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Abstract

This investigation concerns solutions of the steady—dtaftier equations in two dimen-
sions featuring finite—area regions with constant vogti@mbedded in a potential flow.
Using elementary methods of the functional analysis wevdgurecise conditions under
which such solutions can be uniquely continued with respedheir parameters, valid
also in the presence of the Kutta condition concerning a feegghration point. Our ap-
proach is based on the Implicit Function Theorem and peatioh equations derived using
shape—differentiation methods. These theoretical reandt illustrated with careful numeri-
cal computations carried out using the Steklov—Poincaeéhod which show the existence
of a global manifold of solutions connecting the point vertnd the Prandtl-Batchelor
solution, each of which satisfies the Kutta condition.
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1 Introduction

This work addresses certain fundamental properties of arhmdel of interest in
the study of massively separated flows past bluff bodies.rtativated by the field
of flow control where one of the recurring themes is the sizdtlon of unsteady
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vortex wakes with applications involving aeronautical erréstrial vehicles [1].
Stabilization of such flows with a vanishingly small contedfiort is often based on
the premise that there exist steady unstable solutiongacteized by recirculation
regions with closed streamlines for high enough Reynoldsbars. Therefore, in
what follows the flow is considered effectively inviscid, that the incompressible
Euler equation is the relevant model. A further assumptsotiat the flow is two—
dimensional (2D). Despite their simplicity, such models eapable of describing
the large—scale vortex dynamics as well as vortex equaljlannd these features are
often sufficient to allow for the use of such models as a basislévelopment of
effective control strategies [2]. With such problems in dyim the present investi-
gation we use a combination of rigorous mathematical arsaysd careful numeri-
cal computations to address an important theoretical quesbncerning the Euler
equation, namely, the existence of a continuous family aftsans characterized
by growing vortex patches.

To fix attention, we consider the flow domdhc R? as shown in Figure 1 which is
motivated by the shape of high—lift devices used in someraxjgatal aeronautical
applications (lift is increased as a result of “trapping’atex in the cavity [3], see
Figure 1). Points belonging to the domdnhwill be denotedx = (x,y). While in
such applications the domatfn is considered unbounded, in order to avoid tech-
nical complications, in the mathematical analysis we wsiame without loss of
generality that this domain is bounded. The numerical cdatmns reported in
this paper use an unbounded domain. The domain boundargumasl piecewise
smooth and not necessarily Lipschitz (i.e., cusps are althwOur domaim is
constructed so that the upstream and downstream boundaitesde with the OX
axis. As a result, this domain may also be used to model flovilsarentire plane
pastsymmetriombstacles where the OX axis is the axis of symmetry.Expngdbie

velocityu in terms of the streamfunctiap : Q — R asu = [u,Vv] = %—‘ij, —%—‘f , the
two—dimensional (2D) steady—state Euler equation canuwastten as the follow-

ing boundary—value problem [4]

0%y = F(Y) inQ, (1a)
P =up onoqQ, (1b)

whereF : R — R is an a priori undefined function, ang, : dQ — R is a function
corresponding to the boundary conditions on the normaloigi@omponent. On
the parts of the bounda®dQ where the normal velocity vanishds, is equal to

a constant implying that such parts of the boundary arersiiras. On the other
hand, on the parts of the boundary where the normal velooggdhot vanish (e.g.,
the inflow and outflow of the channal), is obtained by integrating the relationship
% = —u-n, wheren represents the unit normal vector facing out of the domain
Q, ands s the arc—length coordinate parameterizing the domaiméaryoQ and
having positive orientation. Equation (1a) expressesadbethat the vorticityw =
—F (W) has a constant value on the streamlines in inviscid 2D tinmdependent
flows. Thus, for regions with closed streamlines, this wittiis not defined by



the far—field boundary condition (1b) and, as a consequeyséem (1) may admit
multiple solutions. In principle, each of those vortex smas could be adopted as
a model for a separated flow in the infinite Reynolds numbett liamd choosing
the relevant one is a long—standing problem in theoretigdiddynamics; we refer
the reader to the monograph [5] for a survey of availableltestihis multiplicity

of solutions is reflected in the different distributions a@frticity —F () which can
be adopted for the region with closed streamlines. Batcl{6l@] argued that the
limiting solution for the viscous flow with the Reynolds nuarRegoing to infinity

is characterized bw = constin the region with closed streamlines, i.e., the finite
area wake effectively reduces to a vortex patch. Moreovegeneral, solutions
with vortex patches may also feature a judip of the Bernoulli constant across
the vortex sheet that separates the recirculating flow froeneixternal potential
flow. The present study addresses inviscid solutions thatbnoad sense belong
to the family of such models, also referred to as the PraBdtiehelor flows [8].
Inviscid flows described by (1), but construed as limits ataie Navier—Stokes
solutions afke— oo, can be made unique by taking into account “traces” of viscou
phenomena. Indeed, it was shown by Chernyshenko, see §.¢hd® using the
condition that the boundary layer be cyclic removes oneekegf freedom in the
choice of the problem parameters. For the sake of simplibibyvever, we will
neglect the vortex sheet at the patch boundary, which isabguit to setting\h = 0.

A physical justification for this assumption is that a tudntimixing layer at a high
Reynolds number should cancel the jump of the Bernoulli torid\h. Thus, the
entire steady flow field past a bluff body is then modelled asdbupling of two
inviscid flow regions (Figure 1): an irrotational region ewbr to the wake, and
the wake withw = const which in terms of the right-hand side (RHS) in (1a) is
expressed as

F(p) = —wH(a—y), ()
whereH(-) denotes the Heaviside functiom,is the (constant) vorticity, whereas

a € R is the value the streamfunctighassumes on the boundai# of the vortex
patchA (cf. Figure 1).

An even simpler model of finite area wakes is provided by pwaartices. In this
model, the region with closed streamlines is an irrotatifioes region with a vortex
singularity. As observed by several authors [10-13], vopatch solutions can be
seen as the final result of an accretion process that startsgoint vortices. Our
point of departure for this work is the following

Conjecture 1 ([14]) If there is no point vortex in equilibrium that satisfies the
Kutta condition, then the associated family of growing pat; including the limit-
ing Prandtl-Batchelor solution, also does not exist.

We note that this conjecture is in contradiction with som&uhs present in the
literature. While it is well know that an inviscid flow past atflplate broadside
to the oncoming stream does not admit any point vortex daialilwe mention
the review paper [15] for some interesting remarks conogrhe history of this
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Fig. 1. Schematic of the flow domaiA:represents the vortex patch with the boundady
and with a constant vorticitgo embedded in a potential streaf|s the separation point
andoQ the boundary of the flow domain.

problem), Turfus [16] numerically detected finite—areatgripatches in such flow
configurations. The existence of a closed wake in the indiflow past normal
plates was also discussed by Turfus and Castro [17] who detmaded that a cyclic
boundary layer is compatible with the finite area solutiotedained previously by
Turfus. More recently, Castro [18] obtained computatiaesllts suggesting pos-
sible existence of a second branch in the graph represetiéngake size versus
the Reynolds number which would extrapolate to a finite aoetex in the limit of
an inviscid flow. We also note that results indicating pogséxistence of solutions
contradicting Conjecture 1 were reported in [10]. In anrageé at resolving this
conundrum, in the present work we make a step toward provimgecture 1 by
demonstrating that vortex patch solutions of Euler equatig—(2) can in fact be
locally continued with respect to parameters. We also r&rtet related questions
concerning existence of continuous families of solutiohsystem (1)—(2) were
addressed, albeit using rather different techniques, @. [The structure of this
paper is as follows: first in the next section we present a emaditically precise
formulation of the problem, in the following section we peoa theorem showing
the conditions under continuation of solutions with resgegarameters is possi-
ble, in Section 4 this result in generalized for the case aftems satisfying the
Kutta condition; since problem (1)—(2) is nontrivial to e®ihumerically, a method
based on the Steklov—Poincaré iteration is introducecdkictidn 5, whereas com-
putational results are presented in Section 6; summary@ameliesions are deferred
to Section 7.



2 Formulation of the Problem

A fundamental property of system (1)—(2) is that the shapgb@tortex patciA is
not a priori determined and must be found as a part of theisolof the problem.
Thus, system (1)—(2) representsree—boundaryproblem. Since we are going to
need this formulation in the sequel, we now rewrite systejn(@) in a form that
elucidates its free—boundary structure more clearly

0%Y; = —w in A(a), (3a)
0%y, =0 in Q\A(a), (3b)
Pr=Yo=aqa ondA(a), (3¢)
oY ayp

= =3 ondA(a), (3d)
W2 = Yp onoQ, (3e)

where; = Y|a and Y = P|q\a are the restrictions of the streamfunctigrto,
respectively, the vortex patehand its complement if.

Properties of solutions of (1)—(2), or (3), were studied patationally, and in some
cases also analytically, by several researchers. It waeredd that vortex patch so-
lutions are in fact the result of an accretion process sigufiom a point vortex
solution. The so—called “V—states” arising from desingaktion of a single point
vortex were studied by Wu, Overman and Zabusky [19], andydical results con-
cerning the structure of possible singularities of the latang of the resulting vortex
patch were derived in [20]. The case of desingularizationa p&ir of co—rotating
vortices was first investigated by Saffman and Szeto [21D @gtinct continuous
transformations of a co-rotating vortex pair into the Raekvortex patch were
discovered by Cerretelli and Williamson [22], and Crowdylaarshall [23]. The
case of desingularization of a pair of counter—rotatingiges was studied by Pier-
rehumbert [24] with some details of his computations lagstified by Saffman
and Tanveer [25]. A limiting solution in this family whichsa allows for a vortex
sheet on the patch boundary (i.e., in whith £ 0) is known as the “SadovskKii
flow” and was investigated by Sadovskii [26], and then by Mop@affman and
Tanveer [27]. In regard to desingularization of point voegs in the exterior of an
obstacle (a circular cylinder), the paper by the Elcrat e{¥8] is paradigmatic.
In that paper the authors considered the Foppl curve @artito the flow past a
semicircular bump which is the locus of point vortices in angyetric equilibrium
with the obstacle. They showed that each point vortex cansbecaated with a
family of vortex patches with an increasing atéa= [, H (o — W) dQ (the symbol
£ means “equal to by definition”) and the same circulatios: w|A| as for the
point vortex. Each element of the family can thus be regaedeahn inviscid model
of a finite—area wake. In such model, the wake is a region withet! streamlines
bounded by the body, the symmetry axis and the separatgarsiine separating
it from the exterior flow with open streamlines. The vortcdistribution is given



by w = 0 in the exterior flow ando = I' /|A| inside the vortex patch. Assuming
|A| to be the parameter defining an element of the family, thetpairiex (Foppl)
solution will be the first element wittA| = 0, and the Prandtl-Batchelor solution
will be the last element witlhw = constin the entire region with closed stream-
lines. In paper [14] the Foppl curve was generalized fordase of flow past a
locally deformed wall yielding a locus of point vortices iguglibrium with an ar-
bitrary obstacle. It was also argued in [14] that, as was #se ¢or the semicircular
bump, a family of growing vortex patches can be associatéd @ach such point
vortex configuration in equilibrium with the obstacle. It svahown as well that
when the obstacle has a sharp edge, then the number of sutivpidex equilibria
which additionally satisfy the Kutta condition is eitherlinor finite. In regard to
the first possibility, Conjecture 1 would imply that such t@utes do not admit a
finite area wake at high Reynolds numbers. Our present iigegitn seeks to shed
some light on the problem of existence of such families ofaging vortex patches
from the mathematical point of view. We would like to undared the conditions
under which solutions featuring vortex patches can be naetl with respect to a
parameter. Since parameterization of solutions of (1)#(2¢rms of|A| and/orl”
complicates somewhat the mathematical structure of thielgmg for the sake of
transparency of our analysis, hereafter we will assumedblations depend owm
anda which are explicitly present as parameters in the goveraysiem. The first
specific question this work intends to answer is thus thevdtg

Question 1 Given a solutionp = Y(ao, wp) of problem(1)~«2) corresponding to
the parameter values = 0 g and w = wyp, under what conditions can this solution
be continued with respect to one of the parameteend a when the other one is
held fixed?

In other words, we want to characterize mathematically traldions, sufficient or
necessary, for the existence of unique neighbor solutiesglting from infinitesi-
mal perturbations of the parameters (Figure 2).

An important in practical applications class of problemps-(2) concerns the situ-
ation when the solutio has a prescribed “separation point”, i.e., is subject to the
so—called Kutta condition. This condition, commonly usedéronautical applica-
tions, follows from the observation that, for the Reynoldsnber above a certain
value, the viscous flow separates on sharp edges. In thevirarkef the potential
flow theory, the inviscid flow would be singular in the absen€separation, with
the flow velocities becoming unbounded at sharp edges. Bgsing a prescribed
separation point, the Kutta condition simultaneously nexgLthe flow to be regular.
Mathematically, this condition is often expressed as feflo

lim ==(s) = — lim a—Lp(s) < oo, (4)

wheres is the arc—length coordinate characterizing the locaticthe® cusp. Rela-
tion (4) expresses the fact that, when the Kutta conditigaisfied, the tangential



Kutta line

a, a

Fig. 2. Schematic of the dependence of the solufiaf system (1)—(2) on the parameters
o andw: (dashed line) when one of the parameters is held fixed, atid (;e) when Kutta
condition (5) is imposed.

velocities on both sides of the cusp are in the limit the samel@unded. Since
condition (4) is rather awkward to handle in our analysis, wi# use another,
approximate, formulation. Since the tangential velocityhee cusp is thus well—
defined, we can extrapolate the value of the streamfunctan the cusg € 0Q
into the flow domain, i.e.,

LIJ‘P+8t = l‘IJb7 (5)

wheree > 0 is a small number, whereass the unit tangent vector &, so that
(P+¢t) € Q. We add that in the actual numerical computations, origioath (4)
of the Kutta condition will be used (see Section 5 for dejalividently, imposing
the Kutta condition constraints the two—parameter famflys@utions, so that a
one—parameter family could be expected, although theesdst of such families
in certain important cases is still an open problem [14]. §iHbe second question
we would like to answer in this work can be framed as follows:

Question 2 Given a solutionp of problem(1)~2) which in addition satisfies also
the Kutta conditior(5), under what conditions can this solution be continued with
respect tax or w?

Locus of solutions constrained by (5) is indicated as thett&line” in Figure 2.

We will address these two questions using a combinationroesgiementary meth-
ods of functional analysis and the theory of elliptic pdrtdferential equations
(PDEs). More specifically, we will do this in Section 3 in tlwléwing steps:

(1) use a suitable weak formulation of system (1)—(2) to troies an implicit
function of the parameters andw,



(2) employ the Implicit Function Theorem in the Banach spaadetermine con-
ditions under which continuation is possible; use the “shalifferential” cal-
culus to determine the Jacobian (perturbation equatian)ired in the state-
ment of this theorem,

(3) use the Lax—Milgram Theorem together with some standatiinates to de-
termine sufficient conditions under which the Jacobian efithplicit function
is invertible.

In addition, one more step will be required in order to ans@eestion 2 in Section
4, namely:

(4) linearize Kutta condition (5) and use the maximum ppleio show that this
condition can be always satisfied.

3 Continuation with Respect to Parameters

We begin by stating a weak formulation of Euler equation (2)—For problems
with inhomogeneous boundary conditions first we need tooperf‘lifting” to
transform the problem to a form with the homogeneous boyndanditions. We
do this here by introducing an auxiliary functi@: Q — R defined as a solution
of the following problem

0’°0=0 inQ, (6a)
©@=yp 0noQ. (6b)

Expressing the streamfunctiongs= ¢+ © in (1)—(2) yields an equivalent bound-
ary value problem for the functiop : Q — R with homogeneouBirichlet bound-
ary conditions, namely

D%p= —wH(a—9—0) inQ, (7a)
¢o=0 onoQ. (7b)

Assuming now that the functio@ and the test functiog belong to the Sobolev
spaceH&(Q) of functions with square—integrable gradients and boursdggort in
Q [28], the corresponding weak formulation of (7) becomes

o HY(Q), /QIZI(p-EIq)dQ—oo/Aq)dQ:O, Vo cHYQ). (8

The existence of solutions of problems of this type was a®red, for example,
in [29]; it is also supported by ample computational evidewthich was reviewed
in Introduction. We will thus assume that for some parametdunesa = ag and

w = wy there exists a solutiog = @0, wy) of problem (8), and we are now in-
terested in the conditions under which this solut@ncan be uniquely continued



with respect to one of the parameters (Figure 2). We also esipé that the aux-
iliary function © does not depend on the parameterandw. To focus attention,
we will therefore fix the value of vorticityoy, and will consider the solution to be

a functiona only, i.e.,@= @(a). Weak formulation (8) can then be represented us-
ing an implicit functiong : H(} xR — R asg(g,a) =0. Local existence of such
one—parameter family of solutionga) is addressed by the Banach space version
of the Implicit Function Theorem [30]

Theorem 1 (Implicit Function Theorem) If X, Y, Z are Banach spaces,UX x

Y is an open se{Xo,Yo) € U, f : U — Z is a continuous differentiable function,
f(xo0,Yo) = 0 and D, f(Xo,Yo) € L(Y;X) is invertible with a continuous inverse,
then there exist neighborhoods 0Of Xy and U, of yp, such thatY x U, CU and a
unique continuously differentiable function @1 — Uy, such that

f(x,g(x) =0, WxeU (9)

and
Dg(x) = —[Dyf (x,g(x))]*lef (x,9(x)), Vx € Uy, (20)

where L(Y, X) is the vector space of all bounded linear operators from Y Xt
whereas R and D, f denote the partial Rechet derivatives with respect to the
first and second variable.

Theorem 1 can be applied to our problem by identifying thedg@anspaceX with
our solution spacei}(Q), and the Banach spac¥sZ with R. The implicit func-
tion f will then represent the weak formulation (8), i.€.(¢@,a) = 0. Clearly, for
this theorem to apply, we have to ensure that the Jacdbn(@,a) of the im-
plicit function is an invertible operator with a continuounwerse. The first step
towards this end is to identify the form of the Jacob§G (¢, a). As is evident
from formulation (3), our system is of the free—boundaryetygnd therefore its dif-
ferentiation with respect to a parameter must be carriedwatiit care. One reason
is that when the vortex patch boundat is perturbed, this also affects the loca-
tion of where the boundary (interface) conditions (3b) &) @re imposed. These
issues are addressed by the shape—differential calculichwha suite of mathe-
matical techniques allowing one to differentiate PDEs dsfiim variable domains.
Below we summarize the main facts only which are relevantuopsoblem, and
refer the reader to the monograph [31] for further detailst ¢f, = g‘g _— de-
note the perturbation variable obtained by varying the patara while keeplng
the other parameten constant (it corresponds to the quanfdyg(x) appearing in
the statement of the Implicit Function Theorem). We assumeeet exists a vec-
tor field Z : Q — R? such thaiZ - n|;q = 0. When the parameter is perturbed,
i.e., 0 = ag+ a’, the resulting perturbed vortex patch bounda#(t,Z) can be
represented as follows

X(t,Z) =x+tZ for x € 0A(0), t e R, (11)



wheredA(0) is the boundary of the unperturbed patch. Integrals defimedugh
variable domains, e.g., the second term in weak formulg8yrare shape—differentiated
as follows [31]

/
(/ on) :/ o'dQ+ o(Z-n)ds (12)
A(t,2) A(0) 9A(0)

whereo : A(t,Z) — R denotes the integrand expression ané its shape deriva-
tive. Applying this result to differentiate (8) we obtain

3 6(0(0).0) = [DgG(@.0))¢h + DaG0.0)

(13)

- [ O¢-Dpda-cof 6z-mds ¥ < H(Q).
We now proceed to relate the perturbation fi¢ll- n) appearing in the second
integral in (13) with the perturbations of the parameteMVe do this by shape—
differentiating boundary condition (3c) which defines thasition of the vortex
patch boundary

qu o/ an o alJJ o da -
daleatz) w“‘aA(O) *n aA(O)(Z n) = q{“}aA(O) ton 6A(O)(Z n) = da _(1’ )
14
where we used the fact th&, = 0, so that
1-¢ ‘GA(O)
Z-n= T (15)
an [0A(0)

where we also make the assumption, to be formalized Iam%#'ﬁaA(o) # 0. Using
(15) in (13) we can transform the latter expression to

1 oy _ oy 1
G, [ g opoaraf (3] deds=—wi (G1) eds  vechiol

~~ ~~

[D(Pg((p7a)}% D(X g((p7a)
(16)
which we symbolically express in the “strong” for as
op\ ! o\ * .
02 -r _ Y e 4 _
H"+ o (an) )OA(O)é(X‘aA(O) X>] e <an) )6A(0)6(X}6A(0) X) inQ,
(17a)
@ =0, onoQ.
(17b)

Equations (16) and (17) represent, respectively, the wedks&rong form of the
perturbation of Euler equation (7) resulting from variaisof the parameter. Us-
ing the same techniques it can be shown that in the case whearwéhe vorticity

10



w, and the parametar = 0 is held fixed, the perturbation equation involves the
same operatdiD,G]|, and takes the form

o, € HA(Q), /Quqfw-uq)dmwoygA <g—ﬁ)ldw¢ds:A¢ds Vo € HY(Q),

(18)
which we symbolically express in the “strong” for as
—0% 4wy oW _1‘ 3(x| —X)| @, =H(0p— ) inQ (19a)
on aA0) - 19A(0) @ ’
¢, =0, ondQ (19b)
whereg, £ % S

Given perturbation equations (16) and (18), the next stép determine the con-
ditions under which the associated Jacobian opef&gg (¢, a)] is invertible. To
this end we will employ the Lax—Milgram Theorem which proesdthe sufficient
conditions for existence of solutions of elliptic boundaajue problems of the type
(16) and (18). Assuming now thét is a real Hilbert space with - || denoting its
norm, (-,-) its inner product, and-, -) the pairing with its dual space, we have the
following

Theorem 2 (Lax—Milgram, [32]) Assume that
B:HxH-—=R
is a bilinear mapping for which there exist constafis > 0 such that

|Blw, Wo]| < E|lwal|[wef,  Vwi,we € H, (20a)
n|jwl|? < Blw,w], Yw e H. (20b)

Finally, let 7 : H — R be a bounded linear functional on H. Then, there exists a
unique element yv= H such that

Blwo,W| = (7, w), Ywe H.

In our problem the Hilbert spad¢ can be identified with the solution spadg(Q),
whereas the bilinear forn® with the weak form of the Jacobian (16) [resp. (18)]
regarded as a function of both the perturbation variahléresp.q,,) and the test
functiond, i.e., B{¢h. §] = [DoG] (%%, ) [resp.B(¢h,, &) = [DgG] (@, §)]. Thus, in
order to establish invertibility of the Jacobian, we needeémonstrate boundedness
(20a) and coercivity (20b) of this bilinear form.

To fix attention we will focus on problem (16). As regards bdedness, we first
apply the Cauchy—Schwarz inequality to the first term on éfie-hand side (LHS)

11



in (16)

1/2 1/2
|, od-0ede] < | [ @etan| | [007d0] < ol 0l
(21)
Next we introduce the following
Assumption 1 There exist constants\dx > Umin > 0 such that
. oy
S|gn(wo)% < Umax a.e. ondA, (22a)
sign(ooo)g—li]J > Umin a.e. ondA. (22b)

The constanttin andUmax thus represent an upper and lower bound on the tan-
gential velocity component on the vortex patch bounds#yBy examining a sim-

ple vortex system, e.g., a single point vortex, it is evidbat vortices withpositive
circulation inducepositiveazimuthal (tangential) velocity, and vice versa, hence
Assumption 1 is justified. Using assumption (22a), the séderm on the LHS in
(16) can be bounded from above as follows

o\t
anf (5) odss 3> f dods @3)

The term on RHS in (23) can be further bounded by applying #uecBy—Schwarz
inequality combined with the obvious estimdté||_,q) < C||f HH&(Q) with some

C>0

# G0dS 6o 100 < Chllig [0l (24
Combining inequalities (21), (23), and (24) we obtain fa Hilinear form
0
(Do (¢ 0)| < (1+ U—C2 ||(d0(||H1 o191z ) (25)

which shows that boundedness condition (20a) is satisfied.

As regards coercivity (V—ellipticity) condition (20b), weroceed as follows

0 -1
Ve H3(Q), [DyGl(e.¢) = / (Dcp)deeroy{ <—¢) @ ds
> [(mprdo+ 2 as (26)
Umax
> [ (@92d2 > Elelhiya
whereg > 0 is a constant, and we employed assumption (22b) togethbrtiae

Poincaré inequality. Estimate (26) shows that, subjeastumption (22b), the co-

12



ercivity condition (20b) is satisfied, and therefore thealdan[D,G] of the implicit
function is invertible. Finally, we need to show that thedrse JacobiafDyG] 1 is
a continuous operator. We do this by combining inequali@b{2vith the estimate
Blwo,Wo] = (f,wo) < || f ||H71(Q)||Wo||H&(Q), wo € H3(Q), which yields

_ 1
IWollp1 () = [Deg] 1f||Hg(Q) < ﬁ||fHH*1(Q)' (27)

Estimate (27) shows that the inverse Jacoliyg] ! is a continuous, and there-
fore also bounded [30], operator. Combining Theorems 1 andtl2 inequalities
(25) and (26) we thus have a proof of the following

Theorem 3 Assume condition§2) hold. Then, there is a neighborhood of the
point (0, wy) in which there exist smooth familigs= W(a, wp) andy = W(ap, w)

of solutions to problen(l)—(2) depending, respectively, on the parameterand

w.

4 Continuation in the Presence of Kutta Condition

Our next goal is to consider conditions under which contifmmaof solutions is
possible subject to Kutta condition (5) which restricts skéof solutions to a one—
parameter family. Before we can do this, we need to addresteahnical difficulty,
namely, the fact that Kutta condition (5) requires the sohlubf problem (1)—(2)
to be defined at any, in principle arbitrary, poifiR+ €t) € Q, whereas so far we
considered weak solutions only which do not necessarilys@ess this property.
Furthermore, in our subsequent development we will needigey the maximum
principle for the Laplace equation which requires the sohs to be at least?.
With this in mind, we need to establish that weak solutionshef perturbation
equations, whose existence and uniqueness was proved arerhe3, are in fact
smooth inQ\A, i.e., in the part of the flow domain where Kutta condition iy
be imposed. As regards the original Euler equation, we ratethe solution; is
defined by (3b), (3c), and (3e), i.e., it satisfies the Lapkepeation inQ\A with
the Dirichlet boundary conditions. Regularity of such pgevhs was considered
for instance in [33], where it was proved (in Section 4.5} thaak solutions of the
Laplace equation in general domains possess in fact theeedif regularity in the
interior of the domain. This result allows us to justify colementing system (1)—
(2) with Kutta condition (5). Since solutions of this augrteshsystem represent a
one—parameter family, perturbation of the Kutta condigaids to the first order

Wby e + Wool o 00+ WG [, 00 + O ((80)? + (80)%) = Wy, (28)
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wherew = wp + dw anda = g+ da. Assuming to fix attention thatw = dw(da),
using (5) and neglecting quadratic terms, relation (28)ngpéified to the form

l.IJ/
dw=-21  &a, (29)
W
w | P+-¢t

which implies that, to the leading order, the vorticity pettationsdw can be ad-
justed to the perturbations of the independent paranteteo that the Kutta condi-
tion is satisfied, provided that

Wolp.o 7 0. (30)
In the same spirit, assuming that the vortiaityserves as the independent parame-
ter, i.e.,da = &a(dw), we obtain the condition

Wi oo #0. (31)

Since in the domai®\A > (P +¢€t) the perturbation variableg, = ¢, andy,, =
@, satisfy the Laplace equations with the homogeneous Detdfdundary condi-
tions imposed oRQ [cf. (17b) and (19b)], it follows from the maximum principle
for elliptic PDEs [32] that conditions (30) and (31) are sh#id. With this we have
thus proved the following theorem

Theorem 4 Assume the conditions of Theorem 3 are satisfied. Then, #rere
neighborhoods of the pointsy and wy in which there exist one—parameter fam-
iliesy=W(a) =w(a,w(a)) andy = P(w) = Y(a(w),w) of solutions to problem
(1)+2) subject to additional conditiofb) which depend, respectively, on the pa-
rametersa and w.

5 Numerical Method

Our objective in this Section is to introduce a method for mioenerical solution
of problem (1)—(2) in a semi—infinite domain bounded by a waih a protruding
obstacle (Figure 1). The idea of the proposed method is tmappate system (1)—
(2) on a suitable grid. The streamlige= a, which separates the rotational region
A(a) from the surrounding irrotational domaf@\A(a), is not explicitly tracked,
but is detected as a jump of the vorticidy represented on the grid. In general,
resolving accurately this separatrix would require a refiged. Furthermore, since
the physical domain extends to infinity, the truncated caaanal domain should
be large in comparison to the size of the vortex paiét), and a straightforward
application of any standard solution method to the problerthe entire domain
would require a very large number of grid points. In additieame artificial far—
field boundary conditions would have to be adopted at ther tnatendary to model
the inflow/outflow from the truncated domain. On the otherdyamheny > a,
equation (1a)—(2) reduces to the Laplace equation whiclyeireral, should not
require such a significant computational effort.
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The method proposed here overcomes these difficulties byicdmg a conformal
mapping of the physical domain into a suitable transformedgand the decom-
position of the transformed domain into two subdomains, elgm

e asmallinterior subdomair®; which includes the image of the recirculating flow,
and

e anexteriorsubdomaie comprising the remainder of the flow field which ex-
tends to infinity.

Briefly, system (1)—(2) is solved numerically by combinin§jrate—difference ap-
proach in the interior subdomai; with an analytical expression for the solu-
tion of the Laplace equation in the exterior subdom@in The two solutions are
coupled through the boundary conditions on the interfageseparating the two
subdomains: for the interior subproblem we use the Dirichteindary condition
Ui = Ye, Whereas for the exterior subproblem the Neumann boundamgition
0Ye/0n = 0y; /on, where the subscriptisand e refer to the solutions defined on
the interior and the exterior subdomains, iB.= Y|o, andye = Y|q,. Repeated
solution of such two coupled problems in known as the StelRmincaré iteration
which is a well-known approach in the domain decompositii@ndture [34]. As
regards computational efficiency, the fact that one hastiope iterations is offset
by a modest number of grid points required to solve the iatesiibbproblem. In the
following subsections we describe the two key enablers efpitoposed method,
namely, the conformal mapping and the solution techniqubertransformed do-
main.

5.1 Conformal Mapping

To fix attention, we consider flows past a wall extending tanibfiin the upstream
and downstream direction, and featuring a cusped obstAolexample of such
a flow domain is shown in Figure 3a with the interior subdom@jrbounded by
a segment of the solid wall and an interfagg connecting point#\ and B. We
will show here how, by combining two conformal mappings,sacdomain can
be transformed to a domain with a simple geometry in which mablem can
be solved using standard techniques. According to the Riam@apping theorem
[35], any arbitrary simply—connected region, such as the sitown in Figure 3a,
can be conformally mapped onto the upper half plane of a fmam&d domain.
Let us denote—plane the complex physical plane, where x+ iy andi = /—1,
andA—plane the transformed plane. There exists, thus, a mafiegionz = z(A)
which maps the real axis of the-plane onto an arbitrarily shaped line in tke
plane extending in both directions to infinity, such that gdpger half plane in the
A—plane (Figure 3b) is mapped onto the region above the witléz-plane.

The flow domain shown in Figure 3a is obtained from the hadrplshown in Fig-
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Fig. 3. Domains used in the numerical solution of system(@))<a) z—plane (the physical
domain), (b)\—plane (the computational domain for the exterior problesmy (c)(—plane
(the computational domain for the interior problem); in flgaires the solid lines represent
(the images of) the domain boundaries, whereas the dottes tepresent the interfaggs

separatind?; andQg in the three planes.

ure 3b using a simple variation &fingleb’s snow—cornice mappifig6], namely

2
z:é—b-i— M

TR (32)
a A b-N
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where the complex parametk defines the shape of the cornice and the two real
parameters.andb are such thaty = z(—1), zg = z(1) (za andzg are the positions

of the pointsA andB in thez—plane, see Figure 3a). As shown in Figure 3b, inthe
plane the interior subdomain is mapped into the region ete unit semi—circle,
while the exterior sub—domain is its complement in the uadiplane.

The second conformal mapping transforms the interior ofrdmangle in the&—
plane (Figure 3c) into the upper half of tiheplane (Figure 3b) and is based on
the Jacobi elliptic sine—amplitude function Sn. In thelane the interior subdo-
main corresponds to the lower half of the rectangle and theriex subdomain
corresponds to the upper half of the rectangle (Figure 3md.Mapping function is

Sn(¢, m)

)\ e
d )

(33)

where the real parametensandd are the elliptic modulus and the scaling factor,
respectively. The elliptic modulus defines the aspect ratio of the rectangle in the
(—plane through the equation

o —Lc| _ K(m)
2[Ca—Cc|  K/(m)’

whereK (m) is the complete elliptic integral of the first kind aKd(m) = K(1—m),
wheread s, {c and{p are the coordinates of the poirdsC andD in the {—plane
(Figure 3c). The scaling factat is a free parameter and its choice determines the
coordinateszc andzp of the pointsC andD in the physical plane and the location
in the{—plane of the imagép of the cuspP.

As described below, system (1)—(2) is solved numericallaomrquispaced Carte-
sian grid defined inside the lower rectangle in r@lane. For an accurate enforce-
ment of the Kutta condition (4), it is convenient to seleciadue of the parameter
m such that the poindp coincides with a grid node. Discretizing the sidA of the
rectangle withp grid points and collocating the image of the pdivith the n—th
node gives

Cp = d[-K(m) +i(n/p)K'(m)],
so that (33) becomes

Sn—K(m)+i(n/p)K’'(m)/2,m|

Ap = SH—K(m) +iK'(m)/2,m|

which makes it possible to obtain a suitable value of the&timodulusm via a
trial-and—error approach. An example of the computatignidigenerated with the
procedure described above, albeit coarser than the onddruiee actual compu-
tations, is shown in Figure 4. The figure also features a nfi@gtion of the region
showing the poinP coinciding with a grid point.
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5.2 Solution in the Transformed Domain

System (1)—(2) is transformed to tigeplane with = & +in acting as the inde-
pendent variable. Definir@% = 6% + 02, equation (1a)—(2) becomes

D3y =S[-wH(@ W), (34)

whereJ £ |dz/d{|2. The interior subdomaif®; coincides with the rectangkeBCD
whose upper, lower, left and right boundaries are denoespactivelyyag, Ycb,
vac, Yep- We will denoteQ, the rotational portion of the interior subdomai@C
Qj). In the interior subdomain the problem is defined by thecfeihg boundary

conditions

Pi=0 onyacUYcpo UYpg, (35a)
Pi=Pe ONYAB, (35b)

wherey is the Dirichlet boundary condition expressed in terms efgblution in
the exterior subdomaife. The proposed method is based on the Schauder fixed
point theorem [30]. Let the streamfunction be defined by

Wi = W0+ wyl, in Qj, (36)

wherey)° satisfies the system with a homogeneous RHS and inhomogebeond-
ary conditions, i.e.,

O7’=0  ingQ;, (37a)
W =0 onyacUYcp UYbs, (37Db)
W=We oONypg, (37¢)
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whereasy! satisfies the system with an inhomogeneous RHS and homaggneo
boundary conditions, i.e.,

ofpt=0  inQ\Q, (38a)
o7y = % in Qy, (38h)
Y=0  onyacUYcoUybsUYea. (38c)

The vorticity w is computed by imposing the Kutta condition at the cgspWe
note that condition (4) implies the following relation irettransformed—plane

o _
0¢ ZP_O.

We also observe that discretizing the derivative in (39hwitinite—difference for-
mula yields approximate relation (5). In the interior subon, the algorithm con-
sists in iterating the equation

(39)

D%wnﬂz%[—%H(a—wn)], n=1,..., (40)
where the subscripts represent the iteration numberseB8y&37) is not affected
by this iterative procedure, thu® is computed only once. Witt? fixed andQy
given, P! andw can be determined at any givesath iteration. Then, at thgn+1)—
th iteration, a new shape of the vortex regi@y is determined by the level set
Uns1 = a and the process is repeated until convergence is attained.

On the other hand, the potential flow in the exterior subdongiis computed in
theA—plane. Let the complex potentia} be defined as

We(A) = QuA + i aj\ (41)
j=1

o [(OWe) (dZ) O
Q= Im, (E) (a) =&

whereq. is the asymptotic velocity in the physical plane. In #aglane, the exte-
rior subdomaire corresponds to the region exterior to the unit circle in thper
half—plane. The portion of the real axis with<l|]A| < o« is the image of the solid
walls upstream and downstream of the cavity. We see thatierdo ensure the im-
permeability of the solid wall, exterior potential (41) nbg such tha) = conston
the real axis, and as a result the coefficients) = 1,..., must be real. Noting that
A = pexpip), the problem is closed by enforcing the Neumann boundardieon
tion (0We/0p) = (0W;/0p) on the common boundargg, with (dW; /0p) expressed
in terms of the interior solutio;. We observe that the derivatives in the direc-
tions normal to the interfacgg in theA—plane and—plane are related through the

with
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following identity
Owe _ owi|dA|™
op 0N 'dz
Let us seg(¢) = (0Wi/0p)p—1. We remark that the interior solution along the com-
mon boundaryag defines the functiorg(¢) in the interval 0< ¢ < 1t To en-
sure impermeability of the solid walls we therefore negd) = g(1) = 0. Thus,
g(¢) can be continued on the interval< ¢ < 2, i.e., on the entire unit circle
of the A—plane, by assuming tha(m+ 6) = —g(1t— 9), with 0 < & < 1t Since
Im[(dw/dA)A]p—1 = (0Pe/0P)p—1, €QUALtiON (41) yields

P - 1
0(4) = Qusing — 3 jaysinio) = (G0) 2)

Truncating the series in (42) at some numNewe can determine all the unknown
coefficientsa;j, j = 1,...,N by using a suitable number of collocation points in
[0, 4.

The interior and exterior flow computations are iteratedlupt and Qe converge

to the same values on the interfaggs. A linear relaxation approactpl*! =
(1— f) @2t + f,wl has was adopted for the solution values on the interfage
[cf. (37c)] with the under—relaxation factdy € [0,1] chosen heuristically. Con-
tinuous families of solutions of (1)—(2) are tracked by nigitig the value of the
parameter, i.eq, or wy, an then solving the problem again using the solution ob-
tained for the previous parameter value of the initial guess

5.3 Benchmark Tests

The accuracy of the method was analyzed by comparing thiésedthe numerical
computations to the analytical solution available wisen> —, that is when the
vortex patchA(a) shrinks to a point vortex (see, for instance, [14]). In thise,
the interior solutiony; is obtained by modifying equations (36), (37b) and (37c) as
follows

Yi=’+ryt  inQ,
W0 =~y onyacUYcp UYbe,
qJO = WPe— Yy onyag,

whereTl is the vortex circulation and)y, = —%[Iog|z— z,| is the streamfunction
induced by a point vortex located &tin an unbounded domain.

The streamline pattern obtained in such a point vortex smius shown in Figure
5a. Thel, errors of the numerical solution with respect to the anagltsolution
computed based on the flow velocity along the separatrixastiieeyag and the
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() (b)

Fig. 5. Streamline patterns for (a) the point vortex equiililm solution and (b) the corre-
sponding Prandtl-Batchelor solution.

Fig. 6. The interior domai®; in the Batchelor flow.

vortex circulation are in both cas€¥1079). Figure 5b represents the correspond-
ing Prandtl-Batchelor flow with a constant nonzero voniait the entire recircu-
lation zone computed with the present method. A close—upeoirtterior region in
the Prandtl-Batchelor flow is shown in Figure 6.

We close this Subsection by commenting on the computatieffialency of the
proposed method. The main computational cost is due toisolof the interior
Poisson problem (38) at each iteration. A fast Poisson salas adopted from
the Fishpack90 library [37]. The computations were done &Cawith the AMD
Athlon 64 3000~ 1.81 GHz CPU and with 1 Gb RAM. Examples of the CPU
times required to solve the full problem are shown in Tablerla 1500x 1500
grid and for different values of the relaxation factipr Figure 7 shows the rates of
convergence obtained in the solution of this problem witfedent values off;.
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f. | iterations| CPU time([s]
0.25 37 630
0.40 10 300
0.50 7 250
0.60 10 570
0.75 19 1270

Table 1
CPU times required to obtain the solution of system (1)—(&hw = —0.05 on a 1500«
1500 grid with different values of the under-relaxationtéad, .

10° p
-
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10°
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iterations

Fig. 7. Rates of convergence of the Steklov-Poincaré dlgordescribed in Sections 5.1
and 5.2 and obtained in the solution of system (1)—(2) with —0.05 on a 1500« 1500

grid with different values of the under-relaxation fact@rindicated in the legend. The
horizontal line without symbols represents the tolerarssdiin the termination condition.

6 Numerical Computations of Continuous Families of Solutios

In this Section we present results of numerical computattonllustrate Theorems
3 and 4. We will first analyze the case where the Kutta conaligonot imposed
and solutions of (1)—(2) can be continued simultaneouslig véspect tax andw.
Then we will consider the case with Kutta condition (5) imgdsso that solutions
of (1)—(2) can be continued with respect to one parametst. &d was argued in
Introduction, existence of point—vortex equilibria andtio¢ associated families of
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Solution a W |A| r

R -0.5 -25481 0.189 -4.811
Aq -0.646 -25.482 0.221 -5.628
Ao -0.392 -25.481 0.163 -4.156
B1 -0.5 -22.456 0.227 -5.103
B, -0.5 -28.593 0.156 -4.563

Table 2
Parameters of the reference soluti®) &nd the perturbed solution84, Ay, B1, By) for the
case when the Kutta condition is not enforced.

steady vortex patches satisfying also the Kutta condisannontrivial problem. It
becomes particularly involved when the domain boundargesses a fore—and—aft
symmetry. In this regard, it was shown in [14] that in suchesathe existence of
equilibrium point—vortex configurations depends on thecdjpeform of the confor-
mal map that transforms the domain boundary into the realiaxihe transformed
domain. Thus, we choose this conformal map in the form

g1 (43)

a 5<g+b+i)5

where, as explained in Section 5.1, the paramedeasdb are determined by re-
quiring thatza = z(—1), zzs = z(1). In accordance with the criteria derived in [14],
formula (43) ensures the existence of equilibrium vorterfigurations. In view
of the controversy surrounding the question of existencgantex equilibria in
domains with symmetries (cf. Section 1), we find this patéiceonfiguration an
interesting one. We also add that conformal map (43) is tlostated to Ringleb’s
snow cornice mapping (32), so the Steklov—Poincaré medlewdloped in Section
5 can be used here.

6.1 Continuation in the Absence of the Kutta Condition

As a reference, we consider the solution of problem (1)—¢2)esponding tag =
—0.5 which, without loss of generality, also satisfies Kuttaditaon (5). The stream-
line pattern of this solution is illustrated in Figure 8an&s the vortex patch bound-
ary is regular, Assumptions (22) are clearly satisfied agdlireorem 3, this solu-
tion can be continued with respect to the parameters. Wecttnsider two different
continuations of the reference solution, namely:

¢ holding the vorticityw fixed, and perturbing the boundary value of the stream-
function asa = agp £ da, whereda > 0 is a perturbation (different in each of
the two cases); the corresponding solutidasndA, are shown in Figures 8c,d,
and their locus is represented by the horizontal line in Fedib,
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Kutta line

Fig. 8. Streamline patterns in the solutions of system @))—@) the reference solution
obtained witha = —0.5, (c), (d) solutions with unchanged and perturbedx, (e), (f)
solutions with unchanged and perturbedo; thicker lines mark the streamlines bounding
the recirculation regions; figure (b) represents scheralithe reference solution and the

loci of the perturbed solutions in tlee-w plane.



¢ holding the boundary valua of the streamfunction fixed, and perturbing the
vorticity asw = wp £ 0w, wheredw > 0 is a perturbation (different in each of
the two cases); the corresponding solutiBagndB; are shown in Figures 8e,f,
and their locus is represented by the vertical line in Fiibe

All relevant parameters, i.e|A| andl in addition toa and w of the reference
and perturbed solutions are collected in Table 2. We notevthde the reference
solution has the separation point at the cusp of the obstduteis no longer the
case for the perturbed solutions.

6.2 Continuation in the Presence of the Kutta Condition

Subject to Kutta condition (5), solutions of system (1)+&present a one—parameter
family. In the limit a — —oo they approach a point—vortex solution, whereas for
o = Yp = 0 the recirculation region and the vortex region coincidauteéng in the
Prandtl-Batchelor solution. Boundaries of the vortexeedor solutions belonging

to this family and corresponding to the intermediate vabhfesare shown in Figure

9. Since the vortex patch boundaries in each of those sokitice regular, Assump-
tions (22) are clearly satisfied and, by Theorem 4, each @etlselutions can be
continued. In Figure 10 we also show the entire streamliiepafor the terminal
Prandtl-Batchelor solution obtained for= {),. The locus representing this solu-
tion family in thea—w plane, i.e., the Kutta line, is shown in Figure 11a, whereas
the corresponding locus in th&|- plane is shown in Figure 11b. In both Figures
one can clearly see the transition from the point—vortexht Rrandtl-Batchelor
solution.

7 Conclusions

In this paper we identified the conditions under which vorgatch solutions of Eu-
ler equations (1)—(2) can be continued with respect to baivorticityw and value

a of the streamfunction defining the vortex boundary. Theseltmns, given by
(22), are satisfied as long as the vortex patch boundary isgmim other words, if
there exists a smooth vortex patch in equilibrium with thetable and character-
ized by given values of the vorticity and the streamfunctiom (or, equivalently,
the circulation” and the patch argd\|), then there also exist nearby perturbed so-
lutions in thea—w, or |A|-T, plane. A situation in which conditions (22) are not
satisfied may arise when the vortex patch boundary has alanitgun the form

of a corner, or a cusp (it is known from [20] that these are thig bwo singularity
types possible). Given the structure of the proofs of Thesr8 and 4, conditions
(22) aresufficient but notnecessaryTherefore, it might in principle happen that
vortex patches with singularities of their boundaries dostill be continued. On
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Fig. 9. Family of vortex—patch solutions of system (1)—(@pject to Kutta condition (5)
and connecting the point—vortex solutioa { o) with the Prandtl-Batchelor solution

(0 =yp=0).

Fig. 10. Streamline pattern of the Prandtl-Batchelor smtufa = ) in which the vortex
patch coincides with the recirculation region.

45
0 =

-2000

-4000

(b)

Fig. 11. Loci of solutions of system (1)—(2) satisfying alsotta condition (5) in (aJo—
parameter space, and (b} A| parameter space.

the other hand, however, all computational results we a@@wf and which we
reviewed in Section 2 indicate that singular patches reptas fact terminal mem-
bers of solutions families: in addition to our results presd in Section 6.2 (e.g.,
Figure 9), this was also observed in [27] for the Sadovskwfand in [23] for a

system of two vortex patches touching at three cusp poinésalMb add that our
analysis did not include the case of a patch with a vortextstie¢he boundary
which would require a slight generalization of our appraagthile computational
evidence for the existence of perturbed vortex—patch mwisthas been known for
a long time, in this investigation we derived, for the firshé to the best of our
knowledge, mathematically precise conditions allowing ¢m predict when such
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a continuation is possible. Furthermore, we also show fitaeioriginal solution
satisfies the Kutta condition, then there exists a nearbtexgratch having, for
example, a different area, but still satisfying the Kuttadition.

The methodology we developed in this paper does not allovi@moenstruct neigh-
boring solutions, but only establish their existence. Gagsuits are based on lin-
earizations of governing system (1)—(2), hence they areg \ally locally in the
neighborhood of the reference solution. In principle, ooeld attempt to construct
neighboring solutions by representing them as a Tayloesesith respect to a
parameter, and then summing up perturbation variablescoéasing orders. How-
ever, in addition to the need to establish analyticity ofuiohs of (1)—(2) with
respect to the parameter, this would require the summatiananfinite series
which is impractical. Therefore, in actual computatioris inuch more practical to
use methods of numerical continuation, and indeed with semiques we were
able to determine a whole family of vortex—patch solutionanecting the point
vortex and the Prandtl-Batchelor solution.

We emphasize that equations (17) and (19) satisfied by therpations variables
@, andg,, are the main objects of our analysis. Given the free—boyndliure of
governing equation (1)—(2), systematic derivation of éhperturbation equations
required the use of a special technique, namely, the shdfexedtial calculus. We
remark that these perturbation equations are also of inkp# interest and may
be used to study, for instance, the stability of solution&lp#(2).

One of the motivations for this work was to understand themixio which the exis-
tence of a vortex patch solution satisfying the Kutta caaditmplies the existence
of the limiting point vortex solution also satisfying the #acondition, or, equiva-
lently, the extent to which the non—existence of such a pairiex solution implies
that no steady vortex patch can be found to satisfy the Kuttalition for a spe-
cific boundary configuration (cf. Conjecture 1). We made @ $tevards solving
this problem by identifying sufficient conditions for theigbence of continuous
families of solutions characterized by vortex patches.seheonditions, given by
equations (22), are satisfied as long as the vortex patchdaoyimemains regular,
i.e., free from geometric singularities such as cusps arexsr While extending our
findings to include in a rigorous manner the limiting case pbat vortex (corre-
sponding tax — —o andw — ) remains an outstanding challenge, the results
computations seem to support the “accretion” scenarialfyinve note that there
is also a range of interesting questions concerning theafjtbucture of the solu-
tion manifold. Our hope is that methods of nonlinear funetibanalysis, such as
Fredholm’s degree theory, might shed some light on thedelgm
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