Lab 5: stochastic simulation - solutions

Ben Bolker

October 7, 2005

```
(C)2005 Ben Bolker
    Exercise 1:
> n = 100
> x = runif(n, min = 0, max = 10)
> a = 1
>b = 0.5
> s = 3
> y_det = a * x * exp(-b * x)
> y = rgamma(n, shape = s, scale = y_det/s)
> plot(x, y)
> curve(a * x * exp(-b * x), add = TRUE)
```


Exercise 2:

Redo spatial distribution simulation:

```
> set.seed(1001)
> nparents = 50
> noffspr = 10
> L = 30
> parent_x = runif(nparents, min = 0, max = L)
> parent_y = runif(nparents, min = 0, max = L)
> angle = runif(nparents * noffspr, min = 0, max = 2 * pi)
> dist = rexp(nparents * noffspr, 0.5)
> offspr_x = rep(parent_x, each = noffspr) + cos(angle) * dist
> offspr_y = rep(parent_y, each = noffspr) + sin(angle) * dist
> dist = sqrt((outer(offspr_x, offspr_x, "-"))^2 + (outer(offspr_y,
+ offspr_y, "-"))^2)
> nbrcrowd = apply(dist < 2, 1, sum) - 1
```

Calculate mean and standard deviation of neighborhood crowding:

```
> m = mean(nbrcrowd)
> s2 = var(nbrcrowd)
```

Method of moments: $\mu=m$; variance $\sigma^{2}=\mu(1+\mu / k)$ or $k=\mu /\left(\sigma^{2} / \mu-1\right)$.

```
> k.est = m/(s2/m - 1)
```

Plot distribution of neighborhood crowding:

```
> b1 = barplot(table(factor(nbrcrowd, levels = 0:max(nbrcrowd)))/length(nbrcrowd),
+ xlab = "Number of neighbors", ylab = "Proportion")
> points(b1, dnbinom(0:max(nbrcrowd), mu = m, size = k.est), pch = 16)
```


Exercise 3:
Continue with pigweed simulation:

```
> ci = nbrcrowd * 3
```

$>M=2.3$
> alpha $=0.49$
> mass_det $=M /(1+c i)$
$>$ mass $=$ rgamma(length (mass_det), scale $=$ mass_det, shape $=$ alpha)
$>b=271.6$
$>k=0.569$
> seed_det = b * mass
> seed = rnbinom(length(seed_det), mu = seed_det, size = k)

Calculate the median: the median is identical to the 50% quantile of the distribution, or qnbinom (0.5).

```
> logxvec = seq(-7, 1, length = 100)
> xvec = 10^logxvec
> med = qnbinom(0.5, mu = b * xvec, size = k)
> plot(mass, 1 + seed, log = "xy", xlab = "Mass", ylab = "1+Seed set")
> curve(b * x + 1, add = TRUE)
> lower = qnbinom(0.025, mu = b * xvec, size = k)
> upper = qnbinom(0.975, mu = b * xvec, size = k)
```

```
> lines(xvec, lower + 1, lty = 2, type = "s")
> lines(xvec, upper + 1, lty = 2, type = "s")
> lines(xvec, med + 1, lwd = 2, type = "s")
```


The median is lower than the mean because the distribution is right-skewed; like the upper and lower quantiles, the median of the (discrete) negative binomial distribution changes by discrete steps rather than smoothly like the mean.

Exercise 4:
Set up simulation:

```
> rzinbinom \(=\) function( \(n, ~ m u\), size, zprob) \{
\(+\quad\) ifelse(runif( \(n\) ) < zprob, 0 , rnbinom( \(n, m u=m u\), size \(=\) size))
\(+\}\)
\(>\mathrm{a}=0.696\)
> b = 9.79
> recrprob \(=\) function(x, \(a=0.696, b=9.79)\) \{
\(+a /(1+(a / b) * x)\)
+ \}
\(>\) scoefs \(=c(m u=25.32, k=0.932, z p r o b=0.123)\)
> settlers = rzinbinom(603, mu = scoefs["mu"], size = scoefs["k"],
\(+\quad z p r o b=s c o e f s[" z p r o b "])\)
> recr = rbinom(603, prob = recrprob(settlers), size = settlers)
```

Draw the figure:

```
> op = par(mfrow = c(1, 2), mar = c(5, 4, 2, 0.2))
> hist(settlers, breaks = 40, col = "gray", ylab = "Frequency",
+ xlab = "Settlers", main = "")
> plot(settlers, recr, xlab = "Settlers", ylab = "Recruits")
> curve(a * x/(1 + (a/b) * x), add = TRUE)
> par(op)
```


Exercise 5:

Using the relationships shape $1=a=P \theta$ and shape $2=b=(1-P) \theta$ relating the Morris (P, θ) to the standard statistical parameterization:

```
> rmbbinom = function(n, size, p, theta) {
+ rbinom(n, size = size, prob = rbeta(n, shape1 = p * theta,
+ shape2 = (1 - p) * theta))
+ }
> a = 0.696
> b = 9.79
> recrprob = function(x, a = 0.696, b = 9.79) a/(1 + (a/b) * x)
> scoefs = c(mu = 25.32, k = 0.932, zprob = 0.123)
> settlers = rzinbinom(603, mu = scoefs["mu"], size = scoefs["k"],
+ zprob = scoefs["zprob"])
> recr = rmbbinom(603, p = recrprob(settlers), theta = 10, size = settlers)
```

> plot(settlers, recr, xlab = "Settlers", ylab = "Recruits")
> curve $(\mathrm{a} * \mathrm{x} /(1+(\mathrm{a} / \mathrm{b}) * \mathrm{x})$, $\mathrm{add}=$ TRUE)

Exercise 6: Redefine linear simulation function:

```
> linsim = function(nt = 20, NO = 2, dN = 1, sd_process = sqrt(2),
+ sd_obs = sqrt(2)) {
+ cur_N = NO
+ Nobs = numeric(nt)
+ Nobs[1] = cur_N + rnorm(1, sd = sd_obs)
+ for (i in 2:nt) {
+ cur_N = cur_N + rnorm(1, mean = dN, sd = sd_process)
            Nobs[i] = cur_N + rnorm(1, sd = sd_obs)
        }
        return(Nobs)
+ }
```

Run it 1000 times:

```
> nsim = 1000
> Nmat = matrix(nrow = 20, ncol = nsim)
> for (i in 1:nsim) {
+ Nmat[, i] = linsim(sd_process = 2, sd_obs = 2)
+ }
```

Draw the figure:

```
> matplot(1:20, Nmat, col = "gray", type = "l", lty = 1)
> lines(1:20, rowMeans(Nmat), lwd = 2)
> matlines(1:20, t(apply(Nmat, 1, quantile, c(0.025, 0.975))),
+ lty = 2, col = 1)
```


Exercise 7:
Redefine immigsim with negative binomial instead of Poisson growth:

```
> immignbsim = function(nt = 20, NO = 2, immig, surv, k) {
+ N = numeric(nt)
+ N[1] = NO
+ for (i in 2:nt) {
+ Nsurv = rbinom(1, size = N[i - 1], prob = surv)
+ N[i] = Nsurv + rnbinom(1, mu = immig, size = k)
+ }
+ return(N)
+ }
```

Define parameters:

```
> nsim = 1000
```

$>n t=30$

```
\(>p=0.95\)
> NO = 2
> immig = 10
\(>k=0.5\)
> nvec \(=c(3,5,7,10,15,20)\)
\(>\) kvec \(=c(5,1,0.5)\)
> nsim \(=500\)
> powsimresults \(=\) matrix(nrow \(=\) length(nvec) * length(kvec) * nsim,
\(+\quad\) ncol = 6)
> colnames(powsimresults) = c("n", "k", "sim", "slope", "slope.lo",
+ "slope.hi")
\(>\operatorname{ctr}=1\)
> for (j in 1:length(kvec)) \{
\(+\quad k=k v e c[j]\)
\(+\quad\) for (i in 1:length(nvec)) \{
\(+\quad n t=n v e c[i]\)
\(+\quad\) tvec \(=1: n t\)
\(+\quad\) for (sim in 1:nsim) \{
\(+\quad\) current.sim \(=\) immignbsim(nt \(=n t, N O=N O, \operatorname{surv}=p\),
+ immig = immig, k = k)
+ lm1 = lm(current.sim ~ tvec)
\(+\quad\) slope \(=\operatorname{coef}(\operatorname{lm1})[" t v e c "]\)
\(+\quad\) ci.slope \(=\) confint (lm1)["tvec", ]
\(+\quad\) powsimresults[ctr, ] = c(nt, k, sim, slope, ci.slope)
\(+\quad\) ctr \(=c t r+1\)
\(+\quad\}\)
\(+\quad\}\)
\(+\}\)
```

Construct a list of factors for cross-tabulating:

```
> faclist = list(factor(powsimresults[, "n"]), factor(powsimresults[,
+ "k"]))
```

Calculate all the cross-tabulated summary statistics:

```
> slope.mean = tapply(powsimresults[, "slope"], faclist, mean)
> slope.sd = tapply(powsimresults[, "slope"], faclist, sd)
> ci.good = (powsimresults[, "slope.hi"] > immig) & (powsimresults[,
+ "slope.lo"] < immig)
> nsim = 500
> slope.cov = tapply(ci.good, faclist, sum)/nsim
> null.value = O
> reject.null = (powsimresults[, "slope.hi"] < null.value) | (powsimresults[,
+ "slope.lo"] > null.value)
> slope.pow = tapply(reject.null, faclist, sum)/nsim
```

Some plots:

```
> par(mfrow = c(2, 2))
> matplot(nvec, slope.mean, type = "b")
> matplot(nvec, slope.sd, type = "b")
> matplot(nvec, slope.cov, type = "b")
> matplot(nvec, slope.pow, type = "b")
```


Exercise 8:

Redo code with quadratic function, testing against a null value of zero:

```
> nvec =c(3, 5, 7, 10, 15, 20)
> nsim = 500
> powsimresults = matrix(nrow = length(nvec) * nsim, ncol = 5)
> colnames(powsimresults) = c("n", "sim", "quad", "quad.lo", "quad.hi")
>ctr = 1
> for (i in 1:length(nvec)) {
+ nt = nvec[i]
+ tvec = 1:nt
+ for (sim in 1:nsim) {
+ current.sim = immigsim(nt = nt, NO = NO, surv = p, immig = immig)
+ lm1 = lm(current.sim ~ tvec + I(tvec^2))
+ quad = coef(lm1)[3]
+ ci.quad = confint(lm1)[3, ]
+ powsimresults[ctr, ] = c(nt, sim, quad, ci.quad)
```

```
+ ctr = ctr + 1
+ }
+ }
```

Calculate all the tabulated summary statistics (skipping coverage):

```
> quad.mean = tapply(powsimresults[, "quad"], nfac, mean)
> quad.sd = tapply(powsimresults[, "quad"], nfac, sd)
> nsim = 500
> null.value = 0
> reject.null = (powsimresults[, "quad.hi"] < null.value) | (powsimresults[,
+ "quad.lo"] > null.value)
> quad.pow = tapply(reject.null, nfac, sum)/nsim
```

Some plots:

```
>op = par(mfrow = c(2, 2))
> plot(nvec, quad.mean, type = "b")
> plot(nvec, quad.sd, type = "b")
> plot(nvec, quad.pow, type = "b")
> par(op)
```


