day, month, and year columns,
you actually have to squash them together into a character format (with paste(),
using sep="/" to specify that the values should be separated by a slash) and
then convert them to dates:

> year = c(2004, 2004, 2004, 2005)

> month = c(10, 11, 12, 1)

> day = c(20, 18, 28, 17)

> datestr = paste(year, month, day, sep = "/")

> date = as.Date(datestr)

> date

[1] "2004-10-20" "2004-11-18" "2004-12-28" "2005-01-17"

Although R prints the dates out so they look like a vector of character strings,
they are really dates: class(date) will give you the answer "Date".

Other traps:

• quotation marks in character variables: if you have character strings in
your data set with apostrophes or quotation marks embedded in them, you
have to get R to ignore them. I used a data set recently that contained
lines like this:
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Western Canyon|valley|Santa Cruz|313120N|1103145WO’Donnell Canyon

I used

> data = read.table("datafile", sep = "|", quote = "")

to tell R that | was the separator between fields and that it should ignore
all apostrophes/single quotations/double quotations in the data set and
just read them as part of a string.

1.4 Accessing data and extra packages

Data To access individual variables within your data set use mydata$varname
or mydata[,n] or mydata[,"varname"] where n is the column number and
varname is the variable name you want. You can also use attach(mydata) to
set things up so that you can refer to the variable names alone (e.g. varname
rather than mydata$varname). However, beware: if you then modify a variable,
you can end up with two copies of it: one (modified) is a local variable called
varname, the other (original) is a column in the data frame called varname: it’s
probably better not to attach a data set until after you’ve finished cleaning
and modifying it. Furthermore, if you have already created a variable called
varname, R will find it before it finds the version of varname that is part of your
data set. Attaching multiple copies of a data set is a good way to get confused:
try to remember to detach(mydata) when you’re done.

I’ll start by attaching the data set (so we can refer to Species instead of
data$Species and so on).

> attach(data)

To access data that are built in to R or included in an R package (which you
probably won’t need to do often), say

> data(dataset)

(data() by itself will list all available data sets.)

Packages The sizeplot() function I used for Figure 2 in the chapter re-
quires an add-on package (unfortunately the command for loading a package is
library()!). To use an additional package it must be (i) installed on your ma-
chine (with install.packages()) or through the menu system and (ii) loaded
in your current R session (with library()).

> install.packages("plotrix")

> library(plotrix)

You must both install and load a package before you can use or get help on
its functions, although help.search() will list functions in packages that are
installed but not yet loaded.
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2 Exploratory graphics

2.1 Bubble plot

> sizeplot(available, taken, xlab = "Available", ylab = "Taken")

will give you approximately the same basic graph shown in the chapter, although
I also played around with the x- and y-limits (using xlim and ylim) and the
axes. (The basic procedure for showing custom axes in R is to turn off the
default axes by specifying axes=FALSE and then to specify the axes one at a
time with the axis() command.)

I used

> t1 = table(available, taken)

to cross-tabulate the data, and then used the text() command to add the
numbers to the plot. There’s a little bit more trickery involved in putting the
numbers in the right place on the plot. row(x) gives a matrix with the row
numbers corresponding to the elements of x; col(x) does the same for column
numbers. Subtracting 1 (col(x)-1) accounts for the fact that columns 1 through
6 of our table refer to 0 through 5 seeds actually taken. When R plots, it simply
matches up each of the x values, each of the y values, and each of the text
values (which in this case are the numbers in the table) and plots them, even
though the numbers are arranged in matrices rather than vectors. I also limit
the plotting to positive values (using [t1>0]), although this is just cosmetic.

> r = row(t1)

> c = col(t1) - 1

> text(r[t1 > 0], c[t1 > 0], t1[t1 > 0])

is the final version of the commands.

2.2 Barplot

The command to produce the barplot (Figure 3) was:

> barplot(t(log10(t1 + 1)), beside = TRUE, legend = TRUE, xlab = "Available",

+ ylab = "log10(1+# observations)")

> op = par(xpd = TRUE)

> text(34.5, 3.05, "Number taken")

> par(op)

As mentioned in the text, log10(t1+1) finds log(x + 1), a reasonable transfor-
mation to compress the range of discrete data; t() transposes the table so we
can plot groups by number available. The beside=TRUE argument plots grouped
rather than stacked bars; legend=TRUE plots a legend; and xlab and ylab set
labels. The statement par(xpd=TRUE) allows text and lines to be plotted outside
the edge of the plot; the op=par(...) and par(op) are a way to set parameters
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and then restore the original settings (I could have called op anything I wanted,
but in this case it stands for old parameters).

Exercise 2.1 *: In general, you can specify plotting characters and colors
in parallel with your data, so that different points get plotted with different
plotting characters and colors. For example:

> x = 1:10

> col_vec = rep(1:2, length = 10)

> pch_vec = rep(1:2, each = 5)

> plot(x, col = col_vec, pch = pch_vec)

Take the old tabular data (t1), log(1+x)-transform them, and use as.numeric()
to drop all the information in tabular form and convert them to a numeric vec-
tor. Plot them (plotting the data numeric vector will generate a scatterplot of
values on the y-axis vs. observation number on the x-axis), color-coded accord-
ing to the number available (rows) and point-type-coded according the number
taken (columns: note, there is no color 0, so don’t subtract 1).

order(x) is a function that gives a vector of integers that will put x in
increasing order. For example, if I set x=c(3,1,2) then order(z) is 2 3 1:
putting the second element first, the third element second, and the first element
last will put the vector in increasing order. In contrast, rank(x) just gives the
ranks

y[order(x)] sorts y by the elements of x.
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Redo the plot with the data sorted in increasing order; make sure the colors
and point types match the data properly.

Does this way of plotting the data show anything the bubbleplot didn’t?
Can you think of other ways of plotting these data?

You can use barchart() in the lattice package to produce these graphics,
although it seems impossible to turn the graph so the bars are vertical. Try the
following (stack=FALSE is equivalent to beside=TRUE for barplot()):

> library(lattice)

> barchart(log10(1 + table(available, taken)), stack = FALSE, auto.key = TRUE)

More impressively, the lattice package can automatically plot a barplot of a
three-way cross-tabulation, in small multiples (I had to experiment a bit to get
the factors in the right order in the table() command): try

> barchart(log10(1 + table(available, Species, taken)), stack = FALSE,

+ auto.key = TRUE)

Exercise 2.2 *: Restricting your analysis to only the observations with 5
seeds available, create a barplot showing the distribution of number of seeds
taken broken down by species. Hints: you can create a new data set that
includes only the appropriate rows by using row indexing, then attach() it.

2.3 Barplot with error bars

Computing the fraction taken:

> frac_taken = taken/available

Computing the mean fraction taken for each number of seeds available, using
the tapply() function: tapply() (“table apply”, pronounced “t apply”), is
an extension of the table() function; it splits a specified vector into groups
according to the factors provided, then applies a function (e.g. mean() or sd())
to each group. This idea of applying a function to a set of objects is a very
general, very powerful idea in data manipulation with R; in due course we’ll learn
about apply() (apply a function to rows and columns of matrices), lapply()
(apply a function to lists), sapply() (apply a function to lists and simplify),
and mapply() (apply a function to multiple lists). For the present, though,

> mean_frac_by_avail = tapply(frac_taken, available, mean)

computes the mean of frac_taken for each group defined by a different value
of available (R automatically converts available into a factor temporarily
for this purpose).

If you want to compute the mean by group for more than one variable in a
data set, use aggregate().

We can also calculate the standard errors, σ/
√

n:
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> n_by_avail = table(available)

> se_by_avail = tapply(frac_taken, available, sd)/sqrt(n_by_avail)

I’ll actually use a variant of barplot(), barplot2() (from the gplots pack-
age, which you may need to install, along with the the gtools and gdata pack-
ages) to plot these values with standard errors. (I am mildly embarrassed that
R does not supply error-bar plotting as a built-in function, but you can use the
barplot2() in the gplots package or the plotCI() function (the gplots and
plotrix packages have slightly different versions).

> library(gplots)

> lower_lim = mean_frac_by_avail - se_by_avail

> upper_lim = mean_frac_by_avail + se_by_avail

> b = barplot2(mean_frac_by_avail, plot.ci = TRUE, ci.l = lower_lim,

+ ci.u = upper_lim, xlab = "Number available", ylab = "Mean number taken")

I specified that I wanted error bars plotted (plot.ci=TRUE) and the lower
(ci.l) and upper (ci.u) limits.

2.4 Histograms by species

All I had to do to get the lattice package to plot the histogram by species was:

> histogram(~frac_taken | Species, xlab = "Fraction taken")

It’s possible to do this with base graphics, too, but you have to rearrange
your data yourself: essentially, you have to split the data up by species, tell R
to break the plotting area up into subplots, and then tell R to draw a histogram
in each subplot.

• To reorganize the data appropriately and draw the plot, I first use split(),
which cuts a vector into a list according to the levels of a factor — in this
case giving us a list of the fraction-taken data separated by species:

> splitdat = split(frac_taken, Species)

• Next I use the par() command

> op = par(mfrow = c(3, 3), mar = c(2, 2, 1, 1))

to specify a 3 × 3 array of mini-plots (mfrow=c(3,3)) and to reduce the
margin spacing to 2 lines on the bottom and left sides and 1 line on the
top and right (mar=c(2,2,1,1)).

• Finally, I combine lapply(), which applies a command to each of the
elements in a list, with the hist() (histogram) command. You can specify
extra arguments in lapply() that will be passed along to the hist()
function — in this case they’re designed to strip out unnecessary detail
and make the subplots bigger.
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> h = lapply(splitdat, hist, xlab = "", ylab = "", main = "", col = "gray")

Assigning the answer to a variable stops R from printing the results, which
I don’t really want to see in this case.

• par(op) will restore the previous graphics parameters.

It’s a bit harder to get the species names plotted on the graphs: it is tech-
nically possible to use mapply() to do this, but then we’ve reinvented most of
the wheels used in the lattice version . . .

Plots in this section: scatterplot (plot() or xyplot()) bubble plot (sizeplot()),
barplot (barplot() or barchart() or barplot2()), histogram (hist() or histogram()).

Data manipulation: reshape(), stack()/unstack(), table(), split(),
lapply(), sapply()

3 Measles data

I’m going to clear the workspace (rm(list=ls()) lists all the objects in the
workspace with ls() and then uses rm() to remove them: you can also Clear
workspace from the menu) and read in the measles data, which are space-
separated and have a header:

> detach(data)

> rm(list = ls())

> data = read.table("ewcitmeas.dat", header = TRUE, na.strings = "*")

> attach(data)

year, mon, and day were read in as integers: I’ll create a date variable as
described above. For convenience, I’m also defining a variable with the city
names.

> date = as.Date(paste(year + 1900, mon, day, sep = "/"))

> city_names = colnames(data)[4:10]

Later on it will be useful to have the data in long format. It’s easiest
to do use stack() for this purpose (data.long = stack(data[,4:10])), but
that wouldn’t preserve the date information. As mentioned in the chapter,
reshape() is trickier but more flexible:

> data = cbind(data, date)

> data_long = reshape(data, direction = "long", varying = list(city_names),

+ v.name = "incidence", drop = c("day", "mon", "year"), times = factor(city_names),

+ timevar = "city")

3.1 Multiple-line plots

matplot() (matrix plot), which plots several different numeric variables on a
common vertical axis, is most useful when we have a wide format (otherwise
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it wouldn’t make sense to plot multiple columns on the same scale). I’ll plot
columns 4 through 10, which represent the incidence data, against the date,
and I’ll tell R to use lines (type="l"), and to plot all lines in different colors
with different line types (the colors aren’t very useful since I have set them to
different gray scales for printing purposes, but the example should at least give
you the concept). I also have to tell it not to put on any axes, because R won’t
automatically plot a date axis. Instead, I’ll use the axis() and axis.Date()
commands to add appropriate axes to the left (side=2) and bottom (side=1)
sides of the plot, and then use box() to draw a frame around the plot. I’ve used
abline() to add vertical lines (v=) to the plot every two years, and also on 1
January 1968 (approximately when mass vaccination against measles began in
the UK). You can also use abline() to add horizontal lines (h=); or lines with
intercepts (a=) and slopes (b=). (I use seq.Date(), a special command to create
a sequence of dates, to define the beginning of biennial periods.) legend() puts
a legend on the plot; I set the line width (lwd to 2 so you could actually see the
different colors. Here are the commands:

> matplot(date, data[, 4:10], type = "l", col = 1:7, lty = 1:7,

+ axes = FALSE, ylab = "Weekly incidence", xlab = "Date")

> axis(side = 2)

> axis.Date(side = 1, x = date)

> vacc.date = as.Date("1968/1/1")

> biennial = seq.Date(as.Date("1948/9/1"), as.Date("1986/9/1"),

+ by = "2 years")

> abline(v = biennial, col = "gray", lty = 2)

> abline(v = vacc.date, lty = 2, lwd = 2)

> legend(x = 1970, y = 5000, city_names, col = 1:7, lty = 1:7,

+ lwd = 2, bg = "white")

> box()

I could use the long-format data set and the lattice package to do this more
easily, although without the refinements of a date axis, using

> xyplot(incidence ~ date, groups = city, data = data_long, type = "l",

+ auto.key = TRUE)

To plot each city in its own subplot, use the formula incidence~date|city and
omit the groups argument.

You can also draw any of these plots with different kinds of symbols ("l"
for lines, "p" for points (default): see ?plot for other options).

3.2 Histogram and density plots

I’ll start by just collapsing all the incidence data into a single, logged, non-NA
vector (in this case I have to use c(as.matrix(x)) to collapse the data and
remove all of the data frame information):

> allvals = na.omit(c(as.matrix(data[, 4:10])))

> logvals = log10(1 + allvals)
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The histogram (hist() command is fairly easy: the only tricks are to leave
room for the other lines that will go on the plot by setting the y limits with
ylim, and to specify that we want the data plotted as relative frequencies, not
numbers of counts (freq=FALSE or prob=TRUE). This option tells R to divide by
total number of counts and then by the bin width, so that the area covered by
all the bars adds up to 1; this scaling makes the vertical scale of the histogram
compatible with a density plot, or among different histograms with different
number of counts or bin widths (?? include in chapter ??).

> hist(logvals, col = "gray", main = "", xlab = "Log weekly incidence",

+ ylab = "Density", freq = FALSE, ylim = c(0, 0.6))

Adding lines for the density is straightforward, since R knows what to do
with a density object — in general, the lines command just adds lines to a
plot.

> lines(density(logvals), lwd = 2)

> lines(density(logvals, adjust = 0.5), lwd = 2, lty = 2)

Adding the estimated normal distribution requires a couple of new functions:

• dnorm() computes the probability density function of the normal distri-
bution with a specified mean and standard deviation (much more on this
in Chapter 4).

• curve() is a magic function for drawing a theoretical curve (or, if add=TRUE,
adding one to an existing plot) . The magic part is that your curve must be
expressed in terms of x; curve(x^22*x)+ will work, but curve(y^22*y)+
won’t. You can specify other graphics parameters (line type (lty) and
width (lwd) in this case).

> curve(dnorm(x, mean = mean(logvals), sd = sd(logvals)), lty = 3,

+ lwd = 2, add = TRUE)

By now the legend() command should be reasonably self-explanatory:

> legend(x = 2.1, y = 0.62, legend = c("density, default", "density, adjust=0.5",

+ "normal"), lwd = 2, lty = c(1, 2, 3))

3.3 Scaling data

Scaling the incidence in each city by the population size, or by the mean or
maximum incidence in that city, begins to get us into some non-trivial data
manipulation. This process may actually be easier in the wide format. Several
useful commands:

• rowMeans(), rowSums(), colMeans(), and colSums() will compute the
means or sums of columns efficiently. In this case we would do something
like colMeans(data[,4:10]) to get the mean incidence for each city.
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• apply() is the more general command for running some command on each
of a set of rows or columns. When you look at the help for apply() you’ll
see an argument called MARGIN, which specifies whether you want to oper-
ate on rows (1) or columns (2). For example, apply(data[,4:10],1,mean)
is the equivalent of rowMeans(data[,4:10]), but we can also easily say
(e.g.) apply(data[,4:10],1,max) to get the maxima instead. Later,
when you’ve gotten practice defining your own functions, you can apply
any function — not just R’s built-in functions.

• scale() is a function for subtracting and dividing specified amounts out of
the columns of a matrix. It is fairly flexible: scale(x,center=TRUE,scale=TRUE)
will center by subtracting the means and then scale by dividing by the
standard errors of the columns. Fairly obviously, setting either to FALSE
will turn off that part of the operation. You can also specify a vector
for either center or scale, in which case scale() will subtract or divide
the columns by those vectors instead. Exercise 3.1 *: figure out how to
use apply() and scale() to scale all columns so they have a minimum
of 0 and a maximum of 1 (hint: subtract the minimum and divide by
(max-min)).

• sweep() is more general than scale; it will operate on either rows or
columns (depending on the MARGIN argument), and it will use any operator
(typically "-", "/", etc. — arithmetic symbols must be in quotes) rather
than just subtracting or dividing. For example, sweep(x,1,rowSums(x),"/")
will divide the rows (1) of x by their sums.
Exercise 3.2 : figure out how to use a call to sweep() to do the same
thing as scale(x,center=TRUE,scale=FALSE).

So, if I want to divide each city’s incidence by its mean (allowing for adding 1)
and take logs:

> logscaledat = as.data.frame(log10(scale(1 + data[, 4:10], center = FALSE,

+ scale = colMeans(1 + data[, 4:10], na.rm = TRUE))))

You can also scale the data while they are in long format, but you have to
think about it differently. Use tapply() to compute the mean incidence in each
city, ignoring NA values, and adding 1 to all values:

> city_means <- tapply(1 + data_long$incidence, data_long$city,

+ mean, na.rm = TRUE)

Now you can use vector indexing to scale each incidence value by the appropriate
mean value — city_means[data_long$city] does the trick. (Why?)

> scdat <- (1 + data_long$incidence)/city_means[data_long$city]

Exercise 3.3 *: figure out how to scale the long-format data to minima of
zero and maxima of 1.
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Plotting Here are (approximately) the commands I used to plot the scaled
data.

First, I ask R to set up the graph by plotting the first column, but without
actually putting any lines on the plot (type="n"):

> plot(density(na.omit(logscaledat[, 1])), type = "n", main = "",

+ xlab = "Log scaled incidence")

Now I do something tricky. I define a temporary function with two arguments
— the data and a number specifying the column and line types. This function
doesn’t do anything at all until I call it with a specific data vector and number:
x and i are just place-holders.

> tmpfun = function(x, i) {

+ lines(density(na.omit(x)), lwd = 2, col = i, lty = i)

+ }

Now I use the mapply() command (multiple apply) to run the tmpfun()
function for all the columns in logscaledat, with different colors and line types.
This takes advantage of the fact that I have used as.data.frame() above to
make logscaledat back into a data frame, so that its columns can be treated
as elements of a list:

> m = mapply(tmpfun, logscaledat, 1:7)

Finally, I’ll add a legend.

> legend(-2.6, 0.65, city_names, lwd = 2, col = 1:7, lty = 1:7)

Once again, for this relatively simple case, I can get the lattice package to
do all of this for me magically:

> densityplot(~log10(scdat), groups = data_long$city, plot.points = FALSE,

+ auto.key = TRUE, lty = 1:7)

(if plot.points=TRUE, as is the default, the plot will include all of the actual
data values plotted as points along the zero line — this is often useful but in
this case just turns into a blob).

However, it’s really useful to know some of the ins and outs for times when
lattice won’t do want you want — in those cases it’s often easier to do it yourself
with the base package than to figure out how to get lattice to do it.

3.4 Box-and-whisker and violin plots

By this time, box-and-whisker and violin plots will (I hope) seem easy:
Since the labels get a little crowded (R is not really sophisticated about

dealing with axis labels — crowded labels just disappear — although you can try
the stagger.labs() command from the plotrix package), I’ll use the substr()
(substring) command to abbreviate each city’s name to its first three letters.
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> city_abbr = substr(city_names, 1, 3)

The boxplot() command uses a formula — the variable before the ~ is the
data and the variable after it is the factor to use to split the data up.

> boxplot(log10(1 + incidence) ~ city, data = data_long, ylab = "Log(incidence+1)",

+ names = city_abbr)

Of course, I can do this with the lattice package as well. If I want violin plots
instead of boxplots, I specify panel=panel.violin. The scales=list(abbreviate=TRUE)
tells the lattice package to make up its own abbreviations (the scale() com-
mand is a general-purpose list of options for the subplot formats).

> bwplot(log10(1 + incidence) ~ city, data = data_long, panel = panel.violin,

+ horizontal = FALSE, scales = list(abbreviate = TRUE))

Plots in this section: multiple-groups plot (matplot() or xyplot(...,groups),
box-and-whisker plot (boxplot() or bwplot()), density plot (plot(density())
or lines(density()) or densityplot()), violin plot (panel.violin())

Data manipulation: row/colMeans(), row/colSums(), sweep(), scale(),
apply(), mapply()

4 Continuous data

First let’s make sure the earthquake data are accessible:

> data(quakes)

Luckily, most of the plots I drew in this section are fairly automatic. To
draw a scatterplot matrix, just use pairs() (base) or splom() (lattice):

> pairs(quakes, pch = ".")

> splom(quakes, pch = ".")

(pch="." marks the data with a single-pixel point, which is handy if you are
fortunate enough to have a really big data set).

Similarly, the conditioning plot is only available through lattice:

> coplot(lat ~ long | depth, data = quakes)

although coplot() has many other options for changing the number of over-
lapping categories (or shingles the data are divided into; conditioning on more
than one variable (use var1*var2 after the vertical bar); colors, line types, etc.
etc..

To draw the last figure (various lines plotted against data, I first took a
subset of the data with longitude greater than 175:

> tmpdat = quakes[quakes$long > 175, ]

Then I generated a basic plot of depth vs. longitude:

18



> plot(tmpdat$long, tmpdat$depth, xlab = "Longitude", ylab = "Depth",

+ col = "darkgray", pch = ".")

R knows what to do (plot() or lines) with a lowess() fit. In this case I
used the default smoothing parameter (f=2/3), but I could have used a smaller
value to get a wigglier line.

> lines(lowess(tmpdat$long, tmpdat$depth), lwd = 2)

R also knows what to do with smooth.spline objects: in this case I plot
two lines, one with less smoothing (df=4):

> lines(smooth.spline(tmpdat$long, tmpdat$depth), lwd = 2, lty = 2)

> lines(smooth.spline(tmpdat$long, tmpdat$depth, df = 4), lwd = 2,

+ lty = 3)

Adding a line based on a linear regression fit is easy — we did that in Lab 1:

> abline(lm(depth ~ long, data = tmpdat), lwd = 2, col = "gray")

Finally, I do something slightly more complicated — plot the results of a
quadratic regression. The regression itself is easy, except that I have to specify
longitude-squared as I(long^2) so that R knows I mean to raise longitude to
the second power rather than exploring a statistical interaction:

> quad.lm = lm(depth ~ long + I(long^2), data = tmpdat)

To calculate predicted depth values across the range of longitudes, I have
to set up a longitude vector and then use predict() to generate predictions at
these values:

> lvec = seq(176, 188, length = 100)

> quadvals = predict(quad.lm, newdata = data.frame(long = lvec))

Now I can just use lines() to add these values to the graph, and add a
legend:

> lines(lvec, quadvals, lwd = 2, lty = 2, col = "gray")

> legend(183.2, 690, c("lowess", "spline (default)", "spline (df=4)",

+ "regression", "quad. regression"), lwd = 2, lty = c(1, 2,

+ 3, 1, 2), col = c(rep("black", 3), rep("gray", 2)))

Plots in this section: scatterplot matrix (pairs(), splom()), condition-
ing plot (coplot()), spline (smooth.spline() and locally weighted (lowess())
smoothing

Exercise 4.1 *: generate three new plots based on one of the data sets in
this lab, or on your own data.
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