
Lab 2: solutions

c©2005 Ben Bolker

September 14, 2005

Exercise 0.1 : nothing to do
Exercise 0.2 :
Re-create the data frame to play with:

> loc = factor(rep(LETTERS[1:3], 2))

> day = factor(rep(1:2, each = 3))

> set.seed(1001)

> val = round(runif(6), 3)

> d = data.frame(loc, day, val)

> d

loc day val
1 A 1 0.986
2 B 1 0.413
3 C 1 0.430
4 A 2 0.419
5 B 2 0.427
6 C 2 0.888

Separate data with one row for each location and one column for each day:

> unstack(d, val ~ day)

X1 X2
1 0.986 0.419
2 0.413 0.427
3 0.430 0.888

Because R doesn’t allow numbers alone as column names, it puts an X in front
of the values of day to get the column names X1 and X2.

Separate data with one row for each day and one column for each location:

> unstack(d, val ~ loc)

1

A B C
1 0.986 0.413 0.430
2 0.419 0.427 0.888

While less complicated than reshape(), stack() and unstack() don’t pre-
serve information very well: for example, the row names in the first example are
not set to A, B, C.

Exercise 0.3 :
Use levels=3:10 to make sure that all values between 3 and 10, even those

not represented in the data set, are included in the factor definition and thus
appear as zeros rather than being skipped when you plot the factor.

> f = factor(c(3, 3, 5, 6, 7, 8, 10))

> op = par(mfrow = c(1, 2))

> plot(f)

> f = factor(c(3, 3, 5, 6, 7, 8, 10), levels = 3:10)

> plot(f)

> par(op)

Exercise 0.4 :
Read in and recreate the seed predation data and table:

2

> data = read.table("seedpred.dat", header = TRUE)

> data$available = data$remaining + data$taken

> t1 = table(data$available, data$taken)

> v = as.numeric(log10(1 + t1))

> r = row(t1)

> c = col(t1)

Create versions of the variables that are sorted in order of increasing values
of v (v_sorted=sort(v) would have the same effect as the first line):

> v_sorted = v[order(v)]

> r_sorted = r[order(v)]

> c_sorted = c[order(v)]

Draw the plots:

> op = par(mfrow = c(2, 2), mgp = c(2, 1, 0), mar = c(4.2, 3, 1,

+ 1))

> plot(sort(v))

> plot(v, col = r, pch = c)

> plot(v_sorted, col = r_sorted, pch = c_sorted)

> legend(0, 2.8, pch = 1, col = 1:5, legend = 1:5)

> legend(6, 2.8, pch = 1:6, col = 1, legend = 0:5)

> text(0, 3, "available", adj = 0)

> text(8, 3, "taken", adj = 0)

> par(op)

3

The first plot shows the sorted data; the second plot shows the data coded
by color, and the third shows the data sorted and coded (thanks to Ian and Jeff
for the idea of the legends). I tweaked the margins and label spacing slightly
with mgp and mar in the par() command.

In fact, this plot probably doesn’t give a lot of insights that aren’t better
conveyed by the barplots or the bubble plot . . .

Exercise 0.5 :
Read in the data (again), take the subset with 5 seeds available, and generate

the table of (number taken) × (Species):

> data = read.table("seedpred.dat", header = TRUE)

> data2 = data

> data2$available = data2$remaining + data2$taken

> data2 = data2[data2$available == 5,]

> t1 = table(data2$taken, data2$Species)

Draw the plots:

> op = par(mfrow = c(2, 1), mgp = c(2.5, 1, 0), mar = c(4.1, 3.5,

+ 1.1, 1.1))

> logt1 = log10(1 + t1)

> barplot(logt1, beside = TRUE, ylab = "log10(1+taken)")

> library(gplots)

4

Loading required package: gdata
Loading required package: gtools

Attaching package: ’gplots’

The following object(s) are masked from package:stats :

lowess

> barplot2(t1 + 1, beside = TRUE, log = "y", ylab = "taken+1")

> par(op)

Once again, I’m using par() to tweak graphics options and squeeze the plots
a little closer together. barplot2() has a log option that lets us plot the values
on a logarithmic scale rather than converting to logs — but it hiccups if we have
0 values, so we still have to plot t1+1. (barplot2() also uses different default
bar colors.)

Exercise 0.6 :
Read in the measles data again:

> data = read.table("ewcitmeas.dat", header = TRUE, na.strings = "*")

Separate out the incidence data (columns 4 through 10), find the minima
and maxima by column, and compute the range:

5

> incidence = data[, 4:10]

> imin = apply(incidence, 2, min, na.rm = TRUE)

> imax = apply(incidence, 2, max, na.rm = TRUE)

> irange = imax - imin

Another way to get the range: apply the range() command, which will
return a matrix where the first row is the minima and the second row — then
subtract:

> iranges = apply(incidence, 2, range, na.rm = TRUE)

> iranges

London Bristol Liverpool Manchester Newcastle Birmingham Sheffield
[1,] 1 0 0 0 0 0 0
[2,] 5464 835 813 894 616 2336 804

> irange = iranges[2,] - iranges[1,]

Or you could define a function that computes the difference:

> rangediff = function(x) {

+ diff(range(x, na.rm = TRUE))

+ }

> irange = apply(incidence, 2, rangediff)

Now use scale() to subtract the minimum and divide by the range:

> scaled_incidence = scale(incidence, center = imin, scale = irange)

Checking:

> summary(scaled_incidence)

London Bristol Liverpool Manchester
Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
1st Qu.:0.01501 1st Qu.:0.00479 1st Qu.:0.01968 1st Qu.:0.01119
Median :0.03496 Median :0.01557 Median :0.05904 Median :0.03244
Mean :0.07665 Mean :0.05710 Mean :0.11312 Mean :0.08352
3rd Qu.:0.08915 3rd Qu.:0.04551 3rd Qu.:0.16697 3rd Qu.:0.09172
Max. :1.00000 Max. :1.00000 Max. :1.00000 Max. :1.00000
NA’s :1.00000 NA’s :1.00000 NA’s :2.00000
Newcastle Birmingham Sheffield

Min. :0.00000 Min. :0.000000 Min. :0.000000
1st Qu.:0.00487 1st Qu.:0.006849 1st Qu.:0.007463
Median :0.01299 Median :0.020120 Median :0.023632
Mean :0.05199 Mean :0.054013 Mean :0.078439
3rd Qu.:0.04383 3rd Qu.:0.048587 3rd Qu.:0.085821
Max. :1.00000 Max. :1.000000 Max. :1.000000

NA’s :1.000000

6

> apply(scaled_incidence, 2, range, na.rm = TRUE)

London Bristol Liverpool Manchester Newcastle Birmingham Sheffield
[1,] 0 0 0 0 0 0 0
[2,] 1 1 1 1 1 1 1

Exercise 0.7 :
You first need to calculate the column means so you can tell sweep() to

subtract them (which is what scale(x,center=TRUE,scale=FALSE) does):

> imean = colMeans(incidence, na.rm = TRUE)

> scaled_incidence = sweep(incidence, 2, imean, "-")

Check:

> c1 = colMeans(scaled_incidence, na.rm = TRUE)

> c1

London Bristol Liverpool Manchester Newcastle
4.789583e-12 -1.342629e-14 9.693277e-13 -9.520250e-13 -3.216842e-13
Birmingham Sheffield

1.045927e-12 -2.389592e-13

(these numbers are very close to zero . . . but not exactly equal, because of round-
off error)

> all(abs(c1) < 1e-11)

[1] TRUE

Exercise 0.8 *: Resurrect long-format data:

> date = as.Date(paste(data$year + 1900, data$mon, data$day, sep = "/"))

> city_names = colnames(data)[4:10]

> data = cbind(data, date)

> data_long = reshape(data, direction = "long", varying = list(city_names),

+ v.name = "incidence", drop = c("day", "mon", "year"), times = factor(city_names),

+ timevar = "city")

Calculate min, max, and range difference:

> city_max = tapply(data_long$incidence, data_long$city, max, na.rm = TRUE)

> city_min = tapply(data_long$incidence, data_long$city, min, na.rm = TRUE)

> range1 = city_max - city_min

> scdat1 = data_long$incidence - city_min[data_long$city]

> scdat = scdat1/range1[data_long$city]

7

Check:

> tapply(scdat, data_long$city, range, na.rm = TRUE)

$Birmingham
[1] 0 1

$Bristol
[1] 0 1

$Liverpool
[1] 0 1

$London
[1] 0 1

$Manchester
[1] 0 1

$Newcastle
[1] 0 1

$Sheffield
[1] 0 1

Exercise 0.9 *: ???

8

