
Lab 4 solutions

c©2005 Ben Bolker

September 28, 2005

Exercise 1 :

> set.seed(1001)

> x = rbinom(n = 8, size = 10, prob = 0.2)

> sort(x)

[1] 0 0 2 2 2 2 4 5

Probabilities:

> dbinom(3:5, size = 10, prob = 0.2)

[1] 0.20132659 0.08808038 0.02642412

Cumulative probability:

> sum(dbinom(5:10, size = 10, prob = 0.2))

[1] 0.0327935

or

> 1 - pbinom(4, size = 10, prob = 0.2)

[1] 0.0327935

since pbinom(q) gives the probability of q or fewer successes. The best answer
is probably

> pbinom(4, size = 10, prob = 0.2, lower.tail = FALSE)

[1] 0.0327935

because it will be more accurate when the upper tail probabilities are very small.
Tail probabilities: calculating the quantiles with qbinom is just the start.

> qbinom(c(0.025, 0.975), prob = 0.2, size = 10)

1

[1] 0 5

The actual answer based on these results (0,5) is that we will not be able to
detect a deviation below 0.2 with only 10 samples; 6 or more successes would sug-
gest a significantly greater probability. (The probability of getting 5 or more suc-
cesses, or pbinom(4,size=10,prob=0.2, lower.tail=FALSE) is 0.032, which
does not attain the 2.5% level we are looking for in the upper tail. The probabil-
ity of 6 or more successes, pbinom(5,size=10,prob=0.2,lower.tail=FALSE),
is 0.006. We would need a sample size of 17 to be able to detect a probability
significantly below 0.2.)

Exercise 2 *:

> mu = 2

> k = 0.5

> x = rnbinom(10000, mu = mu, size = k)

> tx = table(factor(x, levels = 0:max(x)))/10000

> b1 = barplot(tx, ylab = "Probability")

> points(b1, dnbinom(0:max(x), mu = mu, size = k), pch = 1)

> mean(x)

[1] 1.9445

> var(x)

[1] 9.585978

> mu

[1] 2

> mu * (1 + mu/k)

[1] 10

> p = 1/(1 + mu/k)

> n = k

> points(b1, dnbinom(0:max(x), prob = p, size = k), pch = 2)

2

Here’s how I trans-
lated p to n: n = k and

µ = n(1− p)/p

µ/n = (1− p)/p

pµ/n = (1− p)
p(µ/n + 1) = 1

p = 1/(1 + µ/n) = 1/(1 + µ/k)

Exercise 3 : 1.5 is the mean number of counts per category. I suppose this
could be interesting if you were trying to describe an average sample size per
treatment, but otherwise it seems pretty much irrelevant.

Exercise 4 *: Preliminaries: set up parameters and derivative. Since we’re
only going to be changing the distribution and not the function, the second
derivative won’t change.

> a = 0.696

> b = 9.79

> d1 = D(expression(a * x/(1 + (a/b) * x)), "x")

> d2 = D(d1, "x")

> Smean = 24.5

> d2_num = eval(d2, list(a = 0.696, b = 9.79, x = Smean))

> mval = a * Smean/(1 + (a/b) * Smean)

3

Solving for the parameters of the gamma in terms of the moments (µ = as,
σ2 = as2) gives a = µ2/σ2, s = σ2/µ. I’m going to build this into my function
for computing the integral.

> tmpf = function(S, mean = Smean, var) {

+ dgamma(S, shape = mean^2/var, scale = var/mean) * a * S/(1 +

+ (a/b) * S)

+ }

Check: I should the get the same answer as before when σ2 = µ2 = 24.52

(which is true for the exponential distribution)

> integrate(tmpf, lower = 0, upper = Inf, var = Smean^2)

5.010691 with absolute error < 5.5e-05

Looks OK.

> Svar_vec = c(Smean^2, 100, 25, 1)

> dapprox = mval + 1/2 * Svar_vec * d2_num

> exact = c(integrate(tmpf, lower = 0, upper = Inf, var = Smean^2)$value,

+ integrate(tmpf, lower = 0, upper = Inf, var = 100)$value,

+ integrate(tmpf, lower = 0, upper = Inf, var = 25)$value,

+ integrate(tmpf, lower = 0, upper = Inf, var = 1)$value)

> merr = (mval - exact)/exact

> err = (dapprox - exact)/exact

> data.frame(exact = exact, mval = mval, delta = dapprox, mval.err = merr,

+ delta.err = err)

exact mval delta mval.err delta.err
1 5.010691 6.219323 4.778299 0.2412106838 -4.637931e-02
2 5.983161 6.219323 5.979253 0.0394711611 -6.532386e-04
3 6.159482 6.219323 6.159306 0.0097153649 -2.858574e-05
4 6.216923 6.219323 6.216923 0.0003861181 -3.878837e-08

A slicker way to get all the exact values is:

> tmpf2 = function(var) {

+ integrate(tmpf, lower = 0, upper = Inf, var = var)$value

+ }

> sapply(Svar_vec, tmpf2)

[1] 5.010691 5.983161 6.159482 6.216923

Exercise 5 *: Based just on the expressions in the normalization constant
(Γ(a + b)/(Γ(a)Γ(b)) for the standard parameterization, Γ(θ)/(Γ(θP)Γ(θ(1 −
P)))) gives θ = a + b, P = a/(a + b) or conversely a = θP , b = θ(1 − P). In
this parameterization, P is the mean proportion/ number of successes/etc. and
θ governs the width of the distribution.

4

> my_rbeta = function(n, theta, P) {

+ rbeta(n, shape1 = theta * P, shape2 = theta * (1 - P))

+ }

> my_dbeta = function(x, theta, P) {

+ dbeta(x, shape1 = theta * P, shape2 = theta * (1 - P))

+ }

> x = my_rbeta(1000, theta = 10, P = 0.2)

> hist(x, breaks = 50, prob = TRUE, col = "gray")

> curve(my_dbeta(x, theta = 10, P = 0.2), add = TRUE, lwd = 2)

> abline(v = 0.2, lwd = 2, lty = 3)

> abline(v = mean(x), lty = 2)

Exercise 6 :
Define the functions:

> dzinbinom = function(x, mu, size, zprob) {

+ ifelse(x == 0, zprob + (1 - zprob) * dnbinom(0, mu = mu,

+ size = size), (1 - zprob) * dnbinom(x, mu = mu, size = size))

+ }

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))

+ }

5

Plotting (adding a point to show the fraction of the zeros that come from
sampling zeros):

> mu = 4

> size = 0.5

> zprob = 0.2

> x = rzinbinom(10000, mu = mu, size = size, zprob = zprob)

> tx = table(factor(x, levels = 0:max(x)))/10000

> b1 = barplot(tx, ylab = "Probability", ylim = c(0, 0.5))

> points(b1, dzinbinom(0:max(x), mu = mu, size = size, zprob = zprob),

+ pch = 16)

> points(b1[1], dnbinom(0, mu = mu, size = size) * (1 - zprob),

+ pch = 16, col = 2)

The mean of the zero-inflated negative binomial is E[p ·0+(1−p) ·NegBin],
or (1− p times the mean of the negative binomial, or:

> mu * (1 - zprob)

[1] 3.2

> mean(x)

[1] 3.1405

6

Close enough . . .
Exercise 7 *:

> mu = 4

> k = 0.5

> x = rpois(10000, rgamma(10000, shape = k, scale = mu/k))

> plot(table(x)/10000)

> points(0:max(x), dnbinom(0:max(x), mu = mu, size = k), cex = 0.75)

Extra credit:
In order to get a lognormal with a specified mean and variance, need to

solve:

m = eµ+σ2/2

v = e2µ+σ2
·
(
eσ2

− 1
)

for µ and σ.

log(m) = µ + σ2/2
µ = log(m)− σ2/2

7

Now substitute this value in for µ in the second equation:

v = e2(log(m)−σ2/2)+σ2
·
(
eσ2

− 1
)

= e2 log(m) ·
(
eσ2

− 1
)

= (elog(m))2 ·
(
eσ2

− 1
)

= m2 ·
(
eσ2

− 1
)

v/m2 = eσ2
− 1

v/m2 + 1 = eσ2

σ2 = log(v/m2 + 1)

Test this: if we start with µ = 2.5, σ2 = 3 (values picked haphazardly to
test): we get

> mu = 2.5

> sigmasq = 3

> m = exp(mu + sigmasq/2)

> v = exp(2 * mu + sigmasq) * (exp(sigmasq) - 1)

> s2 = log(v/m^2 + 1)

> s2

[1] 3

> m2 = log(m) - s2/2

> m2

[1] 2.5

Appears to work. Want a log-normal distribution with the same mean and
variance as the gamma distribution that underlies the negative binomial with
µ = 4, k = 0.5. Since (shape) a = 0.5, (scale) s = 8, we have mean=as = 4 and
var=as2 = 32.

> nsim = 1e+05

> s3 = log(32/4^2 + 1)

> s3

[1] 1.098612

> m3 = log(4) - s3/2

> m3

[1] 0.8369882

8

> lnormvals = rlnorm(nsim, meanlog = m3, sdlog = sqrt(s3))

> mean(lnormvals)

[1] 3.950413

> var(lnormvals)

[1] 31.08178

> poislnormvals = rpois(nsim, lnormvals)

Redraw:

> plot(table(factor(poislnormvals, levels = 0:max(poislnormvals)))/nsim,

+ xlim = c(0, 50))

> points(0:50, dnbinom(0:50, mu = mu, size = k), cex = 0.75, col = 2)

The lognormal-
Poisson is actually (apparently) quite a different shape, despite having the same
mean and variance (this is more apparent on a log scale):

> x2 = as.numeric(table(factor(poislnormvals, levels = 0:max(poislnormvals))))/nsim

> plot(0:max(poislnormvals), x2, log = "y")

> points(0:50, dnbinom(0:50, mu = mu, size = k), cex = 0.75, col = 2)

9

Note that the variance of the compounded distribution is (approximately)
the variance of the underlying heterogeneity plus the heterogeneity of the Pois-
son distribution (which is equal to the mean of the Poisson).

> var(lnormvals)

[1] 31.08178

> var(poislnormvals)

[1] 34.65147

10

