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1 Static simulation models
1.1 Simple models
1.1.1 Linear model
The code for the static linear model should (I hope) seem pretty straightfor-
ward by now. I defined an x vector, evenly spaced between 1 and 20; set up
parameter values; calculated a deterministic value; and then added 20 random
normally distributed values to the deterministic values. I then plotted a scat-
terplot (plot()) and added both the theoretical value of the line (abline in its
slope-intercept form) and the fitted linear regression line (lm(y~x), as seen in
Lab 1).

Pick x values and set parameters:

> x = 1:20

> a = 2

> b = 1

Set random-number seed:

> set.seed(1001)

Calculate the deterministic expectation (y_det) and then pick 20 normally
distributed values with these means and σ = 2:

> y_det = a + b * x

> y = rnorm(20, mean = y_det, sd = 2)

Plot the simulated values along with the estimated linear regression line and
the theoretical values:

> plot(x, y)

> abline(lm(y ~ x), lty = 2)

> abline(a, b)
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(lines(x,y_det)
would have the same effect as the last statement).

For the hyperbolic simulation: Pick parameters:

> a = 6

> b = 1

Pick 50 x values uniformly distributed between 0 and 5:

> x = runif(50, min = 0, max = 5)

Calculate the deterministic expectation (y_det) and then pick 50 Poisson
values with these means:

> y_det = a/(b + x)

> y = rpois(50, y_det)

Plot the simulated values and add the theoretical curve (we’ll wait until
Chapter 6 to see how to estimate the curve):

> plot(x, y)

> curve(a/(b + x), add = TRUE)
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Exercise 1 : Simulate a set of 100 values with

• x values uniformly distributed between 0 and 10;

• mean y values following a Ricker model with a (initial slope) = 1 and b
(exponential decay parameter) = 0.5;

• gamma-distributed heterogeneity with shape parameter 3 and mean as
above

Plot the simulated values and superimpose the theoretical curve.

2 Intermediate simulations
2.1 Pigweed
> set.seed(1001)

> nparents = 50

> noffspr = 10

> L = 30

Pick locations of parents:

> parent_x = runif(nparents, min = 0, max = L)

> parent_y = runif(nparents, min = 0, max = L)

Pick angles and distances of offsets of offspring from parents:
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> angle = runif(nparents * noffspr, min = 0, max = 2 * pi)

> dist = rexp(nparents * noffspr, 0.5)

Calculate offspring locations (duplicating each parent’s position noffspr
times):

> offspr_x = rep(parent_x, each = noffspr) + cos(angle) * dist

> offspr_y = rep(parent_y, each = noffspr) + sin(angle) * dist

Calculate distances:

> dist = sqrt((outer(offspr_x, offspr_x, "-"))^2 + (outer(offspr_y,

+ offspr_y, "-"))^2)

Calculate neighborhood crowding matrix:

> nbrcrowd = apply(dist < 2, 1, sum) - 1

Plot offspring locations:

> plot(offspr_x, offspr_y, xlab = "", ylab = "")
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Plot distribution of neighborhood crowding:

> b1 = barplot(table(factor(nbrcrowd, levels = 0:max(nbrcrowd)))/length(nbrcrowd),

+ xlab = "Number of neighbors", ylab = "Proportion")
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Exercise 2 : superimpose a negative binomial distribution, with the pa-
rameters estimated by the method of moments, on the previous plot.

Calculate crowding index as 3 × neighborhood density:

> ci = nbrcrowd * 3

Take parameter of hyperbolic function and gamma shape parameter from
Pacala and Silander:

> M = 2.3

> alpha = 0.49

Expected value of biomass/α (note that Pacala and Silander estimate the
scale parameter as a function of crowding index, not the mean):

> mass_det = M/(1 + ci)

Pick random deviates:

> mass = rgamma(length(mass_det), scale = mass_det, shape = alpha)

Plot values and theoretical curve:

> plot(ci, mass, cex = 0.5, xlab = "Competition index", ylab = "Biomass (g)")

> curve(M/(1 + x) * alpha, add = TRUE, from = 0)
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Parameters for seed set model (slope and overdispersion):

> b = 271.6

> k = 0.569

Deterministic model and random values:

> seed_det = b * mass

> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Plot (1+seed set) on a double-logarithmic scale:

> plot(mass, 1 + seed, log = "xy", xlab = "Mass", ylab = "1+Seed set")

> curve(b * x + 1, add = TRUE)

6



●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

● ●

●●

●

●● ●●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

● ●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

1e−06 1e−04 1e−02 1e+00

1
5

10
50

50
0

Mass

1+
S

ee
d 

se
t

Extra stuff: superimpose the 95% confidence limits on the plot (use a loga-
rithmically spaced x vector to calculate them):

> logxvec = seq(-7, 0, length = 100)

> xvec = 10^logxvec

> lower = qnbinom(0.025, mu = b * xvec, size = k)

> upper = qnbinom(0.975, mu = b * xvec, size = k)

> lines(xvec, lower + 1, lty = 2)

> lines(xvec, upper + 1, lty = 2)

Exercise 3 : superimpose the median of the distribution on the above
graph as well: how does it differ from the mean?

Exercise 4 *: reproduce Figure 3.
or
Exercise 5 **: reproduce Figure 3, but with a beta-binomial error structure
instead of a binomial error structure. Use Morris’s parameterization of the
beta-binomial, with p equal to the hyperbolic per capita recruitment function
(R/S = a/(1 + (a/b)S) and θ = 10.
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3 Dynamic models
3.1 Discrete time
3.1.1 Linear growth model
Set up parameters: number of time steps, starting value, change in N per unit
time (slope), and standard deviations of process and measurement error:

> nt = 20

> N0 = 2

> dN = 1

> sd_process = sqrt(2)

> sd_obs = sqrt(2)

The first way to do this problem: marginally less efficient but perhaps easier
to understand, save both the true and the observed values.

Set aside space:

> Nobs = numeric(nt)

> N = numeric(nt)

Set initial values and pick observation error for first time step:

> N[1] = N0

> Nobs[1] = N[1] + rnorm(1, sd = sd_obs)

> for (i in 2:nt) {

+ N[i] = N[i - 1] + rnorm(1, mean = dN, sd = sd_process)

+ Nobs[i] = N[i] + rnorm(1, sd = sd_obs)

+ }

An alternative, marginally more efficient way to run this simulation is keep-
ing only the current value of N , as follows:

> cur_N = N0

> Nobs[1] = N[1] + rnorm(1, sd = sd_obs)

> for (i in 2:nt) {

+ cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)

+ Nobs[i] = cur_N + rnorm(1, sd = sd_obs)

+ }

If you plan to experiment a lot with such simulations with different param-
eters, it’s convenient to define a function that will do the whole thing in one
command (with default parameters so you can conveniently change one thing
at a time):

> linsim = function(nt = 20, N0 = 2, dN = 1, sd_process = sqrt(2),

+ sd_obs = sqrt(2)) {

+ cur_N = N0

+ Nobs[1] = N[1] + rnorm(1, sd = sd_obs)

+ for (i in 2:nt) {

8



+ cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)

+ Nobs[i] = cur_N + rnorm(1, sd = sd_obs)

+ }

+ return(Nobs)

+ }

(make sure that the last statement in your function is either a variable by itself,
or an explicit return() statement)

Run one simulation and fit a linear regression:

> N = linsim(sd_proc = 2)

> tvec = 1:20

> lm1 = lm(N ~ tvec)

Plot the points along with the linear regression line and the theoretical val-
ues:

> plot(tvec, N, type = "b")

> abline(lm1)

> abline(a = 2, b = 1, lty = 2)
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Running experiments with many linear simulations:

> nsim = 100

> Nmat = matrix(nrow = 20, ncol = 100)
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> for (i in 1:nsim) {

+ Nmat[, i] = linsim()

+ }

Find the 2.5% quantile:

> lower = apply(Nmat, 1, quantile, 0.025)

(You can find both the 2.5% and the 97.5% quantile at the same time with
t(apply(Nmat,1,quantile,c(0.025,0.975))).)

Exercise 6 *: Using (among other functions) matplot(), rowMeans(),
quantile() (maybe matlines()):

• run 1000 linear simulations with σobs = σproc = 2.

• Plot all of the individual lines, in gray

• Plot the mean at each time step, in black

• Plot the 95% quantiles at each time step, black, with dashed lines

Do the results match what you expect from the two extreme cases (measurement
error only/process error only) shown in the chapter?

3.1.2 Sink population growth model
Here’s another example, a model of a sink population that is maintained by
immigration: the number of individuals in the population surviving each year
is binomial, with a constant survival probability. A Poisson-distributed number
of immigrants arrives every year, with a constant rate.

> immigsim = function(nt = 20, N0 = 2, immig, surv) {

+ N = numeric(nt)

+ N[1] = N0

+ for (i in 2:nt) {

+ Nsurv = rbinom(1, size = N[i - 1], prob = surv)

+ N[i] = Nsurv + rpois(1, immig)

+ }

+ return(N)

+ }

Running 1000 simulations:

> nsim = 1000

> nt = 30

> p = 0.95

> N0 = 2

> immig = 10

> Nmat = matrix(ncol = nsim, nrow = nt)

> for (j in 1:nsim) {

+ Nmat[, j] = immigsim(nt = nt, N0 = N0, surv = p, immig = immig)

+ }

> tvec = 1:nt

10



It turns out that we can also derive the theoretical curve: E[Nt+1] = pNt+I,

N(t + 1) = pN(t) + I

N(t + 2) = p(pNt + I) + I = p2Nt + pI + I

. . .

So in general, by induction,

N(t + n) = pnNt +
n−1∑
j=0

pjI

or

N(t) = pt−1N1 +
1− pt−1

1− p
I

(accounting for the fact that we start at t = 1 and using the formula for the
sum of a geometric series,

∑n−1
j=0 pj = (1− pt−1)/(1− p)).

Plotting x and superimposing lines showing the mean value of the simula-
tions:

> matplot(tvec, Nmat, type = "l", col = "gray")

> lines(tvec, rowMeans(Nmat), lwd = 2)

> curve(p^(x - 1) * N0 + (1 - p^(x - 1))/(1 - p) * immig, add = TRUE)
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3.2 Continuous time
Solving the theta-logistic model,

dN

dt
= rN

(
1− N

K

)θ

numerically:
Attach odesolve package:

> library(odesolve)

Define a function for the derivative. It must have arguments (time, state
vector, parameters), although they need not be called t, y, params. The only
other peculiarity is that instead of returning the derivative (dNdt in this case)
by itself you actually have to return a list containing the derivative as its first
element and “a vector of global values that are required at each point” (which
can usually be NULL).

> derivfun = function(t, y, parms) {

+ r = parms[1]

+ K = parms[2]

+ theta = parms[3]

+ N = y[1]

+ dNdt = r * N * sign(1 - N/K) * abs((1 - N/K))^theta

+ list(dNdt, NULL)

+ }

Once you’ve defined the derivative function, you can use the lsoda func-
tion to solve that differential equation for any set of starting values (y), times
(times), and parameters (parms) you like.

> tvec = seq(0, 50, by = 0.2)

> x1 = lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,

+ K = 10, theta = 1))

You get back a numeric matrix with a column for the times and columns for
all of the state variables (only one in this case):

> head(x1)

time N
[1,] 0.0 1.000000
[2,] 0.2 1.036581
[3,] 0.4 1.074341
[4,] 0.6 1.113303
[5,] 0.8 1.153495
[6,] 1.0 1.194945

Re-running the solution for different values of θ:
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> x2 = lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,

+ K = 10, theta = 2))

> x3 = lsoda(y = c(N = 1), times = tvec, func = derivfun, parms = c(r = 0.2,

+ K = 10, theta = 0.5))

Putting the results together into a single matrix (both columns of the first
matrix and only the second column of the other two):

> X = cbind(x1, x2[, "N"], x3[, "N"])

Plotting with matplot(), and using curve and the known solution for the
plain old logistic to check the solution when θ = 1:

> matplot(X[, "time"], X[, 2:4], type = "l", col = 1, xlab = "time",

+ ylab = "N")

> r = 0.2

> K = 10

> N0 = 1

> curve(K/((1 + (K/N0 - 1) * exp(-r * x))), type = "p", add = TRUE)

> legend(30, 4, c(expression(theta == 1), expression(theta == 2),

+ expression(theta == 0.5)), lty = 1:3)
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(remember you have to use == to get an equals sign in a math expression).
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4 Power etc. calculations
This section will first go through a relatively simple example (the source-sink
population model presented above), showing the basic steps of a power calcu-
lation. I’ll then give a briefer sketch of some of the gory details of doing the
Shepherd model power analysis discussed in the chapter.

4.1 Sink population dynamics
The sink population presented above was a recovering sink population: the
biological question I will try to answer is: how long do I have to sample the
population for to test that it is really recovering? How does this depend on the
survival and immigration rates?

First, simulate one set of values and a time vector:

> nt = 20

> sim0 = immigsim(nt = nt, N0 = 2, surv = 0.9, immig = 10)

> tvec = 1:nt

Run a linear regression and extract the point estimate and confidence limits
for the slope:

> lm1 = lm(sim0 ~ tvec)

> slope = coef(lm1)["tvec"]

> ci.slope = confint(lm1)["tvec", ]

(look at the output of confint(lm1) to see how it’s structured).
Now run the model for a series of lengths of observation time and record the

values for each length:

> nvec = c(3, 5, 7, 10, 15, 20)

> nsim = 500

> powsimresults = matrix(nrow = length(nvec) * nsim, ncol = 5)

> colnames(powsimresults) = c("n", "sim", "slope", "slope.lo",

+ "slope.hi")

> ctr = 1

> for (i in 1:length(nvec)) {

+ nt = nvec[i]

+ tvec = 1:nt

+ cat(nt, "\n")

+ for (sim in 1:nsim) {

+ current.sim = immigsim(nt = nt, N0 = N0, surv = p, immig = immig)

+ lm1 = lm(current.sim ~ tvec)

+ slope = coef(lm1)["tvec"]

+ ci.slope = confint(lm1)["tvec", ]

+ powsimresults[ctr, ] = c(nt, sim, slope, ci.slope)

+ ctr = ctr + 1

+ }

+ }
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3
5
7
10
15
20

A couple of R tricks in this code:

• I’m going to keep the output in long format, with each row containing the
sample size and simulation number along with the estimate and confidence
intervals: this will make it easy to cross-tabulate the results (see below)

• I keep a counter variable ctr to track which row of the matrix I’m filling
in, and add one to it each time through the loop. (Alternately I could
calculate that at the ith sample size and sth simulation I should be filling
in row (i-1)*nsim+i.) Make sure to reset ctr if you re-run the for loops.

• the cat() command is just printing results as I go along: on Windows
you may have to go to a menu and unselect the “buffered output” option.
The "\n" at the end specifies a new line.

• I keep track of simulation number in the loop but the index of the sample
size: i is (1, 2, 3, . . . ) rather than i (3, 5, 7, . . . ). This isn’t totally
necessary in this case since we’re using ctr to index the rows of the matrix,
but it’s generally safer.

Now summarize the results, cross-tabulating by the number of samples.

> nfac = factor(powsimresults[, "n"])

Select the point estimate and calculate its mean (E[ŝ]) for each observation
length:

> slope.mean = tapply(powsimresults[, "slope"], nfac, mean)

Calculate the standard deviation:

> slope.sd = tapply(powsimresults[, "slope"], nfac, sd)

to calculate the variance of the estimate.
Calculating whether the true value fell within the confidence limits in a

particular simulation. (The theoretical value of the slope is a little hard here
since the expected value of the population is actually to grow to an asymptote.
Near the beginning the slope is close to the immigration rate:

> ci.good = (powsimresults[, "slope.hi"] > immig) & (powsimresults[,

+ "slope.lo"] < immig)
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Calculating the coverage by cross-tabulating the number of “good” confidence
intervals and dividing by the number of simulations per d/sample size combina-
tion:

> nsim = 500

> slope.cov = tapply(ci.good, nfac, sum)/nsim

(so the “coverage” actually decreases in this case, but this is a bad example —
sorry!)

Calculating whether the null value (zero) did not fall within the confidence
limits:

> null.value = 0

> reject.null = (powsimresults[, "slope.hi"] < null.value) | (powsimresults[,

+ "slope.lo"] > null.value)

Calculating the power by cross-tabulating the number of rejections of the null
hypothesis and dividing by the number of simulations per d/sample size combi-
nation:

> slope.pow = tapply(reject.null, nfac, sum)/nsim

In this case it’s very easy to see, very quickly, that the population is recovering
. . .

Exercise 7 *: redo this example, but with negative binomial growth (with
k = 5, k = 1, and k = 0.5). If you want to be fancy, try to nest an additional for
loop and cross-tabulate your answers with a single command (see code below
under reef fish example): otherwise simply change the variable and re-run the
code three times.
or
Exercise 8 **: in R, you can fit a quadratic function with

> lm.q = lm(sim0 ~ tvec + I(tvec^2))

Extract the point estimate for the quadratic term with coef(lm.q)[3] and the
confidence intervals with confint(lm.q)[3,]. For the original model (with
Poisson variability), do a power analysis of your ability to detect the leveling-off
of the curve (as a negative quadratic term in the regression fit) as a function
of number of observation periods. (If you’re really ambitious, combine the two
problems and try this with negative binomial variation.)

4.2 Reef fish dynamics
Regenerating a simulated version of Schmitt et al. data.

(Re)define zero-inflated negative binomial and Shepherd functions:

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu, size = size))

+ }

> shep = function(x, a = 0.696, b = 9.79, d = 1) {

+ a/(1 + (a/b) * x^d)

+ }
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Parameters for distribution of settlers (µ, k, pz) and Shepherd function (a,
b, d):

> mu = 25.32

> k = 0.932

> zprob = 0.123

> a = 0.696

> b = 9.79

> d = 1.1

> n = 603

Simulate one set of values:

> set.seed(1002)

> settlers = rzinbinom(n, mu = mu, size = k, zprob = zprob)

> recr = rbinom(n, prob = shep(settlers, a, b, d), size = settlers)

The nonlinear least-squares function nls() takes a formula and a named
set of starting values. Start by fitting the Beverton-Holt, which is easier to
fit than the Shepherd. (This is a typical way to fit a complex model: start
with a simpler, easier-to-fit model that is a special case of the complex model,
then use those fitted parameters as a starting point for the harder estimation
problem.) Use the theoretical values of a and b as starting parameters for the
Beverton-Holt fit:

> bh.fit = nls(recr ~ a * settlers/(1 + (a/b) * settlers), start = c(a = 0.696,

+ b = 9.79))

> bh.fit

Nonlinear regression model
model: recr ~ a * settlers/(1 + (a/b) * settlers)
data: parent.frame()

a b
0.7775758 6.6934193
residual sum-of-squares: 1639.527

The function coef(bh) gives the fitted parameters (coefficients). Use these,
plus a starting value of d = 1, to fit the Shepherd function.

> shep.fit = nls(recr ~ a * settlers/(1 + (a/b) * settlers^d),

+ start = c(coef(bh.fit), d = 1))

> shep.fit

Nonlinear regression model
model: recr ~ a * settlers/(1 + (a/b) * settlers^d)
data: parent.frame()

a b d
0.5998674 12.0196853 1.1362227
residual sum-of-squares: 1631.212
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Calculate confidence intervals:

> ci = confint(shep.fit)

Waiting for profiling to be done...

> ci

2.5% 97.5%
a 0.4630841 0.8419771
b 6.2920786 26.0900580
d 0.9846074 1.3152524

Extract the estimates for d:

> ci["d", ]

2.5% 97.5%
0.9846074 1.3152524

Sometimes the confidence interval fitting runs into trouble and stops with
an error like
Error in prof$getProfile() : step factor 0.000488281 reduced

below ’minFactor’ of 0.000976562

This kind of glitch is fairly rare when doing analyses one at a time, but
very common when doing power analyses, which require thousands or tens of
thousands of fits. A few R tricks for dealing with this:

• x = try(command)“tries”a command to see if it works or not; it it doesn’t
work, Rdoesn’t stop but sets x equal to the error message. To test whether
the command stopped or not, see if class(x)=="try-error"

• while and if are commands for flow control (like the for() command
introduced earlier in this lab): if executes a set of commands (once) if
some condition is true, and while loops and executes a set of commands
as long as some condition is true

The code below is a slightly simplified version of what I did to generate the
values

> getvals = function(n = 100, d = 1) {

+ OK = FALSE

+ while (!OK) {

+ z = simdata(n, d)

+ bh.fit = try(nls(recr ~ a * settlers/(1 + (a/b) * settlers),

+ start = c(a = 0.696, b = 9.79), data = z))

+ shep.fit = try(nls(recr ~ a * settlers/(1 + (a/b) * settlers^d),
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+ start = c(coef(bh.fit), d = 1), data = z))

+ OK = (class(shep.fit) != "try-error" && class(bh.fit) !=

+ "try-error")

+ if (OK) {

+ bh.ci = try(confint(bh.fit))

+ shep.ci = try(confint(shep.ti))

+ OK = (class(shep.ci) != "try-error" && class(bh.ci) !=

+ "try-error")

+ }

+ }

+ res = c(coef(bh.fit), bh.ci, coef(shep.fit), shep.ci)

+ names(res) = c("a.bh", "b.bh", "a.bh.lo", "b.bh.lo", "a.bh.hi",

+ "b.bh.hi", "a.shep", "b.shep", "d.shep", "a.shep.lo",

+ "b.shep.lo", "d.shep.lo", "a.shep.hi", "b.shep.hi", "d.shep.hi")

+ res

+ }

Here I loaded the results of a big set of simulations I had run: download it
from the web page if you want to actually run these commands.

> load("chap5-batch2.RData")

I then used

> faclist = list(factor(resmat[, "d"]), factor(resmat[, "n"]))

To define a set of factors to break up the data (i.e., I will want to cross-
tabulate by both true parameter value d and sample size) and then ran

> d.shep.mean = tapply(resmat[, "d.shep"], faclist, mean)

to calculate the mean value E[d̂] and

> d.shep.sd = tapply(resmat[, "d.shep"], faclist, sd)

to calculate the variance of the estimate.
Calculating whether the true value fell within the confidence limits in a

particular simulation:

> ci.good = (resmat[, "d.shep.hi"] > resmat[, "d"]) & (resmat[,

+ "d.shep.lo"] < resmat[, "d"])

Calculating the coverage by cross-tabulating the number of “good” confidence
intervals and dividing by the number of simulations per d/sample size combina-
tion:

> nsim = 400

> d.shep.cov = tapply(ci.good, faclist, sum)/nsim

Calculating whether the null value did not fall within the confidence limits:
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> null.value = 1

> reject.null = (resmat[, "d.shep.hi"] < null.value) | (resmat[,

+ "d.shep.lo"] > null.value)

Calculating the power by cross-tabulating the number of null-hypothesis rejec-
tions and dividing by the number of simulations per d/sample size combination:

> nsim = 400

> d.shep.pow = tapply(reject.null, faclist, sum)/nsim

Randomization tests (to come)

20


