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Abstract

This investigation concerns solutions of the steady–stateEuler equations in two dimen-
sions featuring finite–area regions with constant vorticity embedded in a potential flow.
Using elementary methods of the functional analysis we derive precise conditions under
which such solutions can be uniquely continued with respectto their parameters, valid
also in the presence of the Kutta condition concerning a fixedseparation point. Our ap-
proach is based on the Implicit Function Theorem and perturbation equations derived using
shape–differentiation methods. These theoretical results are illustrated with careful numeri-
cal computations carried out using the Steklov–Poincaré method which show the existence
of a global manifold of solutions connecting the point vortex and the Prandtl–Batchelor
solution, each of which satisfies the Kutta condition.
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1 Introduction

This work addresses certain fundamental properties of a flowmodel of interest in
the study of massively separated flows past bluff bodies. It is motivated by the field
of flow control where one of the recurring themes is the stabilization of unsteady
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vortex wakes with applications involving aeronautical or terrestrial vehicles [1].
Stabilization of such flows with a vanishingly small controleffort is often based on
the premise that there exist steady unstable solutions characterized by recirculation
regions with closed streamlines for high enough Reynolds numbers. Therefore, in
what follows the flow is considered effectively inviscid, sothat the incompressible
Euler equation is the relevant model. A further assumption is that the flow is two–
dimensional (2D). Despite their simplicity, such models are capable of describing
the large–scale vortex dynamics as well as vortex equilibria, and these features are
often sufficient to allow for the use of such models as a basis for development of
effective control strategies [2]. With such problems in mind, in the present investi-
gation we use a combination of rigorous mathematical analysis and careful numeri-
cal computations to address an important theoretical question concerning the Euler
equation, namely, the existence of a continuous family of solutions characterized
by growing vortex patches.

To fix attention, we consider the flow domainΩ⊂R
2 as shown in Figure 1 which is

motivated by the shape of high–lift devices used in some experimental aeronautical
applications (lift is increased as a result of “trapping” a vortex in the cavity [3], see
Figure 1). Points belonging to the domainΩ will be denotedx = (x,y). While in
such applications the domainΩ is considered unbounded, in order to avoid tech-
nical complications, in the mathematical analysis we will assume without loss of
generality that this domain is bounded. The numerical computations reported in
this paper use an unbounded domain. The domain boundary is assumed piecewise
smooth and not necessarily Lipschitz (i.e., cusps are allowed). Our domainΩ is
constructed so that the upstream and downstream boundariescoincide with the OX
axis. As a result, this domain may also be used to model flows inthe entire plane
pastsymmetricobstacles where the OX axis is the axis of symmetry.Expressing the

velocityu in terms of the streamfunctionψ : Ω → R asu = [u,v] =
[

∂ψ
∂y ,−∂ψ

∂x

]

, the

two–dimensional (2D) steady–state Euler equation can be rewritten as the follow-
ing boundary–value problem [4]

∇∇∇2ψ = F(ψ) in Ω, (1a)
ψ = ψb on ∂Ω, (1b)

whereF : R → R is an a priori undefined function, andψb : ∂Ω → R is a function
corresponding to the boundary conditions on the normal velocity component. On
the parts of the boundary∂Ω where the normal velocity vanishesψb is equal to
a constant implying that such parts of the boundary are streamlines. On the other
hand, on the parts of the boundary where the normal velocity does not vanish (e.g.,
the inflow and outflow of the channel)ψb is obtained by integrating the relationship
∂ψb
∂s = −u ·n, wheren represents the unit normal vector facing out of the domain

Ω, ands is the arc–length coordinate parameterizing the domain boundary∂Ω and
having positive orientation. Equation (1a) expresses the fact that the vorticityω =
−F(ψ) has a constant value on the streamlines in inviscid 2D time–independent
flows. Thus, for regions with closed streamlines, this vorticity is not defined by
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the far–field boundary condition (1b) and, as a consequence,system (1) may admit
multiple solutions. In principle, each of those vortex solutions could be adopted as
a model for a separated flow in the infinite Reynolds number limit, and choosing
the relevant one is a long–standing problem in theoretical hydrodynamics; we refer
the reader to the monograph [5] for a survey of available results. This multiplicity
of solutions is reflected in the different distributions of vorticity −F(ψ) which can
be adopted for the region with closed streamlines. Batchelor [6,7] argued that the
limiting solution for the viscous flow with the Reynolds numberRegoing to infinity
is characterized byω = constin the region with closed streamlines, i.e., the finite
area wake effectively reduces to a vortex patch. Moreover, in general, solutions
with vortex patches may also feature a jump∆h of the Bernoulli constant across
the vortex sheet that separates the recirculating flow from the external potential
flow. The present study addresses inviscid solutions that ina broad sense belong
to the family of such models, also referred to as the Prandtl–Batchelor flows [8].
Inviscid flows described by (1), but construed as limits of certain Navier–Stokes
solutions asRe→∞, can be made unique by taking into account “traces” of viscous
phenomena. Indeed, it was shown by Chernyshenko, see e.g. [9], that using the
condition that the boundary layer be cyclic removes one degree of freedom in the
choice of the problem parameters. For the sake of simplicity, however, we will
neglect the vortex sheet at the patch boundary, which is equivalent to setting∆h= 0.
A physical justification for this assumption is that a turbulent mixing layer at a high
Reynolds number should cancel the jump of the Bernoulli constant ∆h. Thus, the
entire steady flow field past a bluff body is then modelled as the coupling of two
inviscid flow regions (Figure 1): an irrotational region exterior to the wake, and
the wake withω = const, which in terms of the right–hand side (RHS) in (1a) is
expressed as

F(ψ) = −ωH(α−ψ), (2)

whereH(·) denotes the Heaviside function,ω is the (constant) vorticity, whereas
α ∈ R is the value the streamfunctionψ assumes on the boundary∂A of the vortex
patchA (cf. Figure 1).

An even simpler model of finite area wakes is provided by pointvortices. In this
model, the region with closed streamlines is an irrotational flow region with a vortex
singularity. As observed by several authors [10–13], vortex patch solutions can be
seen as the final result of an accretion process that starts from point vortices. Our
point of departure for this work is the following

Conjecture 1 ([14]) If there is no point vortex in equilibrium that satisfies the
Kutta condition, then the associated family of growing patches, including the limit-
ing Prandtl–Batchelor solution, also does not exist.

We note that this conjecture is in contradiction with some results present in the
literature. While it is well know that an inviscid flow past a flat plate broadside
to the oncoming stream does not admit any point vortex equilibria (we mention
the review paper [15] for some interesting remarks concerning the history of this
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Fig. 1. Schematic of the flow domain:A represents the vortex patch with the boundary∂A
and with a constant vorticityω embedded in a potential stream,P is the separation point
and∂Ω the boundary of the flow domain.

problem), Turfus [16] numerically detected finite–area vortex patches in such flow
configurations. The existence of a closed wake in the inviscid flow past normal
plates was also discussed by Turfus and Castro [17] who demonstrated that a cyclic
boundary layer is compatible with the finite area solution determined previously by
Turfus. More recently, Castro [18] obtained computationalresults suggesting pos-
sible existence of a second branch in the graph representingthe wake size versus
the Reynolds number which would extrapolate to a finite area vortex in the limit of
an inviscid flow. We also note that results indicating possible existence of solutions
contradicting Conjecture 1 were reported in [10]. In an attempt at resolving this
conundrum, in the present work we make a step toward proving Conjecture 1 by
demonstrating that vortex patch solutions of Euler equation (1)–(2) can in fact be
locally continued with respect to parameters. We also remark that related questions
concerning existence of continuous families of solutions of system (1)–(2) were
addressed, albeit using rather different techniques, in [10]. The structure of this
paper is as follows: first in the next section we present a mathematically precise
formulation of the problem, in the following section we prove a theorem showing
the conditions under continuation of solutions with respect to parameters is possi-
ble, in Section 4 this result in generalized for the case of solutions satisfying the
Kutta condition; since problem (1)–(2) is nontrivial to solve numerically, a method
based on the Steklov–Poincaré iteration is introduced in Section 5, whereas com-
putational results are presented in Section 6; summary and conclusions are deferred
to Section 7.
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2 Formulation of the Problem

A fundamental property of system (1)–(2) is that the shape ofthe vortex patchA is
not a priori determined and must be found as a part of the solution of the problem.
Thus, system (1)–(2) represents afree–boundaryproblem. Since we are going to
need this formulation in the sequel, we now rewrite system (1)–(2) in a form that
elucidates its free–boundary structure more clearly

∇∇∇2ψ1 = −ω in A(α), (3a)

∇∇∇2ψ2 = 0 in Ω\A(α), (3b)
ψ1 = ψ2 = α on ∂A(α), (3c)
∂ψ1

∂n
=

∂ψ2

∂n
on ∂A(α), (3d)

ψ2 = ψb on ∂Ω, (3e)

whereψ1 = ψ|A andψ2 = ψ|Ω\A are the restrictions of the streamfunctionψ to,
respectively, the vortex patchA and its complement inΩ.

Properties of solutions of (1)–(2), or (3), were studied computationally, and in some
cases also analytically, by several researchers. It was observed that vortex patch so-
lutions are in fact the result of an accretion process starting from a point vortex
solution. The so–called “V–states” arising from desingularization of a single point
vortex were studied by Wu, Overman and Zabusky [19], and analytical results con-
cerning the structure of possible singularities of the boundary of the resulting vortex
patch were derived in [20]. The case of desingularization ofa pair of co–rotating
vortices was first investigated by Saffman and Szeto [21]. Two distinct continuous
transformations of a co–rotating vortex pair into the Rankine vortex patch were
discovered by Cerretelli and Williamson [22], and Crowdy and Marshall [23]. The
case of desingularization of a pair of counter–rotating vortices was studied by Pier-
rehumbert [24] with some details of his computations later rectified by Saffman
and Tanveer [25]. A limiting solution in this family which also allows for a vortex
sheet on the patch boundary (i.e., in which∆h 6= 0) is known as the “Sadovskii
flow” and was investigated by Sadovskii [26], and then by Moore, Saffman and
Tanveer [27]. In regard to desingularization of point vortices in the exterior of an
obstacle (a circular cylinder), the paper by the Elcrat et al. [13] is paradigmatic.
In that paper the authors considered the Föppl curve pertinent to the flow past a
semicircular bump which is the locus of point vortices in a symmetric equilibrium
with the obstacle. They showed that each point vortex can be associated with a
family of vortex patches with an increasing area|A|,

R

Ω H(α−ψ)dΩ (the symbol
, means “equal to by definition”) and the same circulationΓ = ω |A| as for the
point vortex. Each element of the family can thus be regardedas an inviscid model
of a finite–area wake. In such model, the wake is a region with closed streamlines
bounded by the body, the symmetry axis and the separatrix streamline separating
it from the exterior flow with open streamlines. The vorticity distribution is given
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by ω = 0 in the exterior flow andω = Γ/|A| inside the vortex patch. Assuming
|A| to be the parameter defining an element of the family, the point vortex (Föppl)
solution will be the first element with|A| = 0, and the Prandtl–Batchelor solution
will be the last element withω = const in the entire region with closed stream-
lines. In paper [14] the Föppl curve was generalized for thecase of flow past a
locally deformed wall yielding a locus of point vortices in equilibrium with an ar-
bitrary obstacle. It was also argued in [14] that, as was the case for the semicircular
bump, a family of growing vortex patches can be associated with each such point
vortex configuration in equilibrium with the obstacle. It was shown as well that
when the obstacle has a sharp edge, then the number of such point vortex equilibria
which additionally satisfy the Kutta condition is either null or finite. In regard to
the first possibility, Conjecture 1 would imply that such obstacles do not admit a
finite area wake at high Reynolds numbers. Our present investigation seeks to shed
some light on the problem of existence of such families of growing vortex patches
from the mathematical point of view. We would like to understand the conditions
under which solutions featuring vortex patches can be continued with respect to a
parameter. Since parameterization of solutions of (1)–(2)in terms of|A| and/orΓ
complicates somewhat the mathematical structure of the problem, for the sake of
transparency of our analysis, hereafter we will assume thatsolutions depend onω
andα which are explicitly present as parameters in the governingsystem. The first
specific question this work intends to answer is thus the following

Question 1 Given a solutionψ = ψ(α0,ω0) of problem(1)–(2) corresponding to
the parameter valuesα = α0 andω = ω0, under what conditions can this solution
be continued with respect to one of the parametersω andα when the other one is
held fixed?

In other words, we want to characterize mathematically the conditions, sufficient or
necessary, for the existence of unique neighbor solutions resulting from infinitesi-
mal perturbations of the parameters (Figure 2).

An important in practical applications class of problems (1)–(2) concerns the situ-
ation when the solutionψ has a prescribed “separation point”, i.e., is subject to the
so–called Kutta condition. This condition, commonly used in aeronautical applica-
tions, follows from the observation that, for the Reynolds number above a certain
value, the viscous flow separates on sharp edges. In the framework of the potential
flow theory, the inviscid flow would be singular in the absenceof separation, with
the flow velocities becoming unbounded at sharp edges. By imposing a prescribed
separation point, the Kutta condition simultaneously requires the flow to be regular.
Mathematically, this condition is often expressed as follows

lim
s→s+0

∂ψ
∂n

(s) = − lim
s→s−0

∂ψ
∂n

(s) < ∞, (4)

wheres0 is the arc–length coordinate characterizing the location of the cusp. Rela-
tion (4) expresses the fact that, when the Kutta condition issatisfied, the tangential
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Fig. 2. Schematic of the dependence of the solutionψ of system (1)–(2) on the parameters
α andω: (dashed line) when one of the parameters is held fixed, and (solid line) when Kutta
condition (5) is imposed.

velocities on both sides of the cusp are in the limit the same and bounded. Since
condition (4) is rather awkward to handle in our analysis, wewill use another,
approximate, formulation. Since the tangential velocity at the cusp is thus well–
defined, we can extrapolate the value of the streamfunction from the cuspP∈ ∂Ω
into the flow domain, i.e.,

ψ
∣
∣
P+εt = ψb, (5)

whereε > 0 is a small number, whereast is the unit tangent vector atP, so that
(P+ εt) ∈ Ω. We add that in the actual numerical computations, originalform (4)
of the Kutta condition will be used (see Section 5 for details). Evidently, imposing
the Kutta condition constraints the two–parameter family of solutions, so that a
one–parameter family could be expected, although the existence of such families
in certain important cases is still an open problem [14]. Thus, the second question
we would like to answer in this work can be framed as follows:

Question 2 Given a solutionψ of problem(1)–(2) which in addition satisfies also
the Kutta condition(5), under what conditions can this solution be continued with
respect toα or ω?

Locus of solutions constrained by (5) is indicated as the “Kutta line” in Figure 2.

We will address these two questions using a combination of some elementary meth-
ods of functional analysis and the theory of elliptic partial differential equations
(PDEs). More specifically, we will do this in Section 3 in the following steps:

(1) use a suitable weak formulation of system (1)–(2) to construct an implicit
function of the parametersα andω,
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(2) employ the Implicit Function Theorem in the Banach spaceto determine con-
ditions under which continuation is possible; use the “shape–differential” cal-
culus to determine the Jacobian (perturbation equation) required in the state-
ment of this theorem,

(3) use the Lax–Milgram Theorem together with some standardestimates to de-
termine sufficient conditions under which the Jacobian of the implicit function
is invertible.

In addition, one more step will be required in order to answerQuestion 2 in Section
4, namely:

(4) linearize Kutta condition (5) and use the maximum principle to show that this
condition can be always satisfied.

3 Continuation with Respect to Parameters

We begin by stating a weak formulation of Euler equation (1)–(2). For problems
with inhomogeneous boundary conditions first we need to perform “lifting” to
transform the problem to a form with the homogeneous boundary conditions. We
do this here by introducing an auxiliary functionΘ : Ω → R defined as a solution
of the following problem

∇∇∇2Θ = 0 in Ω, (6a)
Θ = ψb on∂Ω. (6b)

Expressing the streamfunction asψ = φ+Θ in (1)–(2) yields an equivalent bound-
ary value problem for the functionφ : Ω → R with homogeneousDirichlet bound-
ary conditions, namely

∇∇∇2φ = −ωH(α−φ−Θ) in Ω, (7a)
φ = 0 on∂Ω. (7b)

Assuming now that the functionφ and the test functionϕ belong to the Sobolev
spaceH1

0(Ω) of functions with square–integrable gradients and boundedsupport in
Ω [28], the corresponding weak formulation of (7) becomes

φ ∈ H1
0(Ω),

Z

Ω
∇∇∇φ ·∇∇∇ϕdΩ−ω

Z

A
ϕdΩ = 0, ∀ϕ ∈ H1

0(Ω). (8)

The existence of solutions of problems of this type was considered, for example,
in [29]; it is also supported by ample computational evidence which was reviewed
in Introduction. We will thus assume that for some parametervaluesα = α0 and
ω = ω0 there exists a solutionφ0 = φ(α0,ω0) of problem (8), and we are now in-
terested in the conditions under which this solutionφ0 can be uniquely continued
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with respect to one of the parameters (Figure 2). We also emphasize that the aux-
iliary function Θ does not depend on the parametersα andω. To focus attention,
we will therefore fix the value of vorticityω0, and will consider the solution to be
a functionα only, i.e.,φ = φ(α). Weak formulation (8) can then be represented us-
ing an implicit functionG : H1

0 ×R → R asG(φ,α) = 0. Local existence of such
one–parameter family of solutionsφ(α) is addressed by the Banach space version
of the Implicit Function Theorem [30]

Theorem 1 (Implicit Function Theorem) If X, Y , Z are Banach spaces, U⊆ X×
Y is an open set,(x0,y0) ∈ U, f : U → Z is a continuous differentiable function,
f (x0,y0) = 0 and Dy f (x0,y0) ∈ L(Y;X) is invertible with a continuous inverse,
then there exist neighborhoods U1 of x0 and U2 of y0, such that U1×U2 ⊆U and a
unique continuously differentiable function g: U1 →U2, such that

f (x,g(x)) = 0, ∀x∈U1 (9)

and

Dg(x) = −[Dy f (x,g(x))]−1Dx f (x,g(x)), ∀x∈U1, (10)

whereL(Y,X) is the vector space of all bounded linear operators from Y into X,
whereas Dx f and Dy f denote the partial Fŕechet derivatives with respect to the
first and second variable.

Theorem 1 can be applied to our problem by identifying the Banach spaceX with
our solution spaceH1

0(Ω), and the Banach spacesY, Z with R. The implicit func-
tion f will then represent the weak formulation (8), i.e.,G(φ,α) = 0. Clearly, for
this theorem to apply, we have to ensure that the JacobianDφG(φ,α) of the im-
plicit function is an invertible operator with a continuousinverse. The first step
towards this end is to identify the form of the JacobianDφG(φ,α). As is evident
from formulation (3), our system is of the free–boundary type, and therefore its dif-
ferentiation with respect to a parameter must be carried outwith care. One reason
is that when the vortex patch boundary∂A is perturbed, this also affects the loca-
tion of where the boundary (interface) conditions (3b) and (3c) are imposed. These
issues are addressed by the shape–differential calculus which is a suite of mathe-
matical techniques allowing one to differentiate PDEs defined in variable domains.
Below we summarize the main facts only which are relevant to our problem, and
refer the reader to the monograph [31] for further details. Let φ′α ,

∂ψ
∂α

∣
∣
α=α0

de-
note the perturbation variable obtained by varying the parameterα while keeping
the other parameterω constant (it corresponds to the quantityDg(x) appearing in
the statement of the Implicit Function Theorem). We assume there exists a vec-
tor field Z : Ω → R

2 such thatZ ·n|∂Ω ≡ 0. When the parameterα is perturbed,
i.e., α = α0 + α′, the resulting perturbed vortex patch boundary∂A(t,Z) can be
represented as follows

x(t,Z) = x+ tZ for x ∈ ∂A(0), t ∈ R, (11)
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where∂A(0) is the boundary of the unperturbed patch. Integrals defined on such
variable domains, e.g., the second term in weak formulation(8), are shape–differentiated
as follows [31]

(
Z

A(t,Z)
σdΩ

)′
=

Z

A(0)
σ′dΩ+

I

∂A(0)
σ(Z ·n)ds, (12)

whereσ : A(t,Z) → R denotes the integrand expression andσ′ is its shape deriva-
tive. Applying this result to differentiate (8) we obtain

d
dα
G(φ(α),α) = [DφG(φ,α)]φ′α +DαG(φ,α)

=
Z

Ω
∇∇∇φ′α ·∇∇∇ϕdΩ−ω0

I

∂A
ϕ(Z ·n)ds, ∀ϕ ∈ H1

0(Ω).
(13)

We now proceed to relate the perturbation field(Z · n) appearing in the second
integral in (13) with the perturbations of the parameterα. We do this by shape–
differentiating boundary condition (3c) which defines the position of the vortex
patch boundary

dψ
dα

∣
∣
∣
∂A(t,Z)

= ψ′
α
∣
∣
∂A(0)

+
∂ψ
∂n

∣
∣
∣
∂A(0)

(Z ·n) = φ′α
∣
∣
∂A(0)

+
∂ψ
∂n

∣
∣
∣
∂A(0)

(Z ·n) =
dα
dα

= 1,

(14)
where we used the fact thatΘ′

α ≡ 0, so that

Z ·n =
1−φ′α

∣
∣
∂A(0)

∂ψ
∂n

∣
∣
∂A(0)

, (15)

where we also make the assumption, to be formalized later, that ∂ψ
∂n

∣
∣
∂A(0)

6= 0. Using
(15) in (13) we can transform the latter expression to

φ′α ∈H1
0(Ω),

Z

Ω
∇∇∇φ′α ·∇∇∇ϕdΩ+ω0

I

∂A

(
∂ψ
∂n

)−1

φ′αϕds
︸ ︷︷ ︸

[DφG(φ,α)]φ′α

=−ω0

I

∂A

(
∂ψ
∂n

)−1

ϕds
︸ ︷︷ ︸

DαG(φ,α)

, ∀ϕ∈H1
0(Ω),

(16)
which we symbolically express in the “strong” for as
[

−∇∇∇2+ω0

(
∂ψ
∂n

)−1 ∣
∣
∣
∂A(0)

δ(x
∣
∣
∂A(0)

−x)

]

φ′α =

(
∂ψ
∂n

)−1 ∣
∣
∣
∂A(0)

δ(x
∣
∣
∂A(0)

−x) in Ω,

(17a)

φ′α = 0, on ∂Ω.
(17b)

Equations (16) and (17) represent, respectively, the weak and strong form of the
perturbation of Euler equation (7) resulting from variations of the parameterα. Us-
ing the same techniques it can be shown that in the case when wevary the vorticity
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ω, and the parameterα = α0 is held fixed, the perturbation equation involves the
same operator[DφG ], and takes the form

φ′ω ∈H1
0(Ω),

Z

Ω
∇∇∇φ′ω ·∇∇∇ϕdΩ+ω0

I

∂A

(
∂ψ
∂n

)−1

φ′ωϕds=
Z

A
ϕds ∀ϕ∈H1

0(Ω),

(18)
which we symbolically express in the “strong” for as

[

−∇∇∇2+ω0

(
∂ψ
∂n

)−1 ∣
∣
∣
∂A(0)

δ(x
∣
∣
∂A(0)

−x)

]

φ′ω = H(α0−ψ) in Ω, (19a)

φ′ω = 0, on ∂Ω (19b)

whereφ′ω ,
∂φ
∂ω

∣
∣
α=α0

.

Given perturbation equations (16) and (18), the next step isto determine the con-
ditions under which the associated Jacobian operator[DφG(φ,α)] is invertible. To
this end we will employ the Lax–Milgram Theorem which provides the sufficient
conditions for existence of solutions of elliptic boundaryvalue problems of the type
(16) and (18). Assuming now thatH is a real Hilbert space with‖ · ‖ denoting its
norm,(·, ·) its inner product, and〈·, ·〉 the pairing with its dual space, we have the
following

Theorem 2 (Lax–Milgram, [32]) Assume that

B : H ×H → R

is a bilinear mapping for which there exist constantsξ, η > 0 such that

|B[w1,w2]| ≤ ξ‖w1‖‖w2‖, ∀w1,w2 ∈ H, (20a)

η‖w‖2 ≤ B[w,w], ∀w∈ H. (20b)

Finally, let T : H → R be a bounded linear functional on H. Then, there exists a
unique element w0 ∈ H such that

B[w0,w] = 〈T ,w〉, ∀w∈ H.

In our problem the Hilbert spaceH can be identified with the solution spaceH1
0(Ω),

whereas the bilinear formB with the weak form of the Jacobian (16) [resp. (18)]
regarded as a function of both the perturbation variableφ′α (resp.φ′ω) and the test
functionϕ, i.e.,B[φ′α,ϕ] = [DφG ](φ′α,ϕ) [resp.B[φ′ω,ϕ] = [DφG ](φ′ω,ϕ)]. Thus, in
order to establish invertibility of the Jacobian, we need todemonstrate boundedness
(20a) and coercivity (20b) of this bilinear form.

To fix attention we will focus on problem (16). As regards boundedness, we first
apply the Cauchy–Schwarz inequality to the first term on the left–hand side (LHS)
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in (16)

∣
∣
∣

Z

Ω
∇∇∇φ′α ·∇∇∇ϕdΩ

∣
∣
∣ ≤

[
Z

Ω
(∇∇∇φ′α)2dΩ

]1/2[
Z

Ω
(∇∇∇ϕ)2dΩ

]1/2

≤ ‖φ′α‖H1
0(Ω)‖ϕ‖H1

0(Ω).

(21)
Next we introduce the following

Assumption 1 There exist constants Umax ≥ Umin > 0 such that

sign(ω0)
∂ψ
∂n

≤Umax a.e. on∂A, (22a)

sign(ω0)
∂ψ
∂n

≥Umin a.e. on∂A. (22b)

The constantsUmin andUmax thus represent an upper and lower bound on the tan-
gential velocity component on the vortex patch boundary∂A. By examining a sim-
ple vortex system, e.g., a single point vortex, it is evidentthat vortices withpositive
circulation inducepositiveazimuthal (tangential) velocity, and vice versa, hence
Assumption 1 is justified. Using assumption (22a), the second term on the LHS in
(16) can be bounded from above as follows

ω0

I

∂A

(
∂ψ
∂n

)−1

φ′αϕds≤ ω0

Umin

I

∂A
φ′αϕds. (23)

The term on RHS in (23) can be further bounded by applying the Cauchy–Schwarz
inequality combined with the obvious estimate‖ f‖L2(Ω) ≤ C‖ f‖H1

0(Ω) with some
C > 0

I

∂A
φ′αϕds≤ ‖φ′α‖L2(∂A)‖ϕ‖L2(∂A) ≤C2‖φ′α‖H1

0(Ω)‖ϕ‖H1
0(Ω). (24)

Combining inequalities (21), (23), and (24) we obtain for the bilinear form

∣
∣[DφG ](φ′α,ϕ)

∣
∣ ≤ (1+

ω0

Umin
C2)‖φ′α‖H1

0(Ω)‖ϕ‖H1
0(Ω), (25)

which shows that boundedness condition (20a) is satisfied.

As regards coercivity (V–ellipticity) condition (20b), weproceed as follows

∀φ ∈ H1
0(Ω), [DφG ](φ,φ) =

Z

Ω
(∇∇∇φ)2dΩ+ω0

I

∂A

(
∂ψ
∂n

)−1

φ2ds

≥
Z

Ω
(∇∇∇φ)2dΩ+

|ω0|
Umax

I

∂A
φ2ds

≥
Z

Ω
(∇∇∇φ)2dΩ ≥ ξ‖φ‖H1

0(Ω),

(26)

whereξ > 0 is a constant, and we employed assumption (22b) together with the
Poincaré inequality. Estimate (26) shows that, subject toassumption (22b), the co-
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ercivity condition (20b) is satisfied, and therefore the Jacobian[DφG ] of the implicit
function is invertible. Finally, we need to show that the inverse Jacobian[DφG ]−1 is
a continuous operator. We do this by combining inequality (20b) with the estimate
B[w0,w0] = 〈 f ,w0〉 ≤ ‖ f‖H−1(Ω)‖w0‖H1

0(Ω), w0 ∈ H1
0(Ω), which yields

‖w0‖H1
0(Ω) = ‖[DφG ]−1 f‖H1

0(Ω) ≤
1
η
‖ f‖H−1(Ω). (27)

Estimate (27) shows that the inverse Jacobian[DφG ]−1 is a continuous, and there-
fore also bounded [30], operator. Combining Theorems 1 and 2with inequalities
(25) and (26) we thus have a proof of the following

Theorem 3 Assume conditions(22) hold. Then, there is a neighborhood of the
point(α0,ω0) in which there exist smooth familiesψ = ψ(α,ω0) andψ = ψ(α0,ω)
of solutions to problem(1)–(2) depending, respectively, on the parametersα and
ω.

4 Continuation in the Presence of Kutta Condition

Our next goal is to consider conditions under which continuation of solutions is
possible subject to Kutta condition (5) which restricts theset of solutions to a one–
parameter family. Before we can do this, we need to address one technical difficulty,
namely, the fact that Kutta condition (5) requires the solution of problem (1)–(2)
to be defined at any, in principle arbitrary, point(P+ εt) ∈ Ω, whereas so far we
considered weak solutions only which do not necessarily possess this property.
Furthermore, in our subsequent development we will need to employ the maximum
principle for the Laplace equation which requires the solutions to be at leastC2.
With this in mind, we need to establish that weak solutions ofthe perturbation
equations, whose existence and uniqueness was proved in Theorem 3, are in fact
smooth inΩ\A, i.e., in the part of the flow domain where Kutta condition (5)may
be imposed. As regards the original Euler equation, we note that the solutionψ2 is
defined by (3b), (3c), and (3e), i.e., it satisfies the Laplaceequation inΩ\A with
the Dirichlet boundary conditions. Regularity of such problems was considered
for instance in [33], where it was proved (in Section 4.5) that weak solutions of the
Laplace equation in general domains possess in fact the requiredC2 regularity in the
interior of the domain. This result allows us to justify complementing system (1)–
(2) with Kutta condition (5). Since solutions of this augmented system represent a
one–parameter family, perturbation of the Kutta conditionyields to the first order

ψ
∣
∣
P+εt +ψ′

ω
∣
∣
P+εtδω+ψ′

α
∣
∣
P+εtδα+O

(
(δα)2+(δω)2) = ψb, (28)

13



whereω = ω0+δω andα = α0+δα. Assuming to fix attention thatδω = δω(δα),
using (5) and neglecting quadratic terms, relation (28) is simplified to the form

δω =
ψ′

α
ψ′

ω

∣
∣
∣
∣
P+εt

δα, (29)

which implies that, to the leading order, the vorticity perturbationsδω can be ad-
justed to the perturbations of the independent parameterα, so that the Kutta condi-
tion is satisfied, provided that

ψ′
ω
∣
∣
P+εt 6= 0. (30)

In the same spirit, assuming that the vorticityω serves as the independent parame-
ter, i.e.,δα = δα(δω), we obtain the condition

ψ′
α
∣
∣
P+εt 6= 0. (31)

Since in the domainΩ\A∋ (P+ εt) the perturbation variablesψ′
α ≡ φ′α andψ′

ω ≡
φ′ω satisfy the Laplace equations with the homogeneous Dirichlet boundary condi-
tions imposed on∂Ω [cf. (17b) and (19b)], it follows from the maximum principle
for elliptic PDEs [32] that conditions (30) and (31) are satisfied. With this we have
thus proved the following theorem

Theorem 4 Assume the conditions of Theorem 3 are satisfied. Then, thereare
neighborhoods of the pointsα0 and ω0 in which there exist one–parameter fam-
ilies ψ = ψ(α) = ψ(α,ω(α)) andψ = ψ(ω) = ψ(α(ω),ω) of solutions to problem
(1)–(2) subject to additional condition(5) which depend, respectively, on the pa-
rametersα andω.

5 Numerical Method

Our objective in this Section is to introduce a method for thenumerical solution
of problem (1)–(2) in a semi–infinite domain bounded by a wallwith a protruding
obstacle (Figure 1). The idea of the proposed method is to approximate system (1)–
(2) on a suitable grid. The streamlineψ = α, which separates the rotational region
A(α) from the surrounding irrotational domainΩ\A(α), is not explicitly tracked,
but is detected as a jump of the vorticityω represented on the grid. In general,
resolving accurately this separatrix would require a refined grid. Furthermore, since
the physical domain extends to infinity, the truncated computational domain should
be large in comparison to the size of the vortex patchA(α), and a straightforward
application of any standard solution method to the problem in the entire domain
would require a very large number of grid points. In addition, some artificial far–
field boundary conditions would have to be adopted at the outer boundary to model
the inflow/outflow from the truncated domain. On the other hand, whenψ > α,
equation (1a)–(2) reduces to the Laplace equation which, ingeneral, should not
require such a significant computational effort.

14



The method proposed here overcomes these difficulties by combining a conformal
mapping of the physical domain into a suitable transformed plane and the decom-
position of the transformed domain into two subdomains, namely:

• a smallinterior subdomainΩi which includes the image of the recirculating flow,
and

• anexteriorsubdomainΩe comprising the remainder of the flow field which ex-
tends to infinity.

Briefly, system (1)–(2) is solved numerically by combining afinite–difference ap-
proach in the interior subdomainΩi with an analytical expression for the solu-
tion of the Laplace equation in the exterior subdomainΩe. The two solutions are
coupled through the boundary conditions on the interfaceγAB separating the two
subdomains: for the interior subproblem we use the Dirichlet boundary condition
ψi = ψe, whereas for the exterior subproblem the Neumann boundary condition
∂ψe/∂n = ∂ψi/∂n, where the subscriptsi ande refer to the solutions defined on
the interior and the exterior subdomains, i.e.,ψi , ψ|Ωi andψe , ψ|Ωe. Repeated
solution of such two coupled problems in known as the Steklov–Poincaré iteration
which is a well–known approach in the domain decomposition literature [34]. As
regards computational efficiency, the fact that one has to perform iterations is offset
by a modest number of grid points required to solve the interior subproblem. In the
following subsections we describe the two key enablers of the proposed method,
namely, the conformal mapping and the solution technique inthe transformed do-
main.

5.1 Conformal Mapping

To fix attention, we consider flows past a wall extending to infinity in the upstream
and downstream direction, and featuring a cusped obstacle.An example of such
a flow domain is shown in Figure 3a with the interior subdomainΩi bounded by
a segment of the solid wall and an interfaceγAB connecting pointsA andB. We
will show here how, by combining two conformal mappings, such a domain can
be transformed to a domain with a simple geometry in which ourproblem can
be solved using standard techniques. According to the Riemann mapping theorem
[35], any arbitrary simply–connected region, such as the one shown in Figure 3a,
can be conformally mapped onto the upper half plane of a transformed domain.
Let us denotez–plane the complex physical plane, wherez= x+ iy andi =

√
−1,

andλ–plane the transformed plane. There exists, thus, a mappingfunctionz= z(λ)
which maps the real axis of theλ–plane onto an arbitrarily shaped line in thez–
plane extending in both directions to infinity, such that theupper half plane in the
λ–plane (Figure 3b) is mapped onto the region above the wall inthez-plane.

The flow domain shown in Figure 3a is obtained from the half–plane shown in Fig-
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(a)

(b)

(c)

Fig. 3. Domains used in the numerical solution of system (1)–(2): (a)z–plane (the physical
domain), (b)λ–plane (the computational domain for the exterior problem), and (c)ζ–plane
(the computational domain for the interior problem); in thefigures the solid lines represent
(the images of) the domain boundaries, whereas the dotted lines represent the interfaceγAB

separatingΩi andΩe in the three planes.

ure 3b using a simple variation ofRingleb’s snow–cornice mapping[36], namely

z=
λ
a
−b+

λ2
1

λ
a −b−λ1

, (32)
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where the complex parameterλ1 defines the shape of the cornice and the two real
parametersa andb are such thatzA = z(−1), zB = z(1) (zA andzB are the positions
of the pointsAandB in thez–plane, see Figure 3a). As shown in Figure 3b, in theλ–
plane the interior subdomain is mapped into the region inside the unit semi–circle,
while the exterior sub–domain is its complement in the upperhalf–plane.

The second conformal mapping transforms the interior of therectangle in theζ–
plane (Figure 3c) into the upper half of theλ–plane (Figure 3b) and is based on
the Jacobi elliptic sine–amplitude function Sn. In theζ–plane the interior subdo-
main corresponds to the lower half of the rectangle and the exterior subdomain
corresponds to the upper half of the rectangle (Figure 3c). The mapping function is

λ =
Sn(ζ,m)

d
, (33)

where the real parametersm andd are the elliptic modulus and the scaling factor,
respectively. The elliptic modulusm defines the aspect ratio of the rectangle in the
ζ–plane through the equation

|ζD −ζC|
2|ζA−ζC|

=
K(m)

K′(m)
,

whereK(m) is the complete elliptic integral of the first kind andK′(m) = K(1−m),
whereasζA, ζC andζD are the coordinates of the pointsA, C andD in theζ–plane
(Figure 3c). The scaling factord is a free parameter and its choice determines the
coordinateszC andzD of the pointsC andD in the physical plane and the location
in theζ–plane of the imageζP of the cuspP.

As described below, system (1)–(2) is solved numerically onan equispaced Carte-
sian grid defined inside the lower rectangle in theζ–plane. For an accurate enforce-
ment of the Kutta condition (4), it is convenient to select a value of the parameter
msuch that the pointζP coincides with a grid node. Discretizing the sideCAof the
rectangle withp grid points and collocating the image of the pointP with then–th
node gives

ζP = d[−K(m)+ i(n/p)K′(m)],

so that (33) becomes

λP =
Sn[−K(m)+ i (n/p)K′(m)/2,m]

Sn[−K(m)+ iK′(m)/2,m]

which makes it possible to obtain a suitable value of the elliptic modulusm via a
trial–and–error approach. An example of the computationalgrid generated with the
procedure described above, albeit coarser than the ones used in the actual compu-
tations, is shown in Figure 4. The figure also features a magnification of the region
showing the pointP coinciding with a grid point.
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(a) (b)

Fig. 4. Examples of a coarse grid generated by the conformal mapping on thez–plane: (a)
in the interior subdomainΩi , and (b) magnification of the neighborhood of the cuspP.

5.2 Solution in the Transformed Domain

System (1)–(2) is transformed to theζ–plane withζ = ξ + i η acting as the inde-
pendent variable. Defining∇∇∇2

ζ , ∂2
ξ +∂2

η, equation (1a)–(2) becomes

∇∇∇2
ζψ =

1
J
[−ωH(α−ψ)], (34)

whereJ , |dz/dζ|2. The interior subdomainΩi coincides with the rectangleABCD
whose upper, lower, left and right boundaries are denoted, respectively,γAB, γCD,
γAC, γBD. We will denoteΩv the rotational portion of the interior subdomain (Ωv ⊂
Ωi). In the interior subdomain the problem is defined by the following boundary
conditions

ψi = 0 onγAC∪ γCD∪ γDB, (35a)
ψi = ψe on γAB, (35b)

whereψe is the Dirichlet boundary condition expressed in terms of the solution in
the exterior subdomainΩe. The proposed method is based on the Schauder fixed
point theorem [30]. Let the streamfunction be defined by

ψi = ψ0+ωψ1, in Ωi , (36)

whereψ0 satisfies the system with a homogeneous RHS and inhomogeneous bound-
ary conditions, i.e.,

∇∇∇2
ζψ0 = 0 in Ωi, (37a)

ψ0 = 0 onγAC∪ γCD∪ γDB, (37b)

ψ0 = ψe on γAB, (37c)
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whereasψ1 satisfies the system with an inhomogeneous RHS and homogeneous
boundary conditions, i.e.,

∇∇∇2
ζψ1 = 0 in Ωi\Ωv, (38a)

∇∇∇2
ζψ1 =

1
J

in Ωv, (38b)

ψ1 = 0 onγAC∪ γCD∪ γDB∪ γBA. (38c)

The vorticity ω is computed by imposing the Kutta condition at the cuspζP. We
note that condition (4) implies the following relation in the transformedζ–plane

∂ψ
∂ξ

∣
∣
∣
ζP

= 0. (39)

We also observe that discretizing the derivative in (39) with a finite–difference for-
mula yields approximate relation (5). In the interior subdomain, the algorithm con-
sists in iterating the equation

∇∇∇2
ζψn+1 =

1
J

[−ωnH(α−ψn)] , n = 1, . . . , (40)

where the subscripts represent the iteration numbers. System (37) is not affected
by this iterative procedure, thusψ0 is computed only once. Withψ0 fixed andΩv

given,ψ1 andω can be determined at any givenn–th iteration. Then, at the(n+1)–
th iteration, a new shape of the vortex regionΩv is determined by the level set
ψn+1 = α and the process is repeated until convergence is attained.

On the other hand, the potential flow in the exterior subdomain Ωe is computed in
theλ–plane. Let the complex potentialwe be defined as

we(λ) = Q∞λ+
∞

∑
j=1

a jλ− j (41)

with

Q∞ = lim
λ→∞

(
dwe

dz

)(
dz
dλ

)

=
q∞
a

,

whereq∞ is the asymptotic velocity in the physical plane. In theλ–plane, the exte-
rior subdomainΩe corresponds to the region exterior to the unit circle in the upper
half–plane. The portion of the real axis with 1≤ |λ| < ∞ is the image of the solid
walls upstream and downstream of the cavity. We see that in order to ensure the im-
permeability of the solid wall, exterior potential (41) must be such thatψ = const on
the real axis, and as a result the coefficientsa j , j = 1, . . . , must be real. Noting that
λ = ρexp(iϕ), the problem is closed by enforcing the Neumann boundary condi-
tion (∂ψe/∂ρ) = (∂ψi/∂ρ) on the common boundaryγAB, with (∂ψi/∂ρ) expressed
in terms of the interior solutionψi . We observe that the derivatives in the direc-
tions normal to the interfaceγAB in theλ–plane andζ–plane are related through the
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following identity
∂ψe

∂ρ
=

∂ψi

∂η

∣
∣
∣
∣

dλ
dζ

∣
∣
∣
∣

−1

.

Let us setg(ϕ) = (∂ψi/∂ρ)ρ=1. We remark that the interior solution along the com-
mon boundaryγAB defines the functiong(ϕ) in the interval 0≤ ϕ ≤ π. To en-
sure impermeability of the solid walls we therefore needg(0) = g(π) = 0. Thus,
g(ϕ) can be continued on the intervalπ ≤ ϕ ≤ 2π, i.e., on the entire unit circle
of the λ–plane, by assuming thatg(π + δ) = −g(π− δ), with 0 ≤ δ ≤ π. Since
Im[(dw/dλ)λ]ρ=1 = (∂ψe/∂ρ)ρ=1, equation (41) yields

g(ϕ) = Q∞ sinϕ−
∞

∑
j=1

j a j sin( j ϕ) =

(
∂ψi

∂ρ

)

ρ=1
. (42)

Truncating the series in (42) at some numberN, we can determine all the unknown
coefficientsa j , j = 1, . . . ,N by using a suitable number of collocation points in
[0,π].

The interior and exterior flow computations are iterated until ψi andψe converge
to the same values on the interfaceγAB. A linear relaxation approachψn+1

e =
(1− fr)ψ̃n+1

e + frψn
e has was adopted for the solution values on the interfaceγAB

[cf. (37c)] with the under–relaxation factorfr ∈ [0,1] chosen heuristically. Con-
tinuous families of solutions of (1)–(2) are tracked by modifying the value of the
parameter, i.e.,α, or ω0, an then solving the problem again using the solution ob-
tained for the previous parameter value of the initial guess.

5.3 Benchmark Tests

The accuracy of the method was analyzed by comparing the results of the numerical
computations to the analytical solution available whenα → −∞, that is when the
vortex patchA(α) shrinks to a point vortex (see, for instance, [14]). In this case,
the interior solutionψi is obtained by modifying equations (36), (37b) and (37c) as
follows

ψi = ψ0+Γψ1 in Ωi ,

ψ0 = −ψv on γAC∪ γCD∪ γDB,

ψ0 = ψe−ψv on γAB,

whereΓ is the vortex circulation andψv = − Γ
2π log|z− zv| is the streamfunction

induced by a point vortex located atzv in an unbounded domain.

The streamline pattern obtained in such a point vortex solution is shown in Figure
5a. TheL2 errors of the numerical solution with respect to the analytical solution
computed based on the flow velocity along the separatrix streamlineγAB and the
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(a) (b)

Fig. 5. Streamline patterns for (a) the point vortex equilibrium solution and (b) the corre-
sponding Prandtl–Batchelor solution.

Fig. 6. The interior domainΩi in the Batchelor flow.

vortex circulation are in both casesO(10−6). Figure 5b represents the correspond-
ing Prandtl–Batchelor flow with a constant nonzero vorticity in the entire recircu-
lation zone computed with the present method. A close–up of the interior region in
the Prandtl–Batchelor flow is shown in Figure 6.

We close this Subsection by commenting on the computationalefficiency of the
proposed method. The main computational cost is due to solution of the interior
Poisson problem (38) at each iteration. A fast Poisson solver was adopted from
the Fishpack90 library [37]. The computations were done on aPC with the AMD
Athlon 64 3000+ 1.81 GHz CPU and with 1 Gb RAM. Examples of the CPU
times required to solve the full problem are shown in Table 1 for a 1500×1500
grid and for different values of the relaxation factorfr . Figure 7 shows the rates of
convergence obtained in the solution of this problem with different values offr .
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fr iterations CPU time[s]

0.25 37 630

0.40 10 300

0.50 7 250

0.60 10 570

0.75 19 1270
Table 1
CPU times required to obtain the solution of system (1)–(2) with α = −0.05 on a 1500×
1500 grid with different values of the under–relaxation factor fr .

Fig. 7. Rates of convergence of the Steklov-Poincaré algorithm described in Sections 5.1
and 5.2 and obtained in the solution of system (1)–(2) withα = −0.05 on a 1500×1500
grid with different values of the under–relaxation factorfr indicated in the legend. The
horizontal line without symbols represents the tolerance used in the termination condition.

6 Numerical Computations of Continuous Families of Solutions

In this Section we present results of numerical computations to illustrate Theorems
3 and 4. We will first analyze the case where the Kutta condition is not imposed
and solutions of (1)–(2) can be continued simultaneously with respect toα andω.
Then we will consider the case with Kutta condition (5) imposed, so that solutions
of (1)–(2) can be continued with respect to one parameter only. As was argued in
Introduction, existence of point–vortex equilibria and ofthe associated families of
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Solution α ω |A| Γ

R -0.5 -25.481 0.189 -4.811

A1 -0.646 -25.482 0.221 -5.628

A2 -0.392 -25.481 0.163 -4.156

B1 -0.5 -22.456 0.227 -5.103

B2 -0.5 -28.593 0.156 -4.563
Table 2
Parameters of the reference solution (R) and the perturbed solutions (A1, A2, B1, B2) for the
case when the Kutta condition is not enforced.

steady vortex patches satisfying also the Kutta condition is a nontrivial problem. It
becomes particularly involved when the domain boundary possesses a fore–and–aft
symmetry. In this regard, it was shown in [14] that in such cases the existence of
equilibrium point–vortex configurations depends on the specific form of the confor-
mal map that transforms the domain boundary into the real axis in the transformed
domain. Thus, we choose this conformal map in the form

z=
λ
a

+b− 1

5
(

λ
a +b+ i

)5 , (43)

where, as explained in Section 5.1, the parametersa andb are determined by re-
quiring thatzA = z(−1), zB = z(1). In accordance with the criteria derived in [14],
formula (43) ensures the existence of equilibrium vortex configurations. In view
of the controversy surrounding the question of existence ofvortex equilibria in
domains with symmetries (cf. Section 1), we find this particular configuration an
interesting one. We also add that conformal map (43) is closely related to Ringleb’s
snow cornice mapping (32), so the Steklov–Poincaré methoddeveloped in Section
5 can be used here.

6.1 Continuation in the Absence of the Kutta Condition

As a reference, we consider the solution of problem (1)–(2) corresponding toα0 =
−0.5 which, without loss of generality, also satisfies Kutta condition (5). The stream-
line pattern of this solution is illustrated in Figure 8a. Since the vortex patch bound-
ary is regular, Assumptions (22) are clearly satisfied and, by Theorem 3, this solu-
tion can be continued with respect to the parameters. We thusconsider two different
continuations of the reference solution, namely:

• holding the vorticityω fixed, and perturbing the boundary value of the stream-
function asα = α0± δα, whereδα > 0 is a perturbation (different in each of
the two cases); the corresponding solutionsA1 andA2 are shown in Figures 8c,d,
and their locus is represented by the horizontal line in Figure 8b,
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Streamline patterns in the solutions of system (1)–(2): (a) the reference solution
obtained withα = −0.5, (c), (d) solutions with unchangedω and perturbedα, (e), (f)
solutions with unchangedα and perturbedω; thicker lines mark the streamlines bounding
the recirculation regions; figure (b) represents schematically the reference solution and the
loci of the perturbed solutions in theα–ω plane.

24



• holding the boundary valueα of the streamfunction fixed, and perturbing the
vorticity asω = ω0± δω, whereδω > 0 is a perturbation (different in each of
the two cases); the corresponding solutionsB1 andB2 are shown in Figures 8e,f,
and their locus is represented by the vertical line in Figure8b.

All relevant parameters, i.e.,|A| and Γ in addition toα and ω of the reference
and perturbed solutions are collected in Table 2. We note that while the reference
solution has the separation point at the cusp of the obstacle, this is no longer the
case for the perturbed solutions.

6.2 Continuation in the Presence of the Kutta Condition

Subject to Kutta condition (5), solutions of system (1)–(2)represent a one–parameter
family. In the limit α → −∞ they approach a point–vortex solution, whereas for
α = ψb = 0 the recirculation region and the vortex region coincide resulting in the
Prandtl–Batchelor solution. Boundaries of the vortex region for solutions belonging
to this family and corresponding to the intermediate valuesof α are shown in Figure
9. Since the vortex patch boundaries in each of those solutions are regular, Assump-
tions (22) are clearly satisfied and, by Theorem 4, each of these solutions can be
continued. In Figure 10 we also show the entire streamline pattern for the terminal
Prandtl–Batchelor solution obtained forα = ψb. The locus representing this solu-
tion family in theα–ω plane, i.e., the Kutta line, is shown in Figure 11a, whereas
the corresponding locus in the|A|–Γ plane is shown in Figure 11b. In both Figures
one can clearly see the transition from the point–vortex to the Prandtl–Batchelor
solution.

7 Conclusions

In this paper we identified the conditions under which vortex–patch solutions of Eu-
ler equations (1)–(2) can be continued with respect to both the vorticityω and value
α of the streamfunction defining the vortex boundary. These conditions, given by
(22), are satisfied as long as the vortex patch boundary is smooth. In other words, if
there exists a smooth vortex patch in equilibrium with the obstacle and character-
ized by given values of the vorticityω and the streamfunctionα (or, equivalently,
the circulationΓ and the patch area|A|), then there also exist nearby perturbed so-
lutions in theα–ω, or |A|–Γ, plane. A situation in which conditions (22) are not
satisfied may arise when the vortex patch boundary has a singularity in the form
of a corner, or a cusp (it is known from [20] that these are the only two singularity
types possible). Given the structure of the proofs of Theorems 3 and 4, conditions
(22) aresufficient, but notnecessary. Therefore, it might in principle happen that
vortex patches with singularities of their boundaries could still be continued. On
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Fig. 9. Family of vortex–patch solutions of system (1)–(2) subject to Kutta condition (5)
and connecting the point–vortex solution (α → ∞) with the Prandtl–Batchelor solution
(α = ψb = 0).

Fig. 10. Streamline pattern of the Prandtl–Batchelor solution (α = ψb) in which the vortex
patch coincides with the recirculation region.

(a) (b)

Fig. 11. Loci of solutions of system (1)–(2) satisfying alsoKutta condition (5) in (a)ω–α
parameter space, and (b)Γ–|A| parameter space.

the other hand, however, all computational results we are aware of and which we
reviewed in Section 2 indicate that singular patches represent in fact terminal mem-
bers of solutions families: in addition to our results presented in Section 6.2 (e.g.,
Figure 9), this was also observed in [27] for the Sadovskii flow and in [23] for a
system of two vortex patches touching at three cusp points. We also add that our
analysis did not include the case of a patch with a vortex sheet on the boundary
which would require a slight generalization of our approach. While computational
evidence for the existence of perturbed vortex–patch solutions has been known for
a long time, in this investigation we derived, for the first time to the best of our
knowledge, mathematically precise conditions allowing one to predict when such
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a continuation is possible. Furthermore, we also show that if the original solution
satisfies the Kutta condition, then there exists a nearby vortex patch having, for
example, a different area, but still satisfying the Kutta condition.

The methodology we developed in this paper does not allow oneto construct neigh-
boring solutions, but only establish their existence. Our results are based on lin-
earizations of governing system (1)–(2), hence they are valid only locally in the
neighborhood of the reference solution. In principle, one could attempt to construct
neighboring solutions by representing them as a Taylor series with respect to a
parameter, and then summing up perturbation variables of increasing orders. How-
ever, in addition to the need to establish analyticity of solutions of (1)–(2) with
respect to the parameter, this would require the summation of an infinite series
which is impractical. Therefore, in actual computations itis much more practical to
use methods of numerical continuation, and indeed with suchtechniques we were
able to determine a whole family of vortex–patch solutions connecting the point
vortex and the Prandtl–Batchelor solution.

We emphasize that equations (17) and (19) satisfied by the perturbations variables
φ′α andφ′ω are the main objects of our analysis. Given the free–boundary nature of
governing equation (1)–(2), systematic derivation of these perturbation equations
required the use of a special technique, namely, the shape–differential calculus. We
remark that these perturbation equations are also of independent interest and may
be used to study, for instance, the stability of solutions of(1)–(2).

One of the motivations for this work was to understand the extent to which the exis-
tence of a vortex patch solution satisfying the Kutta condition implies the existence
of the limiting point vortex solution also satisfying the Kutta condition, or, equiva-
lently, the extent to which the non–existence of such a pointvortex solution implies
that no steady vortex patch can be found to satisfy the Kutta condition for a spe-
cific boundary configuration (cf. Conjecture 1). We made a step towards solving
this problem by identifying sufficient conditions for the existence of continuous
families of solutions characterized by vortex patches. These conditions, given by
equations (22), are satisfied as long as the vortex patch boundary remains regular,
i.e., free from geometric singularities such as cusps or corners. While extending our
findings to include in a rigorous manner the limiting case of apoint vortex (corre-
sponding toα →−∞ andω → ∞) remains an outstanding challenge, the results of
computations seem to support the “accretion” scenario. Finally, we note that there
is also a range of interesting questions concerning the global structure of the solu-
tion manifold. Our hope is that methods of nonlinear functional analysis, such as
Fredholm’s degree theory, might shed some light on these problem.
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