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Abstract

In the present paper we study some geometrical properties of the small scales in 2D numerical turbulence. We analyze the
alignment of the vorticity gradient with respect to the eigenvectors of the rate of strain tensor, a phenomenon related to the
dynamics of the enstrophy cascade. Numerical simulations with different resolutions and dissipation models are used to show
non-trivial dependence of the alignment on both the magnitude of the vorticity gradient and the Reynolds number. These
findings are shown to be dynamical in origin and imply organization of the small scales in the flow. ©1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In the analysis of the behavior of the small scales in turbulence attention is usually focused on the anomalous
scaling properties of certain quantities, e.g. velocity increments. It is, however, admitted that this approach is not
capable of capturing some of the important characteristics related to the flow structure. At the same time it is believed
(cf. [1–3]) that the analysis of geometrical properties of the small scales may yield interesting results concerning
the internal organization of the flow. These properties can be analyzed by measuring the alignment of various vector
quantities. In the present work we study some geometrical properties of the small scales in two-dimensional (2D)
forced turbulence. Such flows are characterized by the presence of large coherent structures which in the course
of their non-linear interaction produce and control the strain field. This in turn gives rise to gradual erosion and
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filamentation of the eddies and thus generates high vorticity gradients which are a generic feature of 2D turbulent
dynamics (e.g. [4–6]).

According to [7], stretching and folding of vorticity fronts with different vorticity values is the underlying
mechanism of the enstrophy cascade. This process is quantified by the evolution equation for vorticity gradient∇∇∇ωωω,

d

dt
∇∇∇ωωω =

(
∂

∂t
+ VVV · ∇∇∇

)
∇∇∇ωωω = − (∇∇∇VVV )T · ∇∇∇ωωω + ν1 (∇∇∇ωωω) , (1)

where(∇∇∇VVV )T denotes the transpose of the velocity gradient. In the above relation we have accounted for viscosity,
nonetheless, in the following analysis its effects will be neglected. Its role is to limit the growth of vorticity gradients.
Viscosity therefore becomes important at later stages of the evolution. We are, however, interested in the non-linear
amplification of∇∇∇ωωω, which is essentially an inviscid phenomenon.

Vorticity gradient points in the direction of the steepest increase of vorticity. An equivalent description can be
cast in terms of palinstrophyηηη = ∇∇∇ × (ωkkk) which is the dual vector with respect to vorticity gradient and is tangent
to the isolines of vorticity. Its evolution is governed by the following equation

d

dt
ηηη =

(
∂

∂t
+ VVV · ∇∇∇

)
ηηη = ηηη · ∇∇∇VVV + ν1ηηη. (2)

We will recall below that the evolution of the vorticity gradient, and consequently of the enstrophy cascade,
depends on the properties of the∇∇∇VVV tensor and on the alignment of∇∇∇ωωω with respect to the eigenvectors of the
symmetric part of∇∇∇VVV . Multiplying Eq. (1) by(∇∇∇ωωω)T, integrating the resulting relation over the flow domain, and
then assuming statistical stationarity and homogeneity, we obtain

−〈(∇∇∇ωωω)T (∇∇∇VVV )T ∇∇∇ωωω〉 = ν〈(∇∇∇∇∇∇ωωω)2〉, (3)

where〈〉denotes spatial average and the viscous term was transformed using integration by parts. Since the right-hand
side term is positive definite, this relation implies that the net production of vorticity gradient by the non-linear effects
is always positive. Evidence will be presented below for some non-trivial characteristics of this phenomenon in 2D
forced turbulence. We will use data from the direct numerical simulation (DNS) of the Navier–Stokes equations with
periodic boundary conditions and with both Newtonian and hyperviscous dissipation models. The reason for this
is that hyperviscosity is used to model a high Reynolds number flow, whereas the Newtonian viscosity enables one
to check whether the former introduces spurious effects. Qualitatively, the Newtonian and hyperviscous dissipation
models may be regarded as representing the low and high Reynolds numbers, respectively. At the same time, we
will consider the results of simulations with different resolutions corresponding to different Reynolds numbers.
Forcing will be chosen so as to assure that the enstrophy cascades in the different simulations are consistent with
one another, with their extent depending on the Reynolds number.

Vorticity gradient is an active vector and its evolution involves an interplay between kinematics and dynamics. In
[8] it was shown that certain alignments may be largely kinematic in origin. This means that even random Gaussian
fields may have some non-trivial geometric properties. In order to distinguish between the kinematic and dynamic
alignments we will compare our fields with their random counterpart. The latter is obtained by randomizing the
phases of the coefficients in the Fourier transformed vorticity field, while retaining the amplitudes of the coefficients,
so that the energy spectrum is not affected.

The organization of the paper is as follows. In the next Section we derive a set of diagnostics that we later use
to characterize the alignments. In Section 3 we give some details concerning the numerical simulations and present
the results. In Section 4 we will discuss the results and make some final remarks.
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2. Characterization of geometrical alignments

Eq. (1) combines the Lagrangian derivative with Eulerian gradients, therefore, following a fluid particle, the
vorticity gradient evolves according to the local properties of the term−(∇∇∇VVV )T · ∇∇∇ωωω. Transfer of vorticity towards
smaller scales of motion known as the enstrophy cascade is the result of the non-linearity of this term. We will
now assess the efficiency of− (∇∇∇VVV )T · ∇∇∇ωωω as regards production of vorticity gradient. In [9,10] and then in [11]
it was argued that∇∇∇VVV varies slowly comparing to the changes of∇∇∇ωωω and may thus be considered frozen. This is
equivalent to the assumption of scale separation and allows one to linearize Eq. (1) around a fixed value of∇∇∇VVV .
On the other hand, in [12] it was shown that this linearization is only valid in a small fraction of the flow domain.
Then in [13] the authors considered the second order in time equation for the particle dispersion and showed how
the time variation of the velocity gradient can be taken into account to modify the above analysis. However, in our
investigation we are concerned with space averages of instantaneous intensities of vorticity gradient production.
In this sense, we do not have to resort to linearization in order to compute the magnitude of the non-linear term.
Consequently, the question of how long this linearization remains valid is not relevant here. Further discussion of
issues related to persistence of strain can be found in [14,15] and references quoted therein.

The transpose of the velocity gradient(∇∇∇VVV )T can be rewritten in terms of strain and vorticity,

(∇∇∇VVV )T = 1

2

[
s11 s12 + ω

s12 − ω −s11

]
, (4)

wheres11 = 2(∂u/∂x) = −2(∂v/∂y), s12 = (∂u/∂y) + (∂v/∂x) andω = (∂v/∂x) − (∂u/∂y). Its eigenvalues are
given by

λ± = ±1

2

√
s2
11 + s2

12 − ω2. (5)

In [10] it was shown that according to whether the eigenvaluesλ are purely real or purely imaginary, one can
distinguish two dynamically distinct behaviors of vorticity gradient. Ifλ is real, then exponential growth of vorticity
gradient may take place. It will be shown below that the actual growth rate depends on the alignment of∇∇∇ωωω with
respect to the eigenvectors of the symmetric part of∇∇∇VVV . Clearly, these regions contribute to the enstrophy cascade.
On the other hand, if the eigenvaluesλ are imaginary, the vorticity gradient rotates with periodic amplification
and damping, a mechanism which leads to the the elliptic instability [16]. According to the relative importance of
strain and vorticity, the above regimes are labeledhyperbolicandelliptic, respectively. Elliptic regions are passive
as regards the enstrophy cascade and thus the following analysis focuses exclusively on the hyperbolic parts of the
flow domain.

We now proceed to quantify the alignment characteristics. Stretching is due exclusively to the strain tensor
DDD = (1/2)(∇∇∇VVV + ∇∇∇VVV T). Its eigenvectors are orthogonal and represent the directions of maximum stretching and
compression,

ddd1 =
[

s12√
s2
11 + s2

12 − s11

]
, ddd2 =

[ −s12√
s2
11 + s2

12 + s11

]
. (6)

The following two parameters can be introduced to characterize the alignment properties of vorticity gradient
[17]:
• instantaneous production rate of vorticity gradientκ

κ = d ln|∇∇∇ωωω|
dt

= −mmmTDmDmDm, (7)

wheremmm = ∇∇∇ωωω/|∇∇∇ωωω|,
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Table 1
Summary of the numerical parameters used in the simulations

H128 H512 H1728 N1728

(hyper) viscosity 5× 10−5 1.75× 10−5 5 × 10−6 8 × 10−3

time stepδt of integration 10−4 2.5 × 10−5 10−5 10−5

forcing wavenumber 10 40 40 40
spectral slope in the enstrophy range −4.0 −4.0 −3.5 −3.5

Table 2
Spatially averaged characteristics of the fields under consideration. See text for definitions of〈h+〉, 〈κ〉 and〈e〉. The statistics are computed in
the hyperbolic parts of the flow domain which were extracted using Eq. (5).

H128 H512 H1728 N1728 R1728

〈h+〉 0.613 0.632 0.673 0.558 0.501
〈κ〉 10.33 84.91 88.23 31.26 0.3
〈e〉 0.12 0.14 0.18 0.064 0.0

• normalized instantaneous production rate of vorticity gradiente

e = −mmmTDmDmDm

(D : DD : DD : D)1/2
. (8)

It can be easily verified that in our case

κ = 1

2

√
s2
11 + s2

12 cos(2α) , (9)

whereα is the angle between the vorticity gradient∇∇∇ωωω and the compressing eigenvectorddd2. Similarly,

e =
√

2

2
cos(2α). (10)

One can see thatκ represents combined effects of strain magnitude and geometrical alignment, wherease relates
to alignment only.

It should be emphasized that the role played by the rotation tensor��� = (1/2)(∇∇∇VVV − ∇∇∇VVV T) is different in
stretching of vorticity (3D) and vorticity gradients (2D). Normally one hasnT���nnn ≡ 0 for any vectornnn, which
implies that the rotation tensor��� does not contribute to stretching and is responsible exclusively for reorientation
of the stretched vector. In the case of stretching of vorticity, one always has���ωωω ≡ 0 which means that vorticity
vector is unaffected by the antisymmetric part of the velocity gradient tensor.

It was argued in [8] that in the context of 3D flows the angleγω = ∠(DωDωDω,ωωω) between vorticity and the so
called ‘vortex stretching’ vector has particularly interesting properties. In our case the equivalent would beγ∇ω =
∠(DDD∇∇∇ωωω,∇∇∇ωωω). It is however straightforward to show thatγ∇ω = 2α and therefore there is no point in analyzing
it separately. From the relation (10) it is clear that build-up of vorticity gradient takes place when it lies within
the range ofπ/4 from the principal direction of compressiond2d2d2. In [18] 2D skewnessS2 was introduced to assess
the net production of vorticity gradient. It is directly related to our parameter〈e〉, the only difference being that
the definition ofS2 relies on the assumption that the components of the vorticity gradient and the strain tensor are
locally isotropic. This simplification does not appear justified in the context of our study, since we are interested
in the small scale details of the mechanism leading to amplification of vorticity gradient, in particular in its spatial
structure. Finally, it should be noted thatDDD, κ ande are all Galilean invariants.
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Fig. 1. PDFs of the alignment angleα between the vorticity gradient∇∇∇ωωω and the compressing eigenvectorddd2 for the hyperviscous fields with
different resolutions.

Fig. 2. PDFs of the alignment angleα between the vorticity gradient∇∇∇ωωω and the compressing eigenvectorddd2 for the random field and the fields
with different dissipation models.

3. Results of the numerical simulations

We apply the diagnostics introduced above to fields obtained from the numerical simulation of 2D forced turbu-
lence in a periodic domain. The Navier–Stokes equations are solved using the pseudo-spectral method developed
in [19]. For the reasons mentioned in the introduction we performed simulations with both Newtonian and hyper-
viscous dissipation models. The dissipative term used in the latter case wasν18ω (i.e.−νk16ω̂). In order to assure
stationarity, dissipation also includes a term representing large-scale linear friction. The hyperviscous simulations
were carried out with the resolutions 1282, 5122 and 17282. These sets of data will be referred to as H128, H512 and
H1728, respectively. The last field was also used to obtain the randomized counterpart which we will denote R1728.
The system with the Newtonian dissipation was simulated with the resolution 17282 and will be labeled N1728.
In the runs H512, H1728 and N1728 forcing was applied at the wavenumberk = 40, whereas in the case H128,
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Fig. 3. Normalized production rate of vorticity gradiente versus magnitude of|∇∇∇ωωω| for the hyperviscous fields with different resolutions. Here,
|∇∇∇ωωω| is normalized with respect to its mean value in the hyperbolic parts of the flow.

the corresponding wavenumber wask = 10. In the latter case forcing was shifted towards smaller wavenumbers
in order to ensure consistency of the enstrophy cascades obtained in the simulations with different resolutions. In
all cases forcing was effected by keeping the amplitude of the given wavevector at a prescribed constant value. In
Table 1 we summarize all the numerical parameters of the simulations. In computational studies of 2D turbulence
with periodic boundary conditions, no good definition of the Reynolds number is available, particularly when the
hyperviscous dissipation is used. The Reynolds number may be related to the extent of the inertial ranges which can
be qualitatively estimated as the ratiokmax/kmin, wherekmax represents the dissipation wavenumber andkmin ≈ 1.
In this respect, hyperviscosity will always result in a higher Reynolds number, as in this case dissipation is limited
to smaller scales. All the analyzed fields correspond to times when a state of the statistical equilibrium was reached.

We begin the presentation of the results with a summary of the field averaged characteristics which are related
to the net production of vorticity gradient. The fields H512, H1728, N1728 and R1728 consist of enough points
to produce converged statistics. In the case of N128 the averages were computed using the data from ten different
fields corresponding to ten instances of time sufficiently separated from one another so as to prevent any correlation
between them. All the averages,〈h+〉, 〈κ〉 and〈e〉, were restricted to the hyperbolic parts of the flow domain which
were identified using the instantaneous values of the eigenvalueλ (cf. Eq. (10)). In Table 2 one can note that the
production of vorticity gradients is always positive (cf. Eq. (3)) and that they are produced more effectively with
increasing Reynolds numbers (corresponding to increasing resolution). This concerns the values of the normalized
efficiency〈e〉 (cf. Eq. (10)), as well as the fraction〈h+〉 of the hyperbolic regions where build-up of∇∇∇ωωω occurs.
The latter implies that the area of regions with amplification of vorticity gradients is bigger than that corresponding
to damping and increases with the Reynolds number. The Newtonian field (N1728) which represents an effectively
much smaller Reynolds number is characterized by less efficient production of vorticity gradient than its hyperviscous
counterpart (H1728). The random field (R1728) is neutral in this respect. There is some discrepancy as regards the
values of the parameter〈κ〉, i.e. the values corresponding to the cases H128 and N1728 are not consistent with those
obtained for H512 and H1728. This results from the fact that〈κ〉 is not a non-dimensionalized quantity and that as
such it depends on the large scale characteristics of the flow. These are in turn different for different flows, depending
on the particular kind of forcing and large-scale dissipation. Consequently,〈κ〉 does not appear to be an objective
criterion for quantifying alignments and in all further considerations the normalized instantaneous production rate
〈e〉 will be used.



B. Protas et al. / Physica D 128 (1999) 169–179 175

Fig. 4. Normalized production rate of vorticity gradiente versus magnitude of|∇∇∇ωωω| for the random field and the fields with different dissipation
models. Here,|∇∇∇ωωω| is normalized with respect to its mean value in the hyperbolic parts of the flow.

Now we proceed to analyze the statistics of the geometrical alignments. In Figs. 1 and 2 we show the PDFs
of the angleα (cf. Eq. (10)) for the hyperviscous fields with different resolutions and for the fields with the
highest resolution and different dissipation models. All of them (apart from the random field) reveal a tendency for
preferential alignment which increases with the Reynolds number (equivalently the resolution). The field N1728
corresponding to the smallest Reynolds number is characterized by the weakest alignments. The random field R1728
does not reveal any alignment whatsoever. At this point it is necessary to remark that the PDF of the cosine of an angle
α instead of the PDF of the angle itself could be misleading. For a uniform distribution of angles, the corresponding
PDF of the cosine isnot uniform; moreover, it is unbounded at the limits of the range (like 1/ sin (α) ' 1/α for
α → 0).

Next we investigate how the alignment properties of the vorticity gradient change with its magnitude. In Figs. 3
and 4 we show the average values of the normalized efficiencye corresponding to different values of|∇∇∇ωωω|, again for
fields with different resolutions and different dissipation models (here|∇∇∇ωωω| is normalized with respect to its mean
value in the hyperbolic parts of the flow). One can see that in all cases more efficient alignments are correlated with
substantial magnitudes of|∇∇∇ωωω|. In other words, the tendency for the alignment with the compressing eigenvector
ddd2 increases with the steepness of the vorticity gradient. Similar to what was observed in the case of the PDFs, this
effect becomes less pronounced as the Reynolds number is decreased and is weakest for the field with the Newtonian
dissipation model. Interestingly, one can observe (Fig. 4) that there is a qualitative difference between the cases
H1728 and N1728 as regards the relatione versus|∇∇∇ωωω|: the two curves are characterized by different convexities.
Furthermore, in the field N1728 the average production of the vorticity gradient is close to zero for small magnitudes
of |∇∇∇ωωω|. In Figs. 5 and 6 we present the PDFs of the alignment angleα conditioned to different values of|∇∇∇ωωω| for the
fields H1728 and N1728, respectively. One can again note the bias for preferential alignment which becomes more
evident as the magnitude of|∇∇∇ωωω| increases. Finally, in Figs. 7 and 8 we show the stretching eigenvectorsddd1 overlaid
on the corresponding vorticity fields for the hyperviscous (H1728) and Newtonian (N1728) cases, respectively. The
eigenvectors are drawn only in the hyperbolic parts of the flow domain. The reason for showingddd1, rather thanddd2,
will be made clear below. Note that the Newtonian field is more blurred compared to the hyperviscous one which
corresponds to an effectively lower Reynolds number.
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Fig. 5. PDFs of the alignment angleα (refer Eq. (10)) conditioned to different values of|∇∇∇ωωω| for the field H1728.

Fig. 6. PDFs of the alignment angleα (refer Eq. (10)) conditioned to different values of|∇∇∇ωωω| for the field N1728.

4. Conclusions and final remarks

We shall now summarize our main results. The first observation is that in all the fields the vorticity gradient
reveals a tendency for the alignment with the compressing eigenvectorddd2 of the strain tensor which results in
its amplification. This is however a direct consequence of relation (3). The most important finding is that this
alignment becomes less pronounced as the Reynolds number is decreased and is weakest in the field with the
Newtonian dissipation model. Moreover, it was observed that the alignment increases with the magnitude of|∇∇∇ωωω|
with some qualitative differences between the hyperviscous and Newtonian dissipation models (in the Newtonian
field there is no preferential alignment for|∇∇∇ωωω| < 0.6 at all). These characteristics also appear to depend on the
Reynolds number.

The results may be explained physically using the dual representation in terms of palinstrophyηηη (cf. Eq. (2)). The
vectorηηη is always directed along the axis of the filament and amplification ofηηη thus corresponds to elongation of the
filament. Evolution ofηηη is described by the left eigenvectors ofDDD and the alignment angleα may equivalently be
interpreted as the angle between the palinstrophy vectorηηη and the stretching eigenvectorddd1. Our results therefore
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Fig. 7. The stretching eigenvectorsddd1 overlaid on the corresponding vorticity field for the hyperviscous (H1728) dissipation model. The
eigenvectors are shown only in the hyperbolic parts of the flow domain. The figure presents a 2162 segment of the whole field.

imply that with increasing Reynolds number the vorticity filaments are more aligned with the local direction of
stretching. The same happens when the filaments become thinner and more elongated. These effects can be observed
in Figs. 7 and 8, notably for the case of filaments which are detached from the large vortices and form the background
flow. Conversely, some filaments remain bound to the eddies from which they were stripped and reveal no preferential
alignment. This is because, for a single concentrated vortex, the rate of strain eigenvectors form the angle±π/4 with
respect to the circular filaments that surround the vortex. This explains the neutral alignments which are apparent
for some of the bound filaments (Figs. 7 and 8). The random field R1728 does not reveal any alignments which
might be the case if they were kinematic in origin. This indicates that the alignments that were found are a dynamic
property of the turbulent flows.

In [7], it was argued that the enstrophy cascade essentially consists in stretching and folding of vorticity layers.
The effectiveness of this process crucially depends on how the filaments are aligned with respect to the external
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Fig. 8. The stretching eigenvectorsddd1 overlaid on the corresponding vorticity field for the Newtonian (N1728) dissipation model. The eigenvectors
are shown only in the hyperbolic parts of the flow domain. The figure presents a 2162 segment of the whole field.

straining field. We showed evidence that these characteristics vary systematically with the Reynolds number and
may also depend on the dissipation model. At this point it should be emphasized that the geometrical properties of
the small scales may only be studied in the physical space. Such effects cannot be captured in the Fourier space,
since then all the geometrical structure is lost.

The main conclusion of this investigation is that vorticity filaments become more passive as the Reynolds number
increases. In Figs. 2 and 4 some differences between the hyperviscous and the Newtonian fields are evident. However,
it remains an open question whether they are due to the form or due to the magnitude of the dissipation term.
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