Lab 3: solutions

© 2005 Ben Bolker

September 14, 2005

Exercise 0.1 *:

- Quadratic: easiest to construct in the form $\left(y=-(x-a)^{2}+b\right)$, where a is the location of the maximum and b is the height. (Negative sign in front of the quadratic term to make it curve downward.) Thus $a=5, b=1$.
- Ricker: if $y=a x e^{-b x}$, then (as discussed in the chapter) the location of the maximum is at $x=1 / b$ and the height is at $a /(b e)$. Thus $b=0.2$, $a=0.2 * e$.
- Triangle: let's say for example that the first segment is a line with intercept zero and slope $1 / 5$, and the second segment has equation $-1 *(x-5)+1$.

```
> curve(-(x - 5)^2 + 1, from = 0, to = 10, ylim = c(0, 1.1), ylab = "")
> curve(0.2 * exp(1) * x * exp(-0.2 * x), add = TRUE, lty = 2)
> curve(ifelse(x < 5, x/5, -(x - 5) + 1), add = TRUE, lty = 3)
```


What else did you try? (Sinusoid, Gaussian $\left(\exp \left(-x^{2}\right)\right)$, ?)

Exercise 0.2*:

$$
n(t)=\frac{K}{1+\left(\frac{K}{n(0)}-1\right) \exp (-r t)}
$$

Since $n(0) \ll 1$ (close to zero, or much less than 1), $K / n(0)-1 \approx K / n(0)$. So:

$$
n(t) \approx \frac{K}{1+\frac{K}{n(0)} \exp (-r t)}
$$

Provided t isn't too big, $K / n(0) \exp (-r t)$ is also a lot larger than 1 , so

$$
n(t) \approx \frac{K}{\frac{K}{n(0)} \exp (-r t)}
$$

Now multiply top and bottom by $n(0) / K \exp (r t)$ to get the answer.
Exercise 0.3*: When $b=1$, the Shepherd function reduces to $R N /(1+$ $a N$), which is a form of the M-M. You should try not to be confused by the fact that earlier in class we used the form $a x /(b+x)$ (asymptote $=a$, halfmaximum $=b$); this is just a different parameterization of the function. To be formal about it, we could multiply the numerator and denominator of $R N /(1+a N)$
by $1 / a$ to get our equation in the form $(R / a) N /((1 / a)+N)$, which matches what we had before with $a=R / a, b=1 / a$.

Near 0: we can do this either by evaluating the derivative $S^{\prime}(N)$ at $N=0$ (which gives R - see below) or by taking the limit of the whole function $S(N)$ as $N \rightarrow 0$, which gives $R N$ (because the $a N$ term in the denominator becomes small relative to 1), which is a line through the origin with slope R.

For large N : if $b=1$, we know already that this is Michaelis-Menten, and in this parameterization the asymptote is R / a (in the limit, the 1 in the denominator becomes irrelevant and the function becomes approximately $\frac{R N}{a N}=$ $\frac{R}{a}$). If b is not 1 (we'll assume it's greater than 0) we can start the same way $(1+a N \approx a N)$, but now we have $R N /(a N)^{b}$. Write this as $\frac{R}{a^{b}} N(1-b)$. If $b>1$, N is raised to a negative power and the function goes to zero as $N \rightarrow \infty$. If $b<1, N$ is raised to a positive power and $R(N)$ approaches infinity as $N \rightarrow \infty$ (it never levels off).

If $b=0$ then the function is just a straight line (no asymptote), with slope $R / 2$.

We don't really need to calculate the slope (we can figure out logically that it must be negative but decreasing in magnitude for large N and $b>1$; positive and decreasing to 0 when $b=1$; and positive and decreasing, but never reaching 0 , when $b>1$. Nevertheless, for thoroughness (writing this as a product and using the product, power, and chain rules):

$$
\begin{align*}
\left(R N(1+a N)^{-b}\right)^{\prime} & =R(1+a N)^{-b}+R N \cdot-b(1+a N)^{(-b-1)} a \tag{1}\\
& =R(1+a N)^{-b}-a b R N(1+a N)^{(-b-1)} \tag{2}\\
& =R(1+a N)^{-b-1}((1+a N)-a b N) \tag{3}\\
& =R(1+a N)^{-b-1}(1+a N(1-b)) \tag{4}
\end{align*}
$$

You could also do this by the quotient rule. The derivative of the numerator is R (easy); the derivative of the denominator is $b \cdot(1+a N)^{b-1} \cdot a=a b(1+a N)^{b-1}$ (power rule/chain rule).

$$
\begin{align*}
S(N)^{\prime} & =\frac{g(N) f^{\prime}(N)-f(N) g^{\prime}(N)}{(g(N))^{2}} \tag{5}\\
& =\frac{R(1+a N)^{b}-R N\left(a b(1+a N)^{b-1}\right)}{(1+a N)^{2 b}} \tag{6}\\
& =\frac{R(1+a N)^{b-1}(1+a N-a b N)}{(1+a N)^{2 b}} \tag{7}
\end{align*}
$$

You can also do this with R (using $D()$), but it won't simplify the expression for you:

```
> dS = D(expression(R*N/(1 + a * N)^b), "N")
> dS
```

```
R/(1 + a * N)^b - R * N * ((1 + a * N)^(b - 1) * (b * a))/((1 +
    a * N(^b)^2
```

If you want to know the value for a particular N, and parameter values, use eval() to evaluate the expression:

```
> eval(dS, list(a = 1, b = 2, R = 2, N = 2.5))
```

[1] -0.06997085

A function to evaluate the Shepherd (with default values $R=1, a=1$, $b=1$):

```
> shep = function(x, R=1, a = 1, b = 1) {
+ R*x/(1 + a * x)^b
+ }
```

Plotting:
> curve ($\operatorname{shep}(x, b=0), x l i m=c(0,10), b t y=" l ")$
$>\operatorname{curve}(\operatorname{shep}(x, b=0.5)$, add = TRUE, col = 2)
$>\operatorname{curve}(\operatorname{shep}(\mathrm{x}, \mathrm{b}=1)$, $\mathrm{add}=$ TRUE, col = 3)
> curve (shep $(x, b=1.5)$, add = TRUE, col = 4)
$>$ abline ($\mathrm{a}=0, \mathrm{~b}=1$, lty $=3$, col = 5)
$>$ abline (h = 1, col = 6, lty = 3)
> legend $(0,10, c(" b=0 ", " b=0.5 ", " b=1 ", " b=1.5 "$, "initial slope",
$+\quad$ "asymptote"), lty $=\operatorname{rep}(c(1,3), c(4,2)), \operatorname{col}=1: 6)$

extra credit: use the expression above for the derivative, and look just at the numerator. When does $(1+a N-a b N)=(1+a(1-b) N)=0$? If $b \leq 1$ the whole expression must always be positive ($a \geq 0, N \geq 0$). If $b>1$ then we can solve for N :

$$
\begin{align*}
1+a(1-b) N & =0 \tag{8}\\
a(b-1) N & =1 \tag{9}\\
N=1 /(a(b-1)) & \tag{10}
\end{align*}
$$

When $N=1 /(a(b-1))$, the value of the function is $R /\left(a \cdot(b-1) \cdot(1+1 /(b-1))^{b}\right)$ (for $b=2$ this simplifies to $R /(4 a)$).

```
> a = 1
>b = 2
>R=1
> curve(shep(x, R, a, b), bty = "l", ylim = c(0, 0.3), from = 0,
+ to = 5)
> abline(v = 1/(a * (b - 1)), lty = 2)
> abline(h = R/(a * (b - 1) * (1 + 1/(b - 1))^b), lty = 2)
```


There's actually another answer that we've missed by focusing on the numerator. As $N \rightarrow \infty$, the limit of the derivative is

$$
\frac{R(a N)^{b-1}(a(1-b) N)}{(a N)^{2 b}}=\frac{R(1-b)}{(a N)^{b}}
$$

$R>0,(1-b)<0$ for $b>1, a N>0$, so the whole thing is negative and decreasing in magnitude toward zero.

Exercise 0.4*: Holling type III functional response, standard parameterization: $f(x)=a x^{2} /\left(1+b x^{2}\right)$.

Asymptote: as $x \rightarrow \infty, b x^{2}+1 \approx b x^{2}$ and the function approaches a / b.
Half-maximum:

$$
\begin{aligned}
a x^{2} /\left(1+b x^{2}\right) & =(a / b) / 2 \\
a x^{2} & =(a / b) / 2\left(1+b x^{2}\right) \\
a x^{2} & =(a / b) / 2\left(1+b x^{2}\right) \\
(a-a / 2) x^{2} & =(a / b) / 2 \\
x^{2} & =(2 / a)(a / b) / 2=1 / b \\
x & =\sqrt{1 / b}
\end{aligned}
$$

So, if we have asymptote $A=a / b$ and half-max $H=\sqrt{1 / b}$, then $b=1 / H^{2}$ and $a=A b=A / H^{2}$.

So

$$
f(x)=\frac{\left(A / H^{2}\right) x^{2}}{1+x^{2} / H^{2}}
$$

which might be more simply written as $A(x / H)^{2} /\left(1+(x / H)^{2}\right)$.
Check with a plot:

```
> holling3 = function(x, A = 1, H = 1) {
+ A * (x/H)^2/(1 + (x/H)^2)
+ }
> curve(holling3(x, A = 2, H = 3), from = 0, to = 20, ylim = c(0,
+ 2.1))
> abline(h = c(1, 2), lty = 2)
> abline(v = 3, lty = 2)
```


Exercise 0.5 *:

Population-dynamic:

$$
n(t)=\frac{K}{1+\left(\frac{K}{n(0)}-1\right) \exp (-r t)}
$$

Asymptote K, initial exponential slope r, value at $t=0 n(0)$, derivative at $t=0$ $r n(0)(1-n(0) / K)$.

Statistical:

$$
f(x)=\frac{e^{a+b x}}{1+e^{a+b x}}
$$

Asymptote 1, value at $x=0 \exp (a) /(1+\exp (a))$.
The easiest way to figure this out is first to set $K=1$ and multiply the population-dynamic version by $\exp (r t) / \exp (r t)$:

$$
n(t)=\frac{\exp (r t)}{\exp (r t)+\left(\frac{1}{n(0)}-1\right)}
$$

and multiply the statistical version by $\exp (-a) / \exp (-a)$:

$$
f(x)=\frac{\exp (b x)}{\exp (-a)+\exp (b x)}
$$

This manipulation makes it clear (I hope) that $b=r, x=t$, and $(1 / n(0)-$ $1)=\exp (-a)$, or $a=-\log (1 / n(0)-1)$, or $n(0)=1 /(1+\exp (-a))$.

Set up parameters and equivalents:

```
> a = -5
> b = 2
>n0 = 1/(1 + exp(-a))
>n0
```

[1] 0.006692851
> $K=1$
$>r=b$

Draw the curves:

```
> curve(exp (a + b * x)/(1 + exp (a + b * x)), from = 0, to = 5,
+ ylab = "")
> curve(K/(1 + (K/n0 - 1) * exp(-r * x)), add = TRUE, type = "p")
> legend(0, 1, c("statistical", "pop-dyn"), pch = c(NA, 1), lty = c(1,
+ NA), merge = TRUE)
```


The merge=TRUE
statement in the legend() command makes R plot the point and line types in a single column.

