
“Bolker” — 1/9/2008 — 15:39 — page 250

−1
0
1

250 • C H A P T E R 7

can conclude that zero is really the best fit. You can also compute a profile (negative
log-)likelihood on one particular contribution with values ranging upward from zero
and see that the minimum really is at zero. However, going to all this trouble every
time you have a parameter or set of parameters that appear to have their best fit on
the boundary is quite tedious.

One final issue with parameters on the boundary is that the standard model
selection machinery discussed in Chapter 6 (Likelihood Ratio Test, AIC, etc.) always
assumes that the null (or nested) values of parameters do not lie on the boundary of
their feasible range. This issue is well-known but still problematic in a wide range of
statistical applications, for example, in deciding whether to set a variance parameter
to zero. For the specific case of linear mixed-effect models (i.e., models with linear
responses and normally distributed random variables), the problem is relatively well
studied. Pinheiro and Bates (2000) suggest the following approaches (listed in order
of increasing sophistication):

• Simply ignore the problem, and treat the parameter as though it were not on the
boundary—i.e., use a likelihood ratio test with 1 degree of freedom. Analyses
of linear mixed-effect models (Self and Liang, 1987; Stram and Lee, 1994)
suggest that this procedure is conservative; it will reject the null hypothesis
less often (sometimes much less often) than the nominal type I error rate α.∗

• Some analyses of mixed-effect models suggest that the distribution of the
log-likelihood ratio under the null hypothesis when n parameters are on the
boundary is a mixture of χ2

n and χ2
n−1 distributions rather than a χ2

n distri-
bution. If you are testing a single parameter, as is most often the case, then
n = 1 and χ2

n−1 is χ2
0 —defined as a spike at zero with area 1. For most mod-

els, the distribution is a 50/50 mixture of χ2
n and χ2

n−1, which Goldman and
Whelan (2000) call the χ̄2

n distribution. For n = 1, χ̄2
1 (1 − α) = χ2

1 (1 − 2α).
In this case the 95% critical value for the likelihood ratio test would thus
be χ2

1 (0.95)/2 = qchisq(0.9,1)/2=1.35 instead of the usual value of 1.92.
The qchibarsq function in the emdbook package will compute critical values
for χ̄2

n .
• The distribution of deviances may not be an equal mixture of χ2

n and χ2
n−1

(Pinheiro and Bates, 2000). The “gold standard” is to simulate the null hypoth-
esis and determine the distribution of the log-likelihood ratio under the null
hypothesis; see Section 7.6.1 for a worked example.

7.5 Estimating Confidence Limits of Functions of Parameters

Quite often, you estimate a set of parameters from data, but you actually want to say
something about a value that is not a parameter (e.g., about the predicted population
size some time in the future). It’s easy to get the point estimate—you just feed the
parameter estimates into the population model and see what comes out. But how do
you estimate the confidence limits on that prediction?

∗ Whether this is a good idea or not, it is the standard approach—as far as I can tell it is always what
is done in ecological analyses, although some evolutionary analyses are more sophisticated.


