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The Kraichnan–Leith-Batchelor (KLB) theory of statistically stationary forced homoge-
neous isotropic 2-D turbulence predicts the existence of two inertial ranges: an energy
inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range
with an energy spectrum scaling of k−3. However, unlike the analogous Kolmogorov the-
ory for 3-D turbulence, the scaling of the enstrophy range in 2-D turbulence seems to be
Reynolds number dependent: numerical simulations have shown that as Reynolds num-
ber tends to infinity the enstrophy range of the energy spectrum converges to the KLB
prediction, i.e. E ∼ k−3. The present paper uses a novel optimal control approach to
find a forcing that does produce the KLB scaling of the energy spectrum in a moderate
Reynolds number flow. We show that the time-space structure of the forcing can signifi-
cantly alter the scaling of the energy spectrum over inertial ranges. A careful analysis of
the optimal forcing suggests that it is unlikely to be realized in nature, or by a simple
numerical model.

1. Introduction

In 1941 Kolmogorov proposed a statistical theory for homogeneous, isotropic and sta-
tistically stationary three-dimensional incompressible turbulence (Kolmogorov 1941). He
assumed that there is an inertial range of length scales in which the effect of the external
forcing and the molecular viscosity are negligible. Since in the inertial range the energy
spectrum, E(k), depends only on the mean energy dissipation rate ǫ and the wavenumber
k, dimensional analysis shows that the energy spectrum must follow the universal form:

E(k) = Cǫ2/3k−5/3 (1.1)

where C is a universal constant. Moreover, he conjectured that in three dimensions the
turbulent energy is transferred from larger scales (lower wavenumbers) to smaller scales
(higher wavenumbers) where the energy is eventually dissipated by viscosity. The k−5/3

prediction has been verified to high accuracy in numerous experiments and computations
(apart from small corrections due to the intermittency of the energy dissipation rate).

In spite of the fact that there are no truly two-dimensional flows in nature, they share
some properties with flows in which one length-scale is much smaller than the other two.
For instance, certain aspects of the flows in the atmosphere and oceans can be explained
by 2-D Navier–Stokes equations (Frisch 1995; Lindborg 1999). Such applications, in ad-
dition to theoretically interesting aspects, has motivated studies of two-dimensional flows
in the last few decades. The success and simplicity of Kolmogorov’s theory has inspired
efforts to adapt the theory to two-dimensional turbulence. However, Kolmogorov’s theory
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does not apply directly to two-dimensional flow since the dynamics of two-dimensional
flows are qualitatively different from three-dimensional flows. For example, vortex stretch-
ing which plays a key role in energy transfer between scales in 3-D is absent in 2-D. In
addition, Fjørtoft (1953) (and later Merilees & Warn (1975) and Gkioulekas & Tung
(2007)) showed that in a 2-D incompressible Navier–Stokes flow the energy is (on av-
erage) transferred to larger scales, while the enstrophy is transferred to smaller scales.
This so-called dual cascade is quite different from the 3-D case where the energy cascades
down to smaller scales in the inertial range. Based on Fjørtoft’s work and Kolmogorov’s
universality assumption, Kraichnan (1967), Leith (1968) and Batchelor (1969) developed
an analogous theory (usually referred to as KLB theory) for homogeneous, isotropic and
statistically stationary two-dimensional forced turbulence.

According to the KLB theory, in 2-D Navier–Stokes turbulence, there are two inertial
ranges (of energy and enstrophy respectively) where the effects of the viscosity and the
external forces are negligible. The energy and the enstrophy are injected by external
forcing in some intermediate scales between energy and enstrophy inertial ranges. The
injected energy is then transferred to ever larger scales through the energy inertial range
while the enstrophy is transferred to smaller scales through the enstrophy inertial range
until it is eventually dissipated by molecular viscosity. Kraichnan assumed that in the
energy inertial range the energy spectrum of the flow, E(k), depends only on the energy
dissipation rate (ǫ) and the wavenumber k, while, in the enstrophy inertial range, E(k)
depends only on enstrophy dissipation rate (η) and k. Using dimensional analysis, he then
predicted the following scaling laws: E(k) ∝ k−5/3 in the energy inertial range (just as
in three-dimensional turbulence) and E(k) ∝ k−3 (with a possible logarithmic correction
(see Kraichnan 1971)) in the enstrophy inertial range (see figure 1).

Many numerical and laboratory experiments have been performed in attempts to test
the KLB theory (see, for instance, Lilly 1969; Borue 1993; Pasquero & Falkovich 2002;
Boffetta 2007; Sommeria 1986; Marteau et al. 1995; Bruneau & Kellay 2005, also see
Clercx & van Heijst (2009) for a recent review.). These experiments confirm the general
setting of the theory. Each of the cascades have been observed independently with the
predicted slopes. However, there is a controversy. KLB theory predicts that if enough
energy and enstrophy are injected into the system these dual cascades (i.e. inverse cascade
of energy and forward cascade of enstrophy) must be realizable simultaneously in a
statistically stationary state. (Indeed, the inverse cascade of energy can be only quasi-
stationary in an infinite domain since the energy is transferred to ever larger scales.)
In the numerical and experimental studies, which attempt to realize the dual cascades
of 2-D turbulence simultaneously, the −5/3 slope of the inverse cascade has been well
established (see Smith & Yakhot 1993; Frisch & Sulem 1984, also see Scott (2007) for
a slightly steeper spectrum in the quasi-stationary state). However, slopes significantly
steeper than −3 have been usually reported for the forward cascade. Only recently,
some very high resolution numerical simulations have been able to achieve scalings of
enstrophy cascade close to k−3. To the best of our knowledge, Boffetta & Musacchio
(2010) present the closest result to the KLB prediction. At the highest Reynolds number
(i.e. a resolution of 327682) their enstrophy cascade exhibits a slope of (almost) −3.35.
They present persuasive evidence that the enstrophy range approaches the KLB scaling
asymptotically in the limit of infinite Reynolds number (also see Boffetta (2007) and
Bracco & McWilliams (2010) for similar studies). While scaling of the energy cascade
is not Re-number dependent, the source of the Re-number dependence of the enstrophy
range is not well-understood.

Some attempts have been made to explain this departure from the KLB theory. First,
it should be noted that while the KLB theory assumes unbounded domains the numerical
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and laboratory experiments are necessarily performed on bounded domains. Kraichnan
(1967) pointed out from the very beginning that this may affect the results of the ex-
periments since the energy transferred by the inverse cascade accumulates in the largest
available scales. This problem is partially avoided by adding a friction-type dissipation to
remove energy at the largest scales. This type of dissipation, usually called Rayleigh (or
Ekman) damping, resembles the friction between the atmospheric flow and the earth’s
surface (Basdevant et al. 1981). On the other hand, Tran & Dritschel (2006) (also see
Tran et al. 2007) disproved one of the underlying assumption of the KLB theory: that
enstrophy dissipation converges to a non-zero value in the zero molecular viscosity limit.
(This prediction is the analogue of the prediction that energy dissipation rate converges
to a non-zero finite value as Reynolds number tends to infinity in three-dimensional
turbulence.) However, Tran et al. (2007) showed (by substituting enstrophy dissipation
with a Reynolds number dependent quantity) that the −3 slope of the enstrophy cascade
should still hold.

Another question which is still not well understood is the effect of the forcing on the
dual cascades in forced–dissipative two-dimensional turbulence. Studies have shown that
the type of forcing modifies the slope of the enstrophy inertial range spectrum. The
convention is that a monoscale or a monoscale-like (band-limited) forcing is used. The
forcing is confined to a single wave number in the case of monoscale forcing, or to a
few adjacent wavenumbers in the band-limited case. The input energy is transferred to
larger scales and the input enstrophy to the smaller scales as predicted by KLB. This type
of forcing, first suggested by Kraichnan (1967), has some advantages. First, it is easy to
control the rate of energy and enstrophy injection and secondly, the energy and enstrophy
injection ranges do not overlap with the inertial ranges. It is therefore consistent with
the inertial range hypothesis that conjectures that the energy input is negligible in the
inertial ranges.

However, in 1994 Constantin et al. (1994) proved that, in a finite domain, monoscale
forcing cannot produce dual cascades with the slopes predicted by KLB. Later, Tran
& Shepherd (2002) and Tran & Bowman (2003) generalized this result to band-limited
forcing and more general types of dissipation. They proved that with monoscale (or
band-limited) forcing, the slope of the energy spectrum in the forward cascade cannot

be shallower than −5. These results show that monoscale and band-limited forcing are
actually inconsistent with KLB theory. Tran & Shepherd (2002) show that in the pres-
ence of “inverse viscosity” (which removes energy from large scales) the KLB scaling is
theoretically possible. However, as was mentioned before, this result suffers from the lack
of numerical and experimental evidence.

On the other hand, Lundgren (2003) proposed a linear forcing (directly proportional
to the velocity) to study three-dimensional turbulence. Lundgren was motivated by the
need to find a forcing that has a better physical justification and is easier to apply
in non-spectral simulations than the usual spectral forcing applied only to a few small
wavenumbers. Later, Rosales & Meneveau (2005) further studied the effects of this type
of forcing. Their results show that the predictions of the Kolmogorov theory still hold
under linear forcing, despite the fact that linear forcing is active at all scales.

In two dimensions, the effects of linear damping which is active in all scales (as opposed
to Rayleigh friction which is active only at the largest scales) has been studied in recent
years (Boffetta et al. 2002; Tsang et al. 2005; Tsang & Young 2009). It should be noted
that both linear forcing and linear damping are active over all scales, including the
energy and enstrophy inertial ranges. This appears to violate the inertial range hypothesis
because energy is injected (removed) directly at (from) all scales. However, the above
mentioned studies show that the energy flux (and enstrophy flux in 2-D case) remains
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almost constant over a wide range of wavenumbers, even when linear forcing or damping
is applied. These observations raise the question of whether there exist types of forcing
(possibly active at all scales) which are able to produce the dual cascades with the scaling
laws predicted by KLB theory. Answering this question is one of the goals of the present
paper.

The other goal is to investigate the effect of the space-time structure of the band-
limited forcing on the energy spectrum. In most previous numerical simulations, the
forcing is random in phase (see e.g. Schorghofer 2000). In some simulations, the forcing
is delta-correlated in time (see e.g. Boffetta 2007). In some others, the time correlation
is increased by a Markov process (see e.g. Lilly 1969). There are also simulations in
which the forcing depends on the instantaneous velocity field (see e.g. Chen et al. 2003).
The motivation for using each of these forcings is to have a control on the energy and
enstrophy injection rates. Therefore, there is no unique and physically well-justified way
to define the forcing. Almost always, the effect of the space-time structure of the forcing
on the energy spectrum is neglected. Here, we show that the details of this space-time
structure can have determining effects on the slopes of the cascades even when the forcing
is band-limited.

Next sections are organized as follows. In §2, we give a brief introduction to adjoint-
based optimal control and introduce our method for controlling the energy spectrum
of a flow. The numerical results of the application of the control process to turbulent
flows are presented and discussed in §3. These results are divided into two parts. In the
first part full-band forcing is considered (§3.1), while in the second part the forcing is
band-limited (§3.2). Finally, in §4 we explore the significance of our results for the theory
of two-dimensional turbulence and suggest further applications of our optimal control
approach.

2. Problem Formulation

Consider the incompressible Navier–Stokes equations on a two-dimensional box T2

with doubly periodic boundary conditions.

Lq ,

[
∂tu + u · ∇u + ∇p − ν∆u

∇ · u

]
=

[
f

0

]
, (2.1a)

u(t = 0,x) = u0(x), (2.1b)

where the symbol , stands for “equal by definition”, u(t, ·) : T2 → R2 is the velocity
field, p(t, ·) : T2 → R is the pressure, ν is the coefficient of kinematic viscosity and
f(t, ·) : T2 → R2 is the external forcing. The vector function q = [u p]T contains the
two components of velocity field u and the pressure field p. For any solution of equation
(2.1) we define the energy spectrum as

E(t, k) =
1

2

∫

C(k)

|û(t,k)|2 dS(k), (2.2)

where û is the Fourier transform of u and k is the wave vector. C(k) is a circle with
radius k in 2-D plane, C(k) = {k ∈ R2 : |k| = k}.

Let E0(k) be the energy spectrum predicted by KLB theory, i.e.,

E0(k) =

{
C1k

−5/3 ke
1 ≤ k ≤ ke

2

C2k
−3 kz

1 ≤ k ≤ kz
2

, (2.3)

where [ke
1 , ke

2] and [kz
1 , kz

2 ] are the energy and enstrophy inertial ranges respectively
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Figure 1: Schematic representation of the KLB theory. Energy and enstrophy are injected
by the external forcing over the range (ke

2, k
z
1). Energy and estrophy inertial ranges are

[ke
1, k

e
2] and [kz

1 , kz
2 ] respectively. The smallest wavenumber is kmin = 1 (if the domain is

unbounded kmin = 0 and the large scale dissipation is not necessary) while the largest
available wavenumber kmax depends on the numerical resolution.

(figure 1). The wavenumber ke
1 may extend to the smallest wavenumbers, kz

2 extends up
to the beginning of the dissipation range and ke

2 ≈ kz
1 . In the case of monoscale forcing,

ke
2 and kz

1 are almost equal to the forcing wavenumber. C1 depends only on the energy
dissipation rate (ǫ) and C2 depends only on the enstrophy dissipation rate (η). Since the
energy and enstrophy dissipation rates are constants (based on KLB theory), C1 and
C2 are also constants. Using the inertial range hypothesis, dimensional analysis gives
C1 ∝ ǫ2/3 and C2 ∝ η2/3. The constants of proportionality are non-dimensional and of
order of unity (Constantin et al. 1994).

Our goal is to find a forcing, f , which results in a solution of Navier–Stokes equation
(2.1) with the KLB energy spectrum E0(k). Define the following cost functional:

J (f) ,
1

2

∫ T

0

∫

I

w(t, k)|E(t, k) − E0(k)|2 dk dt, (2.4)

where I = [ke
1, k

e
2]∪ [kz

1 , kz
2 ]. The function w(t, k) is a positive weight function which plays

two roles. The wavenumber dependence of w(t, k) normalizes the error |E(t, k)−E0(k)|2

over the range I in order to get a uniform error distribution over all wavenumbers. Since
E0(k) decreases as k−3 on the interval [kz

1 , kz
2 ], w(t, k) = k6 α(t) is a suitable candidate.

The time dependence of the weight function α(t), on the other hand, is used to put more
emphasis on the contribution of E(t, k) near t = T . This allows the energy spectrum of
the flow to evolve gradually from the initial energy spectrum E(0, k) (which is arbitrary
due to universality of the KLB theory) toward its equilibrium E0(k). As far as we are
concerned any increasing function of time is a suitable choice for α(t).

If for some solution of equation (2.1), the above cost functional is zero, the energy spec-
trum will scale as predicted by the KLB theory on the time interval [0 , T ]. In this case,
the energy spectrum will be stationary for times when w(t, k) > 0. However, note that
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this does not imply, by itself, the existence of the dual cascades with the constant energy
and enstrophy fluxes. The dynamics of the cascades must be examined independently.

The above description may be formulated as the following optimization problem

min
f∈U

J (f), (2.5)

where U is a suitable function space with Hilbert structure. Here we consider the space
of square integrable functions in space and time i.e., U = L2([0, T ]; L2(T2)). The cost
functional J depends on f through the system of equations (2.1) in which the explicit
dependence of the cost functional on the velocity field has been dropped. This type of
cost functional is called a reduced cost functional (Nocedal & Wright 2000).

Now, our goal is to find a forcing f opt ∈ U that minimizes the cost functional J .
Starting with an initial guess f (0), an approximation of the minimizer can be found using
a gradient-based descent method of the form

f (n+1) = f (n) + τ (n) A∇J (f (n)) , n = 0, 1, . . . , (2.6)

such that limn→∞ f (n) = f opt, where n is the iteration count and τ (n) ∈ R− is a constant
to be determined at each iteration. At each iteration, the descent direction A∇J is calcu-
lated based on the gradient of the cost functional ∇J . Different forms of the operator A
correspond to different variants of the gradient method. For instance, if A is the identity
operator, it corresponds to the steepest descent method and if it is an appropriate affine
operator, it corresponds to the conjugate gradient method. As will be shown below, the
gradient ∇J may be expressed in terms of the solution of a suitably-defined adjoint sys-
tem. This is a standard approach to solution of PDE-constrained optimization problems
and its mathematical foundations were laid by Lions (1969). We refer the reader to the
monographs by Gunzburger (2003) and Bewley (2001) for a survey of applications of this
approach in fluid mechanics.

The necessary condition characterizing the minimizer f opt of the cost functional is the
vanishing of the Gâteaux differential J ′ : U × U → R, i.e.,

J ′(f opt; f
′) = 0 , ∀ f ′ ∈ U , (2.7)

where the Gâteaux differential is defined as

J ′(f ; f ′) , lim
ǫ→0

J (f + ǫ f ′) − J (f)

ǫ
. (2.8)

Substituting from (2.2) and (2.4) into (2.8), one can easily show that

J ′(f ; f ′) =
1

2

∫ T

0

∫

I

w(t, k)(E(t, k) − E0(k))

(∫

C(k)

(û · û′ + û · û′) dS(k)

)
dk dt,

(2.9)
where the bar represents the complex conjugate and û′ is the Fourier transform of the
solution of the Navier–Stokes equation linearized around the state u, i.e.

L′q′ ,

[
∂tu

′ + u′ · ∇u + u · ∇u′ + ∇p′ − ν∆u′

∇ · u′

]
=

[
f ′

0

]
, (2.10a)

u′(t = 0,x) = 0, (2.10b)

where q′ = [u′ p′]T and f ′ is the direction in the space U in which the Gâteaux differential
is computed in (2.8).

On the other hand, the Riesz representation theorem (Lebedev & Vorovich 2002) guar-
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antees the existence of a unique element ∇J ∈ U which satisfies the identity

J ′(f ; f ′) = (∇J , f ′)U , ∀f ′ ∈ U , (2.11)

where (·, ·)U is the L2 inner product. Hereafter, the subscript U is eliminated from the
notation of the inner product. Here we consider the cost functional gradients ∇J as
L2-functions, however, this approach can be easily generalized to different Hilbert spaces
and, in particular, Sobolev spaces (Protas et al. 2004). Note that ∇J is the steepest
ascent direction for the cost functional J . An expression for the gradient ∇J cannot be
derived imediately by equating (2.9) and (2.11), since in (2.9) the direction f ′ does not
appear explicitly as a factor (It is “hidden” in system (2.10) defining u′). However, the
Gâteaux differential (2.9) can be transformed to the Riesz form using suitably-defined
adjoint variables u∗ and p∗, as shown by the following argument.

For any q∗ = [u∗ p∗]T , we have (u∗, f ′) =

(
q∗,

[
f ′

0

])
by definition and

(
q∗,

[
f ′

0

])
=

(q∗,L′q′) by (2.10). Therefore,

(u∗, f ′) = (q∗,L′q′)

= (L∗q∗,q′), (2.12)

where the adjoint operator L∗ is

L∗q∗ =

[
−∂tu

∗ −
[
∇u∗ + ∇u∗T

]
u − ∇p∗ − ν∆u∗

−∇ · u∗

]
(2.13)

which was obtained by integration by parts. Note that the boundary terms resulting
from integration by parts in space cancel out due to the periodic boundary conditions.
Assuming u∗(t = T,x) = 0, the terms

∫
T2 u∗ ·u′|t=T dx and

∫
T2 u∗ ·u′|t=0 dx, resulting

from integration by parts in time, also vanish since u′(t = 0,x) = 0.
By Parseval’s identity,

(L∗q∗,q′) =
(
L̂∗q∗, q̂′

)

=

∫ T

0

∫ ∞

0

(∫

C(k)

L̂∗q∗ · q̂′ dS(k)

)
dk dt, (2.14)

where the hat represents the Fourier transform. Since (L∗q∗,q′) is real valued, (L∗q∗,q′) =
1
2

(
(L̂∗q∗, q̂′) + (L̂∗q∗, q̂′)

)
. Therefore,

(L∗q∗,q′) =
1

2

∫ T

0

∫ ∞

0

(∫

C(k)

(L̂∗q∗ · q̂′ + L̂∗q∗ · q̂′) dS(k)

)
dk dt. (2.15)

A comparison between (2.9) and (2.15) suggests that if the following choice is made for
the right-hand side expression in the equation for the adjoint variable q∗:

L̂∗q∗(t,k) =

[
χI(k)w(t, k)(E(t, k) − E0(k))û(t,k)

0

]
(2.16)

with χI the characteristic function of the interval I, then the adjoint operator can be used
to re-express Gâteaux differential (2.9) as J ′(f ; f ′) = (L∗q∗,q′). This, together with the
Riesz identity (2.11) and the duality expression (2.12) implies that J ′(f ; f ′) = (u∗, f ′) =
(∇J , f ′) for any f ′ ∈ U and therefore,

∇J = u∗. (2.17)
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Hence, the gradient direction ∇J can be conveniently expressed in terms of the solution
of the following adjoint system

(
∂tu

∗ +
[
∇u∗ + ∇u∗T

]
u + ∇p∗ + ν∆u∗

)∧
(t,k) = −χI(k)w(t, k)(E(t, k)−E0(k))û(t,k),

(2.18a)

∇ · u∗ = 0, (2.18b)

u∗(t = T,x) = 0. (2.18c)

By solving the adjoint system to compute the gradient ∇J and using the itera-
tive process (2.6), one can find an approximation of the minimizer f opt. The optimal
value for the parameter τ (n) in (2.6) is the one that minimizes the function G(τ) ,

J
(
f (n) + τ A∇J (f (n))

)
with respect to the real variable τ for fixed f (n) and A∇J (f (n)).

Here a standard line minimization method (Nocedal & Wright 2000) is used to find the
appropriate value of τ at each iteration.

Optimization problems of type (2.5) are examples of inverse problems which often
tend to be ill-posed. This ill-posedness may manifest itself in large magnitudes of the
minimizer f opt. Since such large-magnitude forcing is not very interesting, this problem
can be mitigated by adding a penalty term to the cost functional as follows

Jη(f) = J (f) +
1

2
η ‖f‖2, (2.19)

where J (f) is the same as in (2.4), η ∈ R+ is a constant and ‖ · ‖ is the norm in U
(L2-norm here). The penalty on the magnitude of the control variable f is determined
by the parameter η. Smaller values of η allow forcings with larger norms and vice versa.
Since the Gâteaux differential of the penalty term 1

2η ‖f‖2 in direction f ′ is η (f , f ′)U ,
the gradient of the modified cost functional is ∇Jη(f) = ∇J + η f .

To summarize, the optimization process can be expressed as the following algorithm.

Algorithm 1.

(1) Choose an initial guess f (0)(t,x); Set n = 0.
(2) Solve Navier–Stokes equation (2.1) forward in time with f = f (n).
(3) Solve adjoint equation (2.18) backward in time.
(4) Obtain the cost functional gradient as ∇Jη = u∗ + ηf
(5) Find the length of the step τ (n) through line minimization.
(6) Update the control variable through (2.6); Set n = n + 1.
(7) Go back to 2.

The loop continues until the optimality condition (2.7) is approximately satisfied, i.e.,
∇Jη(f (n)) ≈ 0 in some suitable sense.

In this work, a pseudo-spectral method is used to solve Navier–Stokes and adjoint
equations numerically. Since the adjoint equation is expressed in terms of the Fourier
space representatives and the boundary conditions are doubly periodic, the Fourier spec-
tral method is arguably the most efficient way to solve it. Time integration is performed
with a Krylov subspace method (see Edwards et al. 1994; Schulze et al. 2009). As was
mentioned above, the parameter τ (n) is evaluated by a line search method. This method
uses successive evaluations of the cost functional. Each evaluation of the cost functional
requires solving the Navier–Stokes equation. Usually between 15 to 25 cost functional
evaluations are required for each line minimization. Therefore, it turns out that the most
costly part of the above algorithm is evaluation of the parameter τ (n).

In the next section, we use this control method to study the effects of forcing on the
scaling properties of the energy spectrum in forced 2-D turbulence. Since to the best of
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our knowledge adjoint-based techniques have not been employed to control the spectral

properties of a turbulent flow, this study serves also as a validation for the control method
proposed here.

3. Results and Discussion

Equations (2.1) and (2.18) are solved with ν = 6.5× 10−5 using 10242 Fourier modes.
The aliasing effect of the nonlinear term is removed by the 2/3 rule. To reduce the
computational time, the initial condition, u0, is a fully-developed turbulent field forced
by a mono-scale forcing (see figure 2). The initial guess in step 1 of the algorithm 1 is
zero, i.e. f (0) ≡ 0. The constants of proportionality in equation (2.3) are C1 = 1.18
and C2 = 64.00. These values are chosen in order to retrieve a continuous target energy
spectrum, E0(k), with the total energy close to the total energy of the initial condition.
The weight function in equation (2.4) is w(t, k) = k6

√
t/T in order to normalize the error

over different wave-numbers and also to put more emphasis on the contribution of the
error near t = T , where the termination time is T = 4. Here, the penalization parameter
η in (2.19) is equal to zero.

Based on the types of forcing, the results are divided into two parts as follows:
(i) Full-band forcing (§3.1)
(ii) Band-limited forcing (§3.2)
In case (i) the forcing is allowed to be active at any wavenumber. Therefore, it does

not necessarily respect the inertial range assumption of the KLB theory since it may add
(or remove) energy and enstrophy into (from) the cascading wavenumbers. We show,
however, that the inertial interactions (responsible for the cascades) still dominate the
flow dynamics. This forcing is physically more realistic than the (theoretically interesting)
monoscale forcing. For instance, Welch & Tung (1998) present a model of the atmospheric
flow in which the forcing is due to temperature gradients and active over a portion of
the enstrophy cascade.

In case (ii) the forcing is non-zero only at a few intermediate wavenumbers (i.e.
k ∈ (ke

2, k
z
1)) and a few small wavenumbers (i.e. k ∈ [1, ke

1)) (see figure 1). Therefore,
the scalings of the energy and enstrophy cascades are exclusively due to inertial (triad)
interactions. This forcing resembles the classical band-limited forcing used in most numer-
ical simulations. However, we do not define the forcing a priori, but calculate it through
the optimization. Note that neither a linear damping nor a hypoviscosity is used as a
large scale sink. Instead, we allow the forcing to be non-zero at a few small wavenumbers
(i.e. k ∈ [1, ke

1)) in order to create the large scale energy dissipation, if necessary. As it is
shown in the next section, this actually happens and the forcing automatically acts as a
large-scale sink at small wavenumbers.

In terms of the optimal control setting, in case (i) the only restriction on the forcing
is to be square integrable. In other words the cost functional (J ) is minimized over the
function space U = L2([0, T ]; L2(T2)). While in case (ii), the control space is

U =
{

f ∈ L2([0, T ]; L2(T2)) : f̂(t,k) = 0, |k| ∈ [ke
1, k

e
2] ∪ [kz

1 , +∞)
}

. (3.1)

3.1. Full-band Forcing

The parameters that determine the scaling ranges are ke
1 = 2, ke

2 = kz
1 = 20 and kz

2 = 200.
Figure 2 shows that the optimal control method gives the spectral slopes predicted by
KLB theory. This energy spectrum remains (almost) stationary on the time interval
1
2T ≤ t < T where T = 4 ≈ two eddy turnover times. In figure 3, the instantaneous
vorticity fields produced by a monoscale forcing (left) and the optimal forcing (right) are
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Figure 2: The energy spectrum of the initial condition (- - -) and the energy spectrum
resulting from the optimal full-band forcing (—). The straight lines represent the -5/3
and -3 slopes.

(a) (b)

Figure 3: Vorticity fields resulting from the band-limited forcing (a) and the optimal
full-band forcing (b)

compared. It is obvious that the optimal forcing produces more small scale, filamentary
structures.

We now present some properties of this optimal forcing. An interesting quantity is the
contribution of the forcing to the energy spectrum of the velocity field. This quantity is
defined by

F (t, k) =

∫

|k|=k

ℜ{f̂(t,k) · û(t,k)} dS(k), (3.2)
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Figure 4: The energy is mostly injected at k = 20 by the external forcing. Different
lines correspond to different time slices. The inset shows the corresponding enstrophy
injection.

and indicates whether the forcing injects energy into (if positive) or removes energy from
(if negative) mode k. Figure 4 shows that the optimal control injects energy into the
system mostly at wave-number k = 20 (i.e. the wave-number at which the spectral slope
changes from −5/3 to −3 , see figure 2). This is a non-trivial result since the control
method allows the forcing to act over the whole wavenumber range. The energy injection
by forcing decays to zero exponentially for k ≥ 20. Enstrophy, however, is mostly injected
at small scales as the inset of figure 4 shows. For 1 ≤ k ≤ 6 the optimal forcing removes
energy from the system which creates a sink of energy in large scales. Since energy is
transferred to larger scales, a mechanism to dissipate it is necessary in order to reach a
statistically stationary state in forced 2-D turbulence. Moreover, Tran & Shepherd (2002)
proved that the presence of a large scale sink of energy is necessary in order to obtain the
dual cascades with −5/3 and −3 slopes when the forcing is monoscale or band-limited.
In the present case where the forcing is full-band the large scale energy dissipation seems
to be necessary, and is produced automatically by the optimal control method.

The energy spectrum of the forcing which is defined by

Ef (t, k) =
1

2

∫

|k|=k

|̂f(t,k)|2 dS(k),

is plotted in figure 5 for several time slices. It shows that the forcing is active on a wide
range of scales which means that the energy and enstrophy cascades are not inertial
ranges. The forcing decays to zero as time increases (also consistent with figure 4). This
decay is an artifact of the control algorithm. Since we start with a zero initial guess (i.e.
f (0) ≡ 0) and the gradient of the cost functional is zero at t = T (see equation (2.18)),
the forcing remains equal to zero at t = T for all iterations, i.e. f (n)(T,x) ≡ 0.

It is also necessary to examine the dynamical properties of the flow generated by
the optimal forcing since one can generate a random phase vector field with -3 (or -5/3)
energy spectrum (and no dynamics or cascades). Therefore, we need to check that the the
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Figure 5: The energy spectrum of the forcing at different time slices. As time increases
the energy level of the forcing decreases to zero.

resulting flow is dynamically active. As mentioned earlier, the triad interactions determine
the dynamics of the energy and enstrophy cascades associated with the nonlinear term
in the Navier-Stokes equation. In 2-D, they transfer most of the energy to larger scales
and most of the enstrophy to smaller scales. Since our optimal forcing is non-zero on the
cascading ranges, it can significantly affect these transfers. In the following, we will show
that the triad interactions still dominate the dynamics of the flow in the presence of the
optimal control forcing.

For each wave vector triad k, p and q, we use the method introduced in Maltrud
& Vallis (1993) to calculate the energy transfer function Tkpq. The enstrophy transfer
function, Skpq, is related to energy transfer function by Skpq = k2Tkpq. The positive
values of the quantity Tkpq (Skpq) correspond to energy (enstrophy) transfer rate into

mode k due to interactions with modes p and q. Similarly, the negative values of these
quantities correspond to the energy and enstrophy transfer rates out of mode k.

We simplify the transfer functions (and make them consistent with the statistical KLB
theory) by averaging over one of the wave-vectors and defining

Tkp =
∑

q

Tkpq.

Since we consider isotropic turbulence, it is appropriate to average over angles in wave-
number space. This further simplifies the calculations and leads to the following definition
of the energy transfer function in terms of two wave-numbers

Tkp =

∫

|k|=k

∫

|p|=p

Tkp dS(p) dS(k). (3.3)

The two-wave-number enstrophy transfer function, Skp, is defined similarly, and is related
to Tkp by Skp = k2Tkp.

The time-averaged energy and enstrophy transfer rates are plotted in figure 6 for the
fixed wave-number k = 10 (for energy) and k = 40 (for enstrophy) and in terms of p. The
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Figure 6: The time averaged energy (Tkp) and enstrophy (Skp) transfer functions.
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Figure 7: The time averaged fluxes of energy(a) and enstrophy(b) normalized by
‖ΠE‖∞ = supk |ΠE(k)| and ‖ΠZ‖∞ = supk |ΠZ(k)| respectively.

data is noisy since the transfer functions are averaged over a relatively short time interval
(0 ≤ t ≤ 4). However, some interesting features may be observed. In a neighbourhood
of k = 40, the enstrophy transfer function is positive for p < k while it is negative for
p > k. Similar behaviour is observed for wave-numbers 25 ≤ k ≤ 150 (not presented
here). This shows that the enstrophy is mostly transferred to smaller scales on this range
of wave-numbers. On the other hand, in a small neighborhood of the wave-number k,
the energy transfer function is negative for p < k and positive for p > k which shows an
energy transfer to larger scales. These results provide evidence that the optimal forcing
respects the directions of the energy and enstrophy cascades.

The energy and enstrophy fluxes which are defined as

ΠE(k) = −

∫ ∞

k

∫ ∞

0

Tκp dp dκ, ΠZ(k) = −

∫ ∞

k

κ2

∫ ∞

0

Tκp dp dκ,

respectively show the flux of energy and enstrophy across wavenumber k (see Maltrud
& Vallis 1993, for details). Figure 7 shows the time averaged fluxes normalized by the
maximum of their absolute values. Since ΠE(k) < 0 for k ∈ [3, 30) (except k = 6) the
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Figure 8: The fact that G(t, k) is positive for all k demonstrates the existence of inverse
energy and direct enstrophy cascades. Each curve corresponds to a time slice between
3
4T and T . The arrow shows the time increase.

energy fluxes upscale on average. The dominant downscale flux of enstrophy is clear for
k ∈ (15, 150) since ΠZ(k) > 0 over this range.

There is another independent way of checking the direction of energy and enstrophy
cascades. In their proof, Gkioulekas & Tung (2007) present a sufficient condition for
the existence of the upscale energy and downscale enstrophy cascades in a statistically
stationary state. This condition is

G(t, k) , 2νk2E(t, k) − F (t, k) > 0, (3.4)

where E(t, k) is the energy spectrum as defined in (2.2) and F (t, k) is the energy injected
(or removed) by the forcing calculated through (3.2). Note that the inequality holds for
band-limited forcings and any wave-number, k, outside the band-width of the forcing
since F (t, k) = 0 for these modes. Figure 8 shows the quantity G(t, k) for the optimal
forcing and for several time slices. Note that the time dependence of the energy spectrum
can be eliminated since a statistically steady state is considered, however, F (t, k) is still
time dependent. This figure shows that the inequality (3.4) is satisfied and therefore, on
average, energy is transferred to larger scales while enstrophy is transferred to smaller
scales.

In summary, our results demonstrate the existence of a forcing which is consistent with
the predictions of KLB theory (i.e. coexisting cascades of energy and enstrophy with −5/3
and −3 spectral slopes). The upscale energy and downscale enstrophy cascades are active
under this forcing. However, these cascades are not inertial ranges since the forcing is
active on a wide range of scales including the cascade ranges. The forcing injects energy
mostly around the wave-number at which the slope of the energy spectrum changes from
−5/3 to −3. Moreover, it automatically removes energy from large scales and produces
a statistically steady state.
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Figure 9: The controlled energy spectrum (with band-limited forcing) at t = 7
8T (—

) and the energy spectrum resulting from the conventional band-limited forcing and
inverse viscosity (- - -).

3.2. Band-limited Forcing

We now confine the forcing to the space of band-limited functions defined in (3.1). Since
ke
1 = 3, ke

2 = 18, kz
1 = 25 and kz

2 = 200, the forcing is non-zero only for the wavenumbers
k ∈ [1, 2]∪ [19, 24]. Note that conventionally, energy is removed from large scales by Ek-
man drag or by inverse viscosity. Here, we do not use any energy dissipative mechanisms
at large scales. Instead, we simply allow the forcing to be non-zero at largest scales. The
forcing may remove the energy from those scales if necessary (As the following results
demonstrate, this is in fact the case). The advantage of this method is that the energy
injection and large scale energy dissipation are now determined by the control procedure
alone: they are not fixed a priori .

Figure 9 shows the energy spectrum resulting from the band-limited optimal forcing at
t = 3.5 (Note that in this case T = 4 ≈ four eddy turnover times). The energy spectrum
follows the KLB scaling law E ∼ k−5/3 for a decade of wave-numbers and E ∼ k−3 for a
quarter of a decade. As expected, the enstrophy range is extended over a shorter range
of wave-numbers compared to the previous case where full-band forcing was used. The
energy spectrum resulting from a conventional band-limited forcing and inverse viscosity
is given for comparison (dashed line in figure 9).

The vorticity field at t = T is presented in figure 10a. Figure 10b shows the instan-
taneous non-zero component of ∇ × f in physical space. It appears that the forcing is
homogeneous and isotropic. However, more careful investigation shows that the forc-
ing is particularly aligned in the favour of enstrophy injection into the system. To see
this, note that the total energy and enstrophy injections are given by

∫
T2 f · u dx and∫

T2 f · (−∆u) dx respectively. Therefore, a forcing aligned with velocity injects energy
more efficiently while a forcing aligned with −∆u injects enstrophy more efficiently. Fig-
ure 11 shows the probability distribution function of these alignments over time and space
where θe and θz are respectively the distributions of the angles ∠(f ,u) and ∠(f ,−∆u).
These figures reveal that the forcing is aligned such that the enstrophy injection is rela-
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(a) (∇ × u) · bn (b) (∇ × f) · bn.

Figure 10: The vorticity field resulting from the optimal band-limited forcing (left) and
the curl of the optimal forcing (right) at t = 7

8T .

tively more efficient than the energy injection. Note that in the case of a random phase
forcing (which is conventional in numerical simulations of 2-D turbulence) there are no
preferential alignments of the forcing with the velocity field. Figure 12 shows the time
correlation of the optimal forcing defined as 〈f(x, t) · f(x, t + τ)〉 where 〈 〉 denotes the
average in time and space. The time correlations of the velocity and the deformation
tensor Dij = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
) are given for comparison. The time correlation of all elements

of the deformation tensor (almost) coincide and therefore only one of them (non-diagonal
element) is plotted. The curves are normalized by the correlation at τ = 0. It shows that
the time correlation of the optimal forcing is relatively small and almost equal to the time
correlation of the strain rate. This suggest a connection between the time dependence of
the forcing and the strain rate.

The energy contribution to the system from the external forcing (i.e. F (t, k)) is shown
in figure 13. Energy is injected in the wave-numbers k ∈ [19, 24], while it is removed from
largest available scales, i.e. k ∈ [1, 2]. This agrees with the fact that a sink of energy at
large scales is a necessary condition for achieving the KLB limit in a finite domain. Since
the forcing is band-limited, the inequality (3.4) is automatically satisfied on the range
k ∈ [3, 18]∪ [25, +∞). Therefore, the upscale energy and downscale enstrophy fluxes are
dominant.

4. Conclusions

We have developed an optimal control method in order to study the effect of forcing
on the scaling laws of two-dimensional turbulence. We are particularly interested in
discovering whether it is possible to produce the simultaneous dual cascades of energy
and enstrophy and the corresponding scaling laws (i.e. E ∼ k−5/3 on the energy cascade
and E ∼ k−3 on the enstrophy cascade) predicted by the classical KLB theory in a
non-asymptotic sense.

Our results demonstrate that when a full-band forcing is used (i.e. a forcing active over
all scales), the KLB spectral slopes can be observed in a flow with a moderate Reynolds
number. Such forcings clearly violate the inertial range assumption because some energy
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is directly injected by the external forcing into the wave-numbers of the scaling ranges.
However, the inverse energy and forward enstrophy cascades still exist and their dynamics
are dominated by the inertial interactions (i.e. triad interactions). This is similar to the
linear forcing suggested by Lundgren (2003) for numerical simulations of 3-D turbulence.
Linear forcing is also full-band and therefore interferes with the inertial range dynamics.
However, as we have found here for 2-D turbulence, Rosales & Meneveau (2005) showed
that the resulting statistical properties (e.g. stationarity and power-law scaling) of the
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20T .

flow under linear forcing are similar to the case where the conventional band-limited
forcing active over largest scales is used.

In general, full-band forcings are of interest because they are physically more realis-
tic than band-limited forcings. Although there is no reason to believe that the optimal
forcing introduced here may be observed in nature, it suggests that employing more
realistic forcings (rather than the random-phase band-limited forcing) in the studies of
two-dimensional turbulence may significantly change the dynamics of the flow includ-
ing the dual cascade. In addition, full-band forcings are much easier to implement in
numerical simulations which do not benefit from the scale selective property of spectral
methods.

We also found that the optimal forcing automatically creates a sink of energy at largest
scales. It has already been proved (Constantin et al. 1994; Tran & Shepherd 2002; Tran &
Bowman 2003) in the case of monoscale forcing that such an infrared sink is a necessary
condition in order to obtain the dual cascades and KLB scaling laws. We have observed
a similar sink even when the forcing is full-band. Our result suggests the possibility to
generalize the existing proofs to more general types of forcing.

In the case of band-limited forcing, the optimal control method still finds a forcing
which results in the KLB scaling laws. However, the −3 range of the spectrum extends
over only a quarter of a decade of wavenumbers. It is possible, however, to extend this
scaling range by increasing the resolution (results not presented here).

Comparison of the energy spectra resulting from our optimal forcing and from the
conventional random-phase band-limited forcing (figure 9) suggests that the details of
the space-time structure of the forcing can crucially alter the statistical properties of the
flow. For example figure 11 shows that the optimal forcing is particularly aligned in the
favour of enstrophy injection. Replacing the phase-structure of the optimal forcing with a
random variable (and preserving other properties of it) leads to a much steeper spectrum
of the enstrophy cascade (i.e. E ∼ k−4). This shows that the conventional forcing (which
is usually random in phase) has determining effects on the scaling properties of the
enstrophy cascade.
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On the other hand, small perturbations in the band-limited optimal forcing leads to
a much steeper fall-off of the energy spectrum (close to k−4). Moreover, we have not
succeeded in constructing a simple model of the forcing based on the observed space-time
properties of our optimal forcing. These observations imply that solutions of optimization
problem (2.5) are quite sensitive to perturbations which is to be expected given the ill-
posed character of the problem. This suggests that the optimal forcing belongings to a
sparse set in the space of square-integrable band-limited functions. Therefore, it is quite
unlikely to be physically realizable. This implies that reproducing the co-existing dual
cascades which follow the KLB scaling laws is unlikely when a band-limited forcing is
used with a moderate Reynolds number.

Finally, we emphasize that the method of controlling the energy spectrum of the flow
introduced here can be used for other problems in fundamental turbulence research. For
example, by making a particular choice of the weight function w(t, k) in equation (2.4)
one can control the rate at which an initially localized energy spectrum spreads over all
scales. This can provide a different perspective to some problems such as transition to
turbulence and drag (or lift) control in a flow over a rigid body which have already been
studied through other approaches. Moreover, Gioia & Chakraborty (2006) showed that
the wall friction in a turbulent flow depends significantly on the energy spectrum of the
flow. Therefore by controlling the energy spectrum one can also control the turbulent
friction in pipe flow. The method could also be used in some benchmark studies in
geophysical fluid dynamics. For instance, in a separate attempt (not published) we have
produced the Gage–Nastrom spectrum (Gage & Nastrom 1985) of mesoscale atmospheric
flow in a forced two-dimensional Navier–Stokes flow. Furthermore, our method can be
easily modified to control the energy spectrum of the geophysical fluid dynamics models
such as the quasi-geostrophic and surface quasi-geostrophic equations.

In summary, we have used an optimal control theory approach to find a forcing that
produces the simultaneous dual scaling ranges predicted by KLB. Previous studies (Bof-
fetta & Musacchio 2010; Bracco & McWilliams 2010) have presented strong evidence in
the favor of KLB scaling in the limit of very large Reynolds numbers. In the present
study, the simultaneous dual cascade with the KLB scaling has been observed for the
first time in a relatively lower Reynolds number by employing a non-conventional type
of forcing. However, the high sensativity of the energy spectrum to this forcing suggests
that it is unlikely to be observed in nature or in the labratory experiments.
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