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Abstract This investigation offers a detailed analysis of solutions to the two–dimensional Oseen prob-

lem in the exterior of an obstacle for large Reynolds numbers. It is motivated by mathematical results

highlighting the important role played by the Oseen flows in characterizing the asymptotic structure of

steady solutions to the Navier–Stokes problem at large distances from the obstacle. We compute solu-

tions of the Oseen problem based on the series representation discovered by Tomotika and Aoi [8] where
the expansion coefficients are determined numerically. Since the resulting algebraic problem suffers from

very poor conditioning, the solution process involves the use of very high arithmetic precision. The ef-

fect of different numerical parameters on the accuracy of the computed solutions is studied in detail.

While the corresponding inviscid problem admits many different solutions, we show that the inviscid

flow proposed by Stewartson [38] is the limit that the viscous Oseen flows converge to as Re→ ∞. We

also draw some comparisons with the steady Navier–Stokes flows for large Reynolds numbers.

Keywords Oseen equation · External Flows · Wakes · Steady Flows · Computational Methods

PACS 47.15.Tr · 47.54.Bd

1 Introduction

This research concerns steady incompressible flows past obstacles in unbounded domains and we in-
vestigate solutions of Oseen’s approximation to the Navier–Stokes system in the limit of vanishing

viscosities. Motivated by certain mathematical results highlighting the role of the Oseen problem for

some open questions in theoretical hydrodynamics, we will attempt to provide a modern look at this

classical problem. We consider two–dimensional (2D) flows past a circular cylinder A with the unit

radius in an unbounded domain Ω , R
2\A (“,” means “equal to by definition”). It is assumed that
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the flow is generated by the free stream u∞ = 1 ex at infinity, where ex is the unit vector associated

with the OX axis. Denoting u = [u, v]T the velocity field, p the pressure, and assuming the fluid density

is equal to unity, the Oseen system takes the following form

u∞ · ∇u + ∇p− 1

Re
∆u = 0 in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on ∂A, (1c)

u → u∞ as |x| → ∞, (1d)

where x = [x, y]T is the position vector, Re denotes the Reynolds number. The coordinate system is

fixed at the obstacle and the no–slip boundary conditions were assumed at the obstacle boundary ∂A.

Noting that the obstacle diameter is d = 2, the Reynolds number is calculated as

Re =
2|u∞|
µ

, (2)

where µ is the dynamic viscosity. System (1) is a linearization of the Navier–Stokes problem obtained by

replacing the advection velocity in the nonlinear term with the free stream u∞. It therefore represents

an alternative model to the Stokes approximation in which the nonlinear term is eliminated entirely,

resulting in a problem which admits no solutions in 2D, a fact known as Stokes’ paradox [1]. While the
time–dependent generalizations were recently considered [2], Oseen’s linearization, as well as Stokes’, is

typically studied in the time–independent setting.

In the ’50s and ’60s the Oseen equation generated significant interest, since being analytically

tractable, its solutions offered valuable quantitative insights into properties (such as, e.g., drag) of

low–Reynolds number flows past bluff bodies, otherwise unavailable in the pre–CFD era. Different so-

lutions of the Oseen equation, either in 2D or in 3D, were constructed by Lamb [3], Oseen himself

[4], Burgess [5], Faxén [6] and Goldstein [7] to mention the first attempts only. It should be, however,

emphasized that these early “solutions” satisfied governing equation (1a), or boundary condition (1c),

or both, in an approximate sense only. The first solution (in the 2D case for the flow past a circular

cylinder) satisfying exactly both the governing equation and the boundary conditions, albeit depending

on an infinite number of constants, is that of Faxén [6]. It was later rederived in simpler terms by

Tomotika and Aoi [8], whereas Dennis and Kocabiyik [9] obtained analogous solutions for flows past

elliptic cylinders inclined with respect to the oncoming flow. We also mention the work of Chadwick et

al. [10,11] who considered solutions expressed in terms of convolution integrals with “Oseenlets”, i.e.,

Green’s functions for equation (1). Even a cursory survey of these results and the different applications

that the Oseen equation found in the studies of wake flows, both fundamental and applied, is beyond

the scope of this paper. Instead, we refer the reader to the excellent historical reviews by Lindgren [12]

and Veysey II & Goldenfeld [13], and the monograph by Berger [14] for a survey of historical develop-
ments and different applications. Following the advent of computational fluid dynamics which made it

possible to solve the complete Navier–Stokes system numerically, the interest in the Oseen approxima-

tion as a means of studying real flows subsided. We remark that the Oseen system is still occasionally

used as a testbed for validating different computational approaches (e.g., stabilization of finite element

discretizations [15], or artificial boundary conditions on truncated computational domains [16]).

The present investigation reflects a renewed interest in the Oseen system which comes from a some-

what different direction. It is motivated by certain results of the mathematical analysis concerning the

far–wake structure in the steady–state solutions of the Navier–Stokes equation in unbounded domains.

The related question of the asymptotic, as Re→ ∞, structure of the separated 2D flow past a bluff body

was studied extensively using methods of the asymptotic analysis since the 1960s. A number of different

limiting solutions have been proposed which fall into two main categories illustrated schematically in

Figure 1, namely, flows characterized by slender wakes extending to infinity such as the Kirchhoff–type
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solutions with free streamlines [17,18], and flows with wide closed wakes reminiscent of the Prandtl–

Batchelor limiting solution [19] with two counter–rotating vortices attached to the obstacle. However,

the only asymptotic solution which has been found to be self–consistent and which has withstood the

test of time is that of Chernyshenko [20], see also [21]. It features two large recirculation regions with

the width and length growing proportionally to Re and the drag coefficient decreasing to zero with Re.

This type of asymptotic solution was later generalized in different directions, namely, for flows past rows
of obstacles in [22] and for flows with stratification in [23]. As concerns computational studies, the work

of Fornberg [24,25] was pioneering and still represents the state–of–the–art in this area. More recently

it was followed by computational studies of steady flows past rows of obstacles in [26,27] and flows past

obstacles in channels [28], whereas steady three–dimensional (3D) flows past a sphere were studied in

[29]. The results of Fornberg [25] for Reynolds numbers up to about 300 feature a slender elongated

wake bubble, whereas for higher values of the Reynolds number, these solutions develop a significantly

wider wake consistent with the theory of Chernyshenko [20,21]. Flows with similar structure were also

found in [26,27] in the case of a large distance between the obstacles. As regards the behavior of the

drag, the computations of Fornberg [25] indicated the vanishing of the drag coefficient with Re → ∞.

The history of different research efforts concerning this problem and based on the asymptotic analysis

and computations is surveyed in the review papers [21] and [30], respectively, whereas monograph [31]

offers a broad overview of asymptotic methods applied to the study of separated flows. An ultimate goal

of our research is to recompute steady 2D flows past an obstacle for Reynolds numbers significantly

higher than investigated by Fornberg quarter of a century ago and using computational techniques

which leverage certain rigorous analytical results available for this problem which we review briefly

below. There are also some intriguing questions concerning possible nonuniqueness of solutions to this
problem.

Let U denote the solution of the steady Navier–Stokes problem, to be distinguished from u satisfying

Oseen system (1). A key mathematical result established by Finn [32] and Smith [33], and discussed

at length in the monograph by Galdi [34], states that solutions of the steady–state Navier–Stokes

equations whose properties conform to what is actually observed in real flows (e.g., nonzero drag) and

hence referred to as “physically reasonable” (PR), have in 2D the following asymptotic behavior for

|x| → ∞ [34, Theorem 6.1 in Volume II]

U(x) = u∞ + E(x) ·F + W(x), (3)

where E(x) is the Oseen fundamental tensor, F is the hydrodynamic force acting on the obstacle A,

whereas the field W(x) satisfies the estimate |W(x)| ∼ O(|x|−1+ǫ1 ) for some arbitrarily small ǫ1 > 0.

The Oseen tensor E(x) is a fundamental solution of Oseen equation (1a)–(1b). Its construction and

properties, especially in regard to the slow asymptotic decay at infinity, are reviewed in detail in [34,

Volume I]. Relation (3) thus implies that the difference |U−u∞| vanishes relatively slowly with |x|, i.e.,

as O(|x|− 1
2 ) along the flow center line. It should be emphasized that this behavior is markedly different

from the corresponding behavior of solutions in time–dependent 2D Navier–Stokes system in unbounded
domains where the difference (U − u∞) decays in fact significantly faster [35]. Analogous differences

between the asymptotic properties of the steady and time–dependent solutions also exist in 3D. We

wish to stress that the properties mentioned above, in particular (3), are not hypotheses or assumptions,

but rigorously established mathematical facts concerning the Navier–Stokes system. Relation (3) is

in fact quite important as it represents a property, admittedly rather difficult to verify in numerical

computations, which characterizes all PR solutions. We emphasize that this is a rather nontrivial issue

and it is not obvious whether the computational solutions discussed above actually possess the PR

property. Ideas related to incorporating Oseen asymptotics (3) into the far–field boundary conditions in

the numerical solution of the steady–state Navier–Stokes system were pursued by Fornberg [24,25] and

also more recently in [36,37], although this concept can be traced back at least to [32]. Our objective

in this paper is to explore the properties of the solutions to Oseen system (1) for a broad range of
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Fig. 1 Schematic showing the main features of the separation zone in (a) Kirchhoff’s model and (b) Batchelor’s
model of the steady wake flow in the infinite Reynolds number limit.

Reynolds numbers. We will also show that the solution of the inviscid problem proposed by Stewartson
[38] is in fact the suitable limit of solutions of the Oseen system as Re→ ∞, a result interesting in its

own right.

The solution of Oseen equation (1a) found by Tomotika and Aoi [8] has the following form in the

polar coordinate system (r, θ) in which u = ur er + uθ eθ (er and eθ are the unit vectors in the radial

and azimuthal direction, respectively)

ur(r, θ) = cos(θ) − ∂φ

∂r
+

1

2k

∂χ

∂r
− χ cos θ, (4a)

uθ(r, θ) = − sin(θ) − 1

r

∂φ

∂θ
+

1

2kr

∂χ

∂θ
+ χ sin θ, (4b)

where

χ(r, θ) =ekr cos θ
∞
∑

m=0

BmKm(kr) cosmθ, (5a)

φ(r, θ) =A0 log r −
∞
∑

n=1

An

n

cosnθ

rn
, (5b)

in which k , Re
4 , Km are the modified Bessel functions of the second kind and of order m, and An, Bm,

m,n = 0, 1, . . . are a priori undetermined constants. By “obtaining a solution” we mean finding suitable

truncations of the series in (5a) and (5b), and determining the corresponding finite sets of constants An,

n = 0, . . . , N and Bm, m = 0, . . . ,M , such that boundary condition (1c) on the surface of the cylinder is

satisfied to an acceptable accuracy. As will be demonstrated below, this seemingly straightforward task

leads in fact to a number of computational difficulties. Since, other than a very early investigation [39],

such solutions do not seem to have ever been thoroughly studied, our goal in this research is to employ

modern methods of scientific computing to investigate these solutions in detail for a broad range of the

Reynolds number. More specifically, we would like to address the following problems:

1. determination of the coefficients An and Bm in a computationally efficient manner; in view of the

very poor conditioning of the underlying algebraic system and the difficulties involved in evaluating

high–order modified Bessel function of the second kind, this is a rather nontrivial issue,

2. establishing convergence of series appearing in (5a) and (5b); solutions (4) are only “formal”, in the

sense that it is not a priori evident whether the series defining χ and φ converge; in the absence of

relevant analytical results, we will address this issue computationally,

3. properties of solutions (4), especially in regard to the structure of the wake, for large values of the

Reynolds number and the existence of a suitable inviscid limit.
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We add that the early approximate solutions of Oseen problem (1) given in [3–5] essentially correspond

to one–term truncations of series in (5a)–(5b), whereas the solutions reported in [9] utilized four terms.

The structure of the paper is as follows: in the next Section we discuss the algebraic system that needs

to be solved to obtain solution (4), in Section 3 we recall and discuss the flow proposed as the inviscid

limit of solutions of system (1), whereas in Section 4 we present a range of computational results,

conclusions are deferred to Section 5. Some more technical material pertaining to convergence of series
in (5) is collected in Appendix A.

2 Series Solution of Oseen Problem

We begin by examining the behavior of series solutions (4a) and (4b) at large distances r from the

obstacle. Using the asymptotic expansions of the modified Bessel functions Km for r → ∞ in (5a),

cf. [45], we obtain for the radial and azimuthal velocity components

|ur − cos θ| ∼
{

1√
r
, if θ = 0,

1
r , elsewhere.

(6a)

|uθ + sin θ| ∼ 1

r2
, (6b)

where “∼” means “proportional to when r → ∞”. We note that relations (6) represent indeed the slow

asymptotic decay known to characterize the behavior of the solutions of the Oseen equation, cf. [34].

Series solutions (4a) and (4b) depend on two infinite sets of coefficients An and Bm, n,m = 0, 1, . . . .

Following [8], it is possible to eliminate the coefficients An, so that the expressions for the velocity

components become

ur = cos(θ) − cos(θ)

r2
+

1

4

∞
∑

m=0

Bm

∞
∑

n=1

[

Φm,n

(

Re
4

)

rn+1
− Φm,n

(

r
Re

4

)

]

cos(nθ), (7a)

uθ = − sin(θ) − sin(θ)

r2
+

1

4

∞
∑

m=0

Bm

∞
∑

n=1

[

Φm,n

(

Re
4

)

rn+1
− Ψm,n

(

r
Re

4

)

]

sin(nθ), (7b)

where

Φm,n(kr) = [Km+1(kr) +Km−1(kr)][Im−n(kr) + Im+n(kr)]

+Km(kr)[Im−n−1(kr) + Im−n+1(kr) + Im+n−1(kr) + Im+n+1(kr)], (8a)

Ψm,n(kr) = [Km+1(kr) −Km−1(kr)][Im−n(kr) − Im+n(kr)]

+Km(kr)[Im−n−1(kr) − Im−n+1(kr) − Im+n−1(kr) + Im+n+1(kr)]. (8b)

Expression (7b) will be used in combination with the boundary condition for the tangential velocity

component from (1c) to find the numerical values of the truncated set of coefficients Bm. We note that

the wall–normal velocity boundary condition will be then satisfied by construction. We remark that
formulation (7)–(8) involves double sums, but only a single set of coefficients, which may be acceptable

for the problem of determining the expansion coefficients, but is rather inefficient when the velocity

components need to be evaluated at a dense grid of points in the flow domain. Therefore, for such

post–processing purposes the single–sum formulation (4)–(5) will be used.

Matching (7b) against the tangential component of velocity boundary condition (1c) and truncating

the series at m = N and n = N + 1 we obtain the following algebraic system [8]

N
∑

m=0

Bmλm,n (k) =

{

4, (n = 1),

0, otherwise,
(9)
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Fig. 2 Condition number κ for system (9) (a) as a function of the Reynolds number for different fixed N :
(+) N = 10, (◦) N = 40, (×)N = 70, and (�) N = 100, and (b) as a function of truncation N for different
fixed Reynolds numbers (+) Re = 1, (◦) Re = 10, (×) Re = 100, (�) Re = 1, 000 and (△) Re = 10, 000; for
comparison, the condition number of the Hilbert matrix is indicated with a solid line; in Figure (a) it corresponds
to a 50 × 50 Hilbert matrix.

where

λm,n(x) =Im−n(x)Km−1(x) + Im+n(x)Km+1(x)+

+ Im−n+1(x)Km(x) + Im+n−1(x)Km(x),
(10)

which needs to be solved in order to determine the coefficients Bm, m = 0, 1, . . . , N . While all past

investigations [8,9,39] concerned very low values of N , in the present study we seek to solve system (9)

for significant values of N . In addition to evaluation of the Bessel functions of very high order [up to

O(103)], the main difficulty is a very poor conditioning of the matrix in (9). Since the matrix entries

λm,n depend for all m and n on the Reynolds number Re, in Figures 2a and 2b we show the condition

number κ of algebraic system (9) versus the order of truncation N and the Reynolds number Re. We
note that, for a fixed truncation order N , the condition number actually decreases with the Reynolds

number. However, the condition number increases with the resolution N , and we expect that in order

to accurately resolve all features of the flow, for larger Reynolds numbers larger truncation orders N

will have to be used. A priori, it is not obvious which effect (i.e., decrease of κ with Re, or its increase

with N) will eventually prevail. This is one of the questions we seek to answer in Section 4.

Another important question is the asymptotic summability, as M,N → ∞, of the series in (5). As

shown in Appendix A, for the velocity components to be finite, the coefficients Bm, m = 1, . . . must

have the behavior |Bm| ∼
(

k
2

)m
emm−m−1/2−ǫ for sufficiently large m and some arbitrarily small ǫ > 0.

This property is also verified computationally in Section 4.

Once the coefficients Bm, m = 1, . . . ,M are computed, they can be used to determine a number of

relevant quantities such as:

– the vorticity ω , 1
r

(

∂(r uθ)
∂r − ∂ur

∂θ

)

using the following relation

ω(r, θ) =
∂χ(r, θ)

∂r
sin θ +

1

r

∂χ(r, θ)

∂θ
cos θ, (11)

– the drag coefficient CD , 2Fx

|u∞|2S , where Fx is the drag force and S the area per unit length of the

cylinder facing the flow; following [8,40], it can be conveniently computed as

CD = −1

2

∫ 2π

0

(

r
∂χ

∂r

)

r=1

dθ = −πA0, (12)
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where χ and A0 are defined in equation (5),

– the half–width WR and length LR of the separated region which is defined as a part of the flow

domain Ω characterized by closed streamlines; the half–width WR is the largest value of the y–

coordinate in this region and the length LR is the largest value of the x–coordinate less the radius

of the cylinder,

– the separation angle θ0 defined as the angle θ for which the skin friction vanishes, i.e.,

τ(θ0) = 0, where τ(θ) = µ

(

∂uθ

∂r

)

r=1

. (13)

3 Inviscid Limit of Oseen Flows

An important problem concerns characterization of the flow that solutions of Oseen system (1) tend to

in the limit Re → ∞. The zero–viscosity limit results in a singular perturbation problem, a property

which manifests itself in a different number of boundary conditions in system (1) and system (14) to be
introduced below. From the point of view of the general mathematical theory, there remains a number

of open questions concerning the inviscid limit of the Navier–Stokes flows and we refer the reader to

the review paper [41] for some discussion. As shown below, some partial results can be obtained for the

Oseen system. Dropping the dissipative term 1
Re∆u we obtain inviscid Oseen system

u∞ · ∇u + ∇p = 0 in Ω, (14a)

∇ · u = 0 in Ω, (14b)

n · u = 0 on ∂A, (14c)

where, we emphasize, only the wall–normal component of the velocity boundary condition has been

retained. The “vorticity” form of (14a)–(14b) is particularly simple

∂ω

∂x
= 0 in Ω (15)

which means that ω = ω(y) is constant along horizontal lines starting and ending at the obstacle (Figure

3). We now consider the streamfunction ψω induced outside the wake region W1

⋃

W2, cf. Figure 3, by

such a vorticity distribution ω(y) defined for x extending to infinity. In view of the identity ∆ψω = −ω,

we have for (x, y) ∈ Ω\W1

⋃

W2

ψω(x, y) =
1

4π

∫ 1

0

ω(η)

{

∫ ∞

√
1−η2

ln
[

(x− ξ)2 + (y − η)2
]

dξ

}

dη

+
1

4π

∫ 0

−1

ω(η)

{

∫ ∞

√
1−η2

ln
[

(x− ξ)2 + (y − η)2
]

dξ

}

dη.

(16)

Direct calculation shows that the “inner” improper integrals
∫ ∞√

1−η2 ln
[

(x− ξ)2 + (y − η)2
]

dξ are in

fact unbounded. Introducing the assumption that the vorticity ω is an odd function of y, i.e.,

ω(−y) = −ω(y), for 0 ≤ y ≤ 1,

ω(y) = 0 for |y| > 1,
(17)

we can combine the two integrals in (16) obtaining

ψω(x, y) =
1

4π

∫ 1

0

ω(η)







∫ ∞

√
1−η2

ln
1 +

(

y−η
x−ξ

)2

1 +
(

y+η
x−ξ

)2 dξ






dη, (18)
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Fig. 3 Schematic vorticity distribution in the solution of inviscid Oseen problem (14)–(15).

where by direct calculation we note that the “inner” improper integral
∫ ∞√

1−η2 ln
1+( y−η

x−ξ )
2

1+( y+η
x−ξ )2 dξ is now

bounded (the actual expression for this integral is long and not important for the present argument,

hence will be skipped). The reason is that in view of assumption (17) the unbounded contributions

from the vorticity below and above the flow centerline now cancel out in (18). Thus, we conclude that

all sufficiently regular distributions ω = ω(y) with property (17) satisfy system (14), a case of lack
of uniqueness characteristic of inviscid flows with vorticity, cf. e.g. [42]. Given the infinite number of

inviscid Oseen flows corresponding to different distributions ω(y), the main question now is how to find

the one which the solutions of viscous Oseen system (1) actually tend to as Re→ ∞. In order to answer

this question, we follow the argument put forward (in 3D) by Stewartson [38] according to which the

limiting solution can be found by imposing an additional boundary condition on the tangential velocity

component, but only on the rear part of the obstacle boundary (∂A2 in Figure 3), i.e.,

τ · u = 0 on ∂A2, (19)

where τ is the unit vector tangent to the boundary. Solutions to the problem defined by (14) and (19)

are computed in Section 4 and demonstrate that this problem indeed appears to be the proper inviscid

limit of Oseen system (1).

4 Computational Results

As discussed in Section 2, the main difficulty in obtaining solution to the problem is poor conditioning

of algebraic system (9). Because of this issue, one cannot solve problem (9) even for modest values of

N = O(102) using ordinary tools of numerical linear algebra in the standard (double) precision. We

attempted to address this issue using a number of alternative approaches [43], namely,

– reformulation of system (9) as a least–squares minimization problem with Tikhonov regularization,

– enforcement of boundary condition (7b) with the collocation method on different nonuniform grids

instead of the Galerkin approach leading to (9),

– performing the LU decomposition in closed form based on series expansions for the entries λm,n

(

Re
4

)

,

and

– reformulating the expansions in a way not involving the products of Bessel functions,

however, none of these approaches lead to satisfactory results in terms of accuracy. Therefore, we decided

to deal with the problem of poor conditioning using sufficiently increased arithmetic precision. Thus, for

every value of the Reynolds number Re we need to determine the following two numerical parameters

– the truncation order Ñ ensuring that truncated expansions (4)–(5), or (7)–(8), accurately represent

the solution of problem (1),
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– the arithmetic precision, represented by the number of significant digits P̃ , required to obtain an

accurate solution of system (9) for the given Ñ and Re.

For every value of Re, the quantities Ñ and P̃ are determined based on the following set of a posteriori

checks applied to solution (7) obtained from (9) for different values of N and P

1. first, we examine the quantities

∆uN
r , ‖uN+1

r − uN
r ‖L∞(Ω),

∆uN
θ , ‖uN+1

θ − uN
θ ‖L∞(Ω),

as functions of N , (20)

where uN
r and uN

θ denote expressions (7a) and (7b) truncated to N terms; the norm L∞(Ω) is

computed discretizing the unbounded domain Ω using a finite number of grid points; expressions

(20) therefore measure the magnitudes of the N–th terms in the sums in formulas (7); a solution

is declared “resolved” when ∆uN
r and ∆uN

θ drop below certain prescribed tolerance, which in turn

allows us to determine the minimum number Ñ of terms required,
2. for the truncation order Ñ determined in test 1. we examine

‖uÑ
r ‖L∞(Γ ), ‖uÑ

θ ‖L∞(Γ ), as functions of P (21)

which allows us to assess the effect of the algebraic precision P on the solution of the truncated

problem; expressions (21) measure how accurately boundary conditions (1c) are satisfied; we note

that the norm ‖ · ‖L∞(Γ ) is approximated using discrete points on the boundary Γ whose number

is much larger than N ; this test thus allows us to determine the arithmetic precision P̃ needed to

solve the problem with the required accuracy for the given truncation order Ñ ,

3. for the truncation order Ñ and arithmetic precision P̃ determined in tests 1. and 2. we examine

|Bm|, as function of m (22)

to establish whether the rate of decay of the coefficients Bm is fast enough to guarantee the absolute

convergence of series (7), see Appendix A for the derivation of the relevant criteria.

In order to double–check consistency of the results, our computations were performed with the variable

precision arithmetic both in Maple 13 and in python (using the mpmath library [44]). Inviscid problem

defined by (14) and (19) is solved with a 2D version of the approach proposed originally by Stewartson

[38] with the drag coefficient computed as described in [40].

Results of diagnostic tests 1.–3. are shown in Figures 4, 5 and 6. As regards the data shown in Figure

4, we add that a truncation order N is deemed acceptable, and denoted Ñ , if the quantities ∆uN
r and

∆uN
θ drop to the level of O(10−16) [since the flow velocities are O(1), this means that ∆uÑ

r and ∆uÑ
θ

become insignificant in the double precision]. As regards the data shown in Figure 5, we look for the

arithmetic precision P which ensures that the error in satisfying the boundary conditions is at most

O(10−16) [which again corresponds to “zero” in the double precision when the flow quantities are O(1)].

As regards the data shown in Figure 6, we observe rapid decay of the coefficients Bm, m = 1, . . . , Ñ ,

for all Reynolds numbers tested. In each case the decay is in fact faster than the slowest decay rate

guaranteeing absolute convergence of the series, cf. relation (25), which is also indicated in Figures

6(a-g). This observation provides support for the convergence of series (5) for all Reynolds numbers

tested. We also note that the range of magnitudes spanned by these coefficients increases rapidly with

the Reynolds number and becomes quite large. Accurate evaluation of expansions with coefficients of

such widely varying magnitudes is what necessitates the use of unusually high arithmetic precisions P̃ .
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Fig. 4 A posteriori test 1.: quantities (•) ∆uN
r and (△) ∆uN

θ shown as functions of the truncation order N

for the Reynolds numbers indicated; due to significant computational cost required to accurately evaluate the
norm ‖ · ‖L∞(Ω), for higher values of the Reynolds number the quantities ∆uN

r and ∆uN
θ are computed for some

values of N only, hence in Figures (d)–(g) fewer data points are visible.
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Fig. 5 A posteriori test 2.: error residual ‖uÑ
θ ‖L∞(Γ ) in the satisfaction of boundary condition (7b) as a function

of arithmetic precision P for different Reynolds numbers (+) Re = 1, (∗) Re = 5, (◦) Re = 10, (△) Re = 50,

(×) Re = 100, (⋄) Re = 500 and (�) Re = 1000; the corresponding truncation orders Ñ are indicated in Table

1; we remark that condition ‖uÑ
r ‖L∞(Γ ) = 0 is satisfied down to the arithmetic precision P used.

Re N P

1 13 32
5 19 32
10 24 32
50 60 32
100 90 48
500 500 144
1000 1000 240

Table 1 Optimal truncation orders Ñ and optimal arithmetic precisions P̃ determined for different Reynolds
numbers in tests 1. and 2.

The optimal truncation orders Ñ and arithmetic precisions P̃ determined to achieve the accuracy levels

mentioned above for all values of Re are collected in Table 1. In the solution of the inviscid problem

defined in (14) and (19) we used 2000 complex Laurent polynomials.

We now proceed to discuss the flow patterns obtained for the different Reynolds numbers. In Figure

7 we show the velocity and vorticity fields together with streamlines (the latter in the separated regions

only) in the near wake corresponding to increasing values of the Reynolds number Re and including the

limiting inviscid flow discussed in Section 3. Data from Figure 7 is synthesized in Figure 8 which shows a

comparison of the shapes of the separation zones for different Reynolds numbers. In all these Figures we

observe progressive elongation of the separated region accompanied by thinning of the separating shear

layers as the Reynolds number increases. An interesting feature of the inviscid flow evident in Figures

7o, 7p and 8 is that the separated region is in fact slightly wider than the region with nonzero vorticity,

cf. (17). The half–width of the separated region in the inviscid flow was determined numerically to be

about 1.07.

Moving on to discuss quantitative data, in Figures 9a,b we show the dependence of the length

LR and half–width WR of the separation zone on the Reynolds number Re. To relate these results

to the questions about the asymptotic wake structure mentioned in Introduction, in Figures 9a,b we

also present the data corresponding to the Navier–Stokes solutions obtained by Fornberg [25], and by

Fornberg [26] and Gajjar & Azzam [27] in the case of flows past a row of cylinders in the limit of a large

distance between individual obstacles. We note in Figures 9a and 9b that while the recirculation length

LR in the viscous Oseen flows grows with the Reynolds number approximately linearly, the half–width
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Fig. 6 A posteriori test 3.: magnitude of expansion coefficients |Bm| as a function of m for different Reynolds
numbers indicated; the solid lines represent estimate (25) with ǫ = 0.0 and the constant C chosen arbitrarily in

each case; the values of Ñ and P̃ are indicated in Table 1.

WR of the separated region rapidly approaches the limiting value of 1.07 which characterizes the inviscid

Oseen flow. In the Navier–Stokes flows computed by Fornberg [25,26] and Gajjar & Azzam [27] the

recirculation length exhibits similar trends to the Oseen flows, but on the other hand, the half–width
WR grows much more rapidly. In Figure 9c, showing the dependence of the drag coefficient CD on the

Reynolds number, we note that in the limit Re → ∞ the drag in the viscous Oseen flows approaches

a finite value corresponding to the inviscid flow. Evidently, solutions of the inviscid Oseen problem are

not subject to “D’Alembert’s paradox”, as is also the case for the Kirchhoff free–streamline solutions

of the Euler equations [17,18]. At small values of the Reynolds number we compare the values of the

drag coefficient CD, cf. (12), with the approximate expressions due to Bairstow et al. [46] and Lamb

[3] which are based on low–order truncations of the solutions to the Oseen system. We also observe

that the drag coefficient in the Navier–Stokes flows computed by Fornberg [25,26] is significantly lower

and exhibits a rather different trend, namely, it appears to vanish as Re → ∞ (see also the discussion

in [31]). On the other hand, in the Navier–Stokes solutions computed by Gajjar & Azzam [27] and

corresponding to flows past a row of cylinders the drag coefficient CD appears to approach a finite
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value as Re→ ∞. It should be, however, noted that as regards the behavior of the drag coefficient the

flow past a row of obstacles represents a fundamentally different problem. The results can be directly

compared to those for the flow past a single body only in the limit of a large distance between the

obstacles, a case which was not studied in [27] due to numerical difficulties. Finally, in Figure 9d we

show the separation angle θ0, cf. (13), as a function of Re. For comparison, we also indicate the value

of the separation angle characterizing the inviscid Oseen flow, θ0 = 90deg, and the results obtained by
Fornberg for the Navier–Stokes system [24] (we were not able to obtain this data for other numerical

studies referenced here). We note that, in contrast to the diagnostics examined above, the separation

angle θ0 in the viscous Oseen flows exhibits rather slow convergence to the angle obtained in the inviscid

flow.

5 Conclusions and Discussions

Motivated by the results of the mathematical analysis demonstrating the connection between steady

Navier–Stokes flows past obstacles in unbounded domains and Oseen flows, we offer a careful char-

acterization of the solutions of the 2D Oseen system for a broad range of the Reynolds number and

including also the limiting inviscid case. The solutions to the 2D Oseen problem were computed based

on the series expansions due to Tomotika and Aoi [8]. The severe ill–conditioning of the associated

algebraic problem and the need to evaluate accurately high–order Bessel functions were overcome by

performing all algebraic operations with a sufficiently high arithmetic precision. For every Reynolds
number this precision was chosen independently together with the truncation level for the series in or-

der to meet quite stringent criteria for the accuracy of the solution. Our results provide computational

evidence, at least for the range of the Reynolds numbers investigated (i.e., from 1 to 1,000), for the

actual convergence of Tomotika and Aoi’s infinite series whose derivation was only formal [8]. We also

show that the solution of the inviscid Oseen problem proposed by Stewartson [38] indeed appears to be

the appropriate limit of the viscous Oseen flows as Re → ∞. This is confirmed by the convergence of

a number of diagnostics, namely, the half–width WR of the separated region, drag coefficient CD and

the separation angle θ0, to the values characterizing the inviscid solution (although in the case of the

separation angle this convergence is rather slow). This appears to be an interesting result as there are

not many nontrivial problems in fluid dynamics where the inviscid limit in known. We add that the

inviscid Oseen flows share a number of important features with Kirchhoff free–streamline flows [17,18]

such as unbounded separated region and nonzero drag.

The results obtained, together with the mathematical facts discussed in Introduction, may allow

for some observations to be made about the steady Navier–Stokes flows computed by Fornberg [25].

It appears that, at least as regards the structure of the separated region, for Reynolds numbers up to

about 300 those flows exhibit a number of similarities with the Oseen flows. This is however no longer
the case for Reynolds numbers above 300, where those flows feature a wide separated region, quite

unlike the slender Oseen wakes.
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Fig. 7 (Left column) velocity fields and streamline patterns and (right column) vorticity fields in Oseen flows
for the Reynolds numbers indicated; for clarity, the streamlines are shown only in the separated regions; in the
vorticity plots isocontours corresponding to positive and negative vorticity are indicated with solid and dashed
lines, respectively.
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Fig. 7 (Continued, see previous caption for details); Figures (o) and (p) represent solutions of inviscid problem
defined by (14) and (19).
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Fig. 8 (Dashed lines) boundaries of the the separated regions in Oseen flows with the Reynolds numbers
Re = 5, 10, 50, 100, 500, 1000 (longer bubbles correspond to higher Reynolds numbers); solid line represents the
boundary of the separated region in inviscid problem (14)–(19).

A Criteria for Convergence of Series in (5)

Here we establish the slowest asymptotic decay rates of the coefficients An and Bm, m, n = 1, . . . that will
guarantee the boundedness of the velocity field given by representation (4). We note that this requires the
absolute summability of the derivatives (with respect to r and θ) of the series in (5). As regards the summation
in (5b), we thus have for any fixed r ≥ 1 and ǫ > 0

˛

˛

˛

˛

n
An cos(nθ)

nrn

˛

˛

˛

˛

≤
|An|

rn
≤ |An| =⇒ |An| ∼ n

−1−ǫ as n → ∞. (23)

As regards the summation in (5a), we use the following asymptotic property of the modified Bessel function of
the second kind [45],

Km(kr) ∼

r

π

2m
e
−m

„

kr

2m

«

−m

as m → ∞ (24)

which holds for fixed k > 0 and r ≥ 1, so that we obtain

˛

˛m Bm Km(kr) cos(mθ)
˛

˛ ≤ m |Bm|Km(kr) ≤ C |Bm|

„

k

2

«

−m
e−m

m−m−1/2

=⇒ |Bm| ∼

„

k

2

«m

e
m

m
−m−1/2−ǫ as m → ∞, (25)

where C > 0 is a constant. We note that conditions (23) and (25) have to be satisfied for the velocity components
to be finite, and for velocity derivatives to be finite, the absolute values of the coefficients Bm have to go towards
zero faster. Finally, we add that neither estimate (23) nor (25) is sharp.
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Fig. 9 (a) Length LR and (b) half–width WR of the separated region, (c) drag coefficient CD and (d) the
separation angle θ0 as functions of the Reynolds number Re; in all Figures circles represent the present results
for the viscous Oseen problem, whereas the solid line corresponds to the inviscid Oseen flow, squares and
diamonds correspond to the results of Fornberg, respectively from [25] and [26], triangles correspond to the
results of Gajjar & Azzam [27] for the case where the distance between the obstacles is 100 cylinder radii; in
Figure (c) dashed and dotted lines represent the approximate formulas due to Bairstow et al. [46] and Lamb
[3], whereas the dash–dotted line corresponds to the drag coefficient in the Kirchhoff free–streamline flow [31,
17,18].
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